Determinants of 50 m Front Crawl Performance in Adolescent Non-Elite Female Swimmers: A Longitudinal Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study Group
2.2. Longitudinal Study Design
2.3. Biological Age and Anthropometric Measurements
- body mass/height age—estimated using Pirquet’s tables
- chronological age—time between date of birth and the date of measurement
2.4. Body Fat Measurements
- R—skinfold over the triceps
- L—skinfold beneath the scapula
- R—skinfold over the triceps
- L—skinfold beneath the scapula
2.5. Aerobic and Anaerobic Capacity Measurements
- P—maximum running speed (km/h) from the last completed stage
- W—calendar age, rounded down to the nearest whole number
- m—body mass in kilograms
- g—represents gravitational acceleration of 9.81 m/s2
- h—represents the jump height in meters
2.6. Respiratory Measurements
2.7. Statistical Analysis
- ||y − Xβ||2—residual sum of squares
- |β|2—sum of the squared betas (the L2 penalty)
- |β|1—sum of the absolute betas (the L1 penalty)
- X—N × P (‘N’ observations and ‘P’ predictors) matrix of anthropometric and performance predictors
3. Results
3.1. Descriptive Statistics
3.2. Multivariable Prediction of 50 m Crawl Score
4. Discussion
5. Conclusions
6. Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eider, P. Research Analysis of Selection Criteria at the Initial Stage of Swimming Training of Primary School Junior Students. Cent. Eur. J. Sport. Sci. Med. 2015, 11, 55–62. [Google Scholar] [CrossRef]
- Ruiz-Navarro, J.J.; Cuenca-Fernández, F.; Sanders, R.; Arellano, R. The Determinant Factors of Undulatory Underwater Swimming Performance: A Systematic Review. J. Sports Sci. 2022, 40, 1243–1254. [Google Scholar] [CrossRef] [PubMed]
- Kuberski, M.; Polak, A.; Szołtys, B.; Markowski, K.; Zarzeczny, R. Associations between Selected Biological Features and Absolute and Relative Swimming Performance of Prepubescent Boys over a 3-Year Swimming Training Program: A Longitudinal Study. J. Hum. Kinet. 2022, 83, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Kuberski, M.; Góra, T.; Wąsik, J. Changes in Selected Somatic Indices in 10–12 Year Old Girls under the Influence of 3-Year Swimming Training. Phys. Act. Rev. 2024, 12, 143–149. [Google Scholar] [CrossRef]
- Charmas, M.; Gromisz, W. Effect of 12-Week Swimming Training on Body Composition in Young Women. Int. J. Env. Res. Public Health 2019, 16, 346. [Google Scholar] [CrossRef]
- Figueiredo, P.; Silva, A.; Sampaio, A.; Vilas-Boas, J.P.; Fernandes, R.J. Front Crawl Sprint Performance: A Cluster Analysis of Biomechanics, Energetics, Coordinative, and Anthropometric Determinants in Young Swimmers. Mot. Control 2016, 20, 209–221. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Bartolomeu, R.; Morais, J.E.; Costa, M.J. Skillful Swimming in Age-Groups Is Determined by Anthropometrics, Biomechanics and Energetics. Front. Physiol. 2019, 10, 73. [Google Scholar] [CrossRef]
- Lätt, E.; Jürimäe, J.; Mäestu, J.; Purge, P.; Rämson, R.; Haljaste, K.; Keskinen, K.L.; Rodriguez, F.A.; Jürimäe, T. Physiological, Biomechanical and Anthropometrical Predictors of Sprint Swimming Performance in Adolescent Swimmers. J. Sports Sci. Med. 2010, 9, 398–404. [Google Scholar]
- Jürimäe, J.; Haljaste, K.; Cicchella, A.; Lätt, E.; Purge, P.; Leppik, A.; Jürimäe, T. Analysis of Swimming Performance from Physical, Physiological, and Biomechanical Parameters in Young Swimmers. Pediatr. Exerc. Sci. 2007, 19, 70–81. [Google Scholar] [CrossRef]
- Zacca, R.; Wenzel, B.M.; Piccin, J.S.; Marcilio, N.R.; Lopes, A.L.; de Souza Castro, F.A. Critical Velocity, Anaerobic Distance Capacity, Maximal Instantaneous Velocity and Aerobic Inertia in Sprint and Endurance Young Swimmers. Eur. J. Appl. Physiol. 2010, 110, 121–131. [Google Scholar] [CrossRef]
- Lätt, E.; Jürimäe, J.; Haljaste, K.; Cicchella, A.; Purge, P.; Jürimäe, T. Physical Development and Swimming Performance during Biological Maturation in Young Female Swimmers. Coll. Antropol. 2009, 33, 117–122. [Google Scholar] [PubMed]
- Bencke, J.; Damsgaard, R.; Saekmose, A.; Jørgensen, P.; Jørgensen, K.; Klausen, K. Anaerobic Power and Muscle Strength Characteristics of 11 Years Old Elite and Non-elite Boys and Girls from Gymnastics, Team Handball, Tennis and Swimming. Scand. J. Med. Sci. Sports 2002, 12, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Boguszewski, D.; Stępień, M.; Adamczyk, J.G. The Influence of Core Stability Exercises Programme on the Functional Limitations of the Musculoskeletal System in Girls Practising Volleyball. Phys. Act. Rev. 2023, 11, 24–30. [Google Scholar] [CrossRef]
- Kalva-Filho, C.; Zagatto, A.; da Silva, A.; Castanho, M.; Gobbi, R.; Gobatto, C.; Papoti, M. Relationships among the Tethered 3-Min All-Out Test, MAOD and Swimming Performance. Int. J. Sports Med. 2017, 38, 353–358. [Google Scholar] [CrossRef]
- Geladas, N.D.; Nassis, G.P.; Pavlicevic, S. Somatic and Physical Traits Affecting Sprint Swimming Performance in Young Swimmers. Int. J. Sports Med. 2005, 26, 139–144. [Google Scholar] [CrossRef]
- Mezzaroba, P.V.; Machado, F.A. Effect of Age, Anthropometry, and Distance in Stroke Parameters of Young Swimmers. Int. J. Sports Physiol. Perform. 2014, 9, 702–706. [Google Scholar] [CrossRef]
- Bielec, G.; Peczak-Graczyk, A.; Waade, B. Do Swimming Exercises Induce Anthropometric Changes in Adolescents? Issues Compr. Pediatr. Nurs. 2013, 36, 37–47. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Lang, M.; Light, R. Interpreting and Implementing the Long Term Athlete Development Model: English Swimming Coaches’ Views on the (Swimming) LTAD in Practice. Int. J. Sports Sci. Coach. 2010, 5, 389–402. [Google Scholar] [CrossRef]
- Przewęda, R. Ocena Wieku Rozwojowego. In Teoria i Metodyka Sportu; Ulatowski, T., Ed.; Sport i Turystyka: Warsaw, Poland, 1971. [Google Scholar]
- Malinowski, A.; Asienkiewicz, R.; Tatarczuk, J.; Stuła, A.; Wandycz, A. Dziecko Lubuskie; Oficyna Wydawnicza UZ: Zielona Góra, Poland, 2005; ISBN 83-89712-87-3. [Google Scholar]
- Jopkiewicz, A.; Suliga, E. Biologiczne Podstawy Rozwoju Człowieka; wyd. 2 rozszerzone; Wydział Pedagogiczny WSP w Kielcach: Kielce, Poland, 1998; ISBN 83-87039-99-3. [Google Scholar]
- Drozdowski, Z. Antropologia Dla Nauczycieli Wychowania Fizycznego; wyd. 2; Akademia Wychowania Fizycznego: Poznań, Poland, 2022; ISBN 83-88923-10-2. [Google Scholar]
- Slaughter, M.H.; Lohman, T.G.; Boileau, R.A.; Horswill, C.A.; Stillman, R.J.; Van Loan, M.D.; Bemben, D.A. Skinfold Equations for Estimation of Body Fatness in Children and Youth. Hum. Biol. 1988, 60, 709–723. [Google Scholar]
- Kasai, D.; Tsiros, M.D.; Eston, R.; Parfitt, G. Ratings of Perceived Exertion from a Submaximal 20-m Shuttle Run Test Predict Peak Oxygen Uptake in Children and the Test Feels Better. Eur. J. Appl. Physiol. 2023, 123, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The Multistage 20 Metre Shuttle Run Test for Aerobic Fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Van Praagh, E. Anaerobic Fitness Tests: What Are We Measuring? Med. Sport Sci. 2007, 50, 26–45. [Google Scholar]
- R Core Team: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021.
- Zou, H.; Hastie, T. Regularization and Variable Selection Via the Elastic Net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Hastie, T.; Qian, J.; Tay, K. An Introduction to Glmnet. 2023. Available online: https://cran.r-project.org/web/packages/glmnet/vignettes/glmnet.pdf (accessed on 20 May 2025).
- Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Allegrini, A.G.; Karhunen, V.; Coleman, J.R.I.; Selzam, S.; Rimfeld, K.; von Stumm, S.; Pingault, J.-B.; Plomin, R. Multivariable G-E Interplay in the Prediction of Educational Achievement. PLoS Genet. 2020, 16, e1009153. [Google Scholar] [CrossRef]
- Deschodt, V.J.; Arsac, L.M.; Rouard, A.H. Relative Contribution of Arms and Legs in Humans to Propulsion in 25-m Sprint Front-Crawl Swimming. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 192–199. [Google Scholar] [CrossRef]
- Wakayoshi, K.; Yoshida, T.; Ikuta, Y.; Mutoh, Y.; Miyashita, M. Adaptations to Six Months of Aerobic Swim Training. Int. J. Sports Med. 1993, 14, 368–372. [Google Scholar] [CrossRef]
- Liu, C.; Xu, B.; Wan, K.; Sun, Q.; Wang, R.; Feng, Y.; Shao, H.; Liu, T.; Wang, R. Improved Prediction of Swimming Talent through Random Forest Analysis of Anthropometric and Physiological Phenotypes. Phenomics 2024, 4, 465–472. [Google Scholar] [CrossRef]
- Miller, D.I. Biomechanics of Swimming. Exerc. Sport. Sci. Rev. 1975, 3, 219–248. [Google Scholar] [CrossRef] [PubMed]
- Papic, C.; McCabe, C.; Gonjo, T.; Sanders, R. Effect of Torso Morphology on Maximum Hydrodynamic Resistance in Front Crawl Swimming. Sports Biomech. 2023, 22, 982–996. [Google Scholar] [CrossRef] [PubMed]
- Morouço, P.G.; Marinho, D.A.; Izquierdo, M.; Neiva, H.; Marques, M.C. Relative Contribution of Arms and Legs in 30 s Fully Tethered Front Crawl Swimming. Biomed. Res. Int. 2015, 2015, 63206. [Google Scholar] [CrossRef]
- Veiga, S.; Lorenzo, J.; Trinidad, A.; Pla, R.; Fallas-Campos, A.; de la Rubia, A. Kinematic Analysis of the Underwater Undulatory Swimming Cycle: A Systematic and Synthetic Review. Int. J. Env. Res. Public Health 2022, 19, 12196. [Google Scholar] [CrossRef]
- Knechtle, B. Relationship of Anthropometric and Training Characteristics with Race Performance in Endurance and Ultra-Endurance Athletes. Asian J. Sports Med. 2014, 5, 73–90. [Google Scholar]
- Silvestri, M.; Crimi, E.; Oliva, S.; Senarega, D.; Tosca, M.A.; Rossi, G.A.; Brusasco, V. Pulmonary Function and Airway Responsiveness in Young Competitive Swimmers. Pediatr. Pulmonol. 2013, 48, 74–80. [Google Scholar] [CrossRef]
- Meleski, B.W.; Malina, R.M. Changes in Body Composition and Physique of Elite University-level Female Swimmers during a Competitive Season. J. Sports Sci. 1985, 3, 33–40. [Google Scholar] [CrossRef]
- Kuberski, M.; Musial, A.; Choroszucho, M. Longitudinal Effects of Swimming Training on Anthropometric Characteristics in Pre-Adolescent Girls. Phys. Act. Rev. 2025, 13, 116–130. [Google Scholar] [CrossRef]
- Roelofs, E.J.; Smith-Ryan, A.E.; Trexler, E.T.; Hirsch, K.R. Seasonal Effects on Body Composition, Muscle Characteristics, and Performance of Collegiate Swimmers and Divers. J. Athl. Train. 2017, 52, 45–50. [Google Scholar] [CrossRef]
- Bielec, G.; Gozdziejewska, A.; Makar, P. Changes in Body Composition and Anthropomorphic Measurements in Children Participating in Swimming and Non-Swimming Activities. Children 2021, 8, 529. [Google Scholar] [CrossRef]
- Kriemler, S.; Puder, J.; Zahner, L.; Roth, R.; Braun-Fahrländer, C.; Bedogni, G. Cross-Validation of Bioelectrical Impedance Analysis for the Assessment of Body Composition in a Representative Sample of 6- to 13-Year-Old Children. Eur. J. Clin. Nutr. 2009, 63, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Fantuzzi, G.; Righi, E.; Predieri, G.; Giacobazzi, P.; Mastroianni, K.; Aggazzotti, G. Prevalence of Ocular, Respiratory and Cutaneous Symptoms in Indoor Swimming Pool Workers and Exposure to Disinfection By-Products (DBPs). Int. J. Env. Res. Public Health 2010, 7, 1379–1391. [Google Scholar] [CrossRef] [PubMed]
- Tzelepis, G.E.; Vega, D.L.; Cohen, M.E.; McCool, F.D. Lung Volume Specificity of Inspiratory Muscle Training. J. Appl. Physiol. 1994, 77, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Courteix, D.; Obert, P.; Lecoq, A.-M.; Guenon, P.; Koch, G. Effect of Intensive Swimming Training on Lung Volumes, Airway Resistances and on the Maximal Expiratory Flow-Volume Relationship in Prepubertal Girls. Eur. J. Appl. Physiol. 1997, 76, 264–269. [Google Scholar] [CrossRef]
- Davies, R.D.; Parent, E.C.; Steinback, C.D.; Kennedy, M.D. The Effect of Different Training Loads on the Lung Health of Competitive Youth Swimmers. Int. J. Exerc. Sci. 2018, 11, 999–1018. [Google Scholar] [CrossRef]
- Stavrou, V.; Toubekis, A.G.; Karetsi, E. Changes in Respiratory Parameters and Fin-Swimming Performance Following a 16-Week Training Period with Intermittent Breath Holding. J. Hum. Kinet. 2015, 49, 89–98. [Google Scholar] [CrossRef]
Research Time | Number of Trainings | Training Unit Diagram | Training Unit Diagram |
---|---|---|---|
Year 1 (35 weeks) | 4 training sessions per week | Warm up: 200–300 m Main part: 5 × 50 m only arms 5 × 50 m only legs 5 × 50 m coordination arms/legs 2 × 100 m full style Cool down: 200–300 m | 1500 m in 1 training session |
Year 2 (35 weeks) | 4 training sessions per week | Warm up: 300–400 m 6 × 50 m only arms 6 × 50 m only legs 6 × 50 m coordination arms/legs 5 × 100 m full style Cool down: 200–300 m | 2000 m in 1 training session |
Year 3 (35 weeks) | 4 training sessions per week | Warm up: 300–400 m 5 × 100 m only arms 5 × 100 m only legs 5 × 100 m coordination arms/legs 4 × 100 m full style Cool down: 200–300 m | 2500 m in 1 training session |
Measurement 1 | Measurement 6 | ANOVA | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Mean | SD | Median | Min | Max | Range | Skew | Kurtosis | Mean | SD | Median | Min | Max | Range | Skew | Kurtosis | F-Value | df | p-Value |
Weight [kg] | 35.00 | 2.77 | 34.80 | 31.40 | 40.10 | 8.70 | 0.33 | −1.39 | 46.40 | 4.09 | 44.60 | 42.40 | 55.60 | 13.20 | 1.04 | −0.41 | −1.35 | 75.20 | <0.001 |
Height [cm] | 146.00 | 3.04 | 145.00 | 141.00 | 152.00 | 11.00 | 0.33 | −0.94 | 164.00 | 5.31 | 164.00 | 156.00 | 176.00 | 20.50 | 0.72 | 0.15 | 0.32 | 116.00 | <0.001 |
Shoulder width [mm] | 328.00 | 30.10 | 333.00 | 244.00 | 358.00 | 114.00 | −1.36 | 1.56 | 370.00 | 12.60 | 373.00 | 351.00 | 389.00 | 38.00 | −0.04 | −1.50 | −1.21 | 23.50 | <0.001 |
Chest width [mm] | 214.00 | 16.60 | 212.00 | 182.00 | 240.00 | 58.00 | −0.09 | −0.87 | 250.00 | 30.40 | 242.00 | 217.00 | 339.00 | 122.00 | 1.70 | 2.53 | 0.26 | 14.70 | <0.001 |
Chest depth [mm] | 162.00 | 13.80 | 164.00 | 136.00 | 183.00 | 47.00 | −0.64 | −0.63 | 184.00 | 15.20 | 184.00 | 159.00 | 213.00 | 54.00 | 0.26 | −0.99 | −0.48 | 16.10 | <0.001 |
Hip width [mm] | 238.00 | 13.10 | 242.00 | 210.00 | 255.00 | 45.00 | −0.80 | −0.58 | 278.00 | 10.90 | 276.00 | 265.00 | 305.00 | 40.00 | 0.88 | 0.09 | −1.47 | 77.50 | <0.001 |
Upper limb length [cm] | 63.30 | 3.00 | 63.50 | 59.00 | 68.00 | 9.00 | 0.03 | −1.43 | 69.60 | 3.27 | 69.50 | 65.00 | 75.00 | 10.00 | 0.09 | −1.38 | −1.09 | 28.70 | <0.001 |
Hand width [mm] | 79.90 | 11.90 | 86.00 | 55.00 | 91.00 | 36.00 | −0.85 | −0.85 | 91.50 | 2.98 | 91.00 | 87.00 | 95.00 | 8.00 | −0.05 | −1.70 | −1.60 | 12.60 | 0.001 |
Lower limb length [cm] | 86.90 | 2.62 | 87.50 | 81.00 | 90.00 | 9.00 | −0.77 | −0.59 | 96.10 | 2.95 | 95.50 | 92.00 | 102.00 | 10.00 | 0.35 | −1.03 | −0.75 | 75.40 | <0.001 |
Foot length [mm] | 239.00 | 13.10 | 238.00 | 202.00 | 257.00 | 55.00 | −1.22 | 1.84 | 263.00 | 10.40 | 262.00 | 246.00 | 282.00 | 36.00 | 0.26 | −1.14 | −1.80 | 28.30 | <0.001 |
Foot width [mm] | 88.70 | 13.10 | 94.50 | 60.00 | 102.00 | 42.00 | −0.94 | −0.57 | 104.00 | 4.63 | 104.00 | 98.00 | 112.00 | 14.00 | 0.29 | −1.40 | −1.01 | 17.10 | <0.001 |
BMI [ kg/m2] | 16.40 | 1.36 | 16.20 | 14.30 | 18.30 | 4.03 | 0.17 | −1.47 | 17.30 | 1.14 | 17.30 | 15.80 | 19.70 | 3.94 | 0.61 | −0.58 | −0.92 | 3.75 | 0.064 |
Body fat [%] | 18.60 | 4.50 | 17.70 | 10.80 | 26.70 | 16.00 | 0.17 | −1.10 | 17.30 | 3.45 | 16.70 | 11.40 | 22.60 | 11.20 | 0.05 | −1.43 | −0.75 | 0.74 | 0.396 |
VC [l] | 2.24 | 0.25 | 2.23 | 1.80 | 2.78 | 0.98 | 0.23 | −0.42 | 2.83 | 0.32 | 2.90 | 2.33 | 3.44 | 1.11 | 0.33 | −0.98 | −1.21 | 28.80 | <0.001 |
FEV1 [l] | 1.70 | 0.38 | 1.76 | 1.09 | 2.45 | 1.36 | 0.02 | −0.93 | 1.80 | 0.47 | 1.76 | 0.98 | 2.52 | 1.54 | 0.08 | −1.21 | −1.36 | 0.34 | 0.568 |
FVC [l] | 1.74 | 0.39 | 1.84 | 1.09 | 2.48 | 1.39 | −0.07 | −1.04 | 1.80 | 0.47 | 1.76 | 0.99 | 2.53 | 1.54 | 0.09 | −1.22 | −1.37 | 0.15 | 0.7 |
MPA [J] | 96.10 | 19.10 | 99.80 | 62.90 | 126.00 | 63.00 | −0.49 | −1.02 | 148.00 | 22.70 | 146.00 | 118.00 | 193.00 | 74.40 | 0.37 | −1.11 | −0.94 | 596.00 | <0.001 |
VO2max [mL·min−1·kg−1] | 47.50 | 3.47 | 46.30 | 41.50 | 53.40 | 11.90 | 0.28 | −0.88 | 51.30 | 3.39 | 52.30 | 43.80 | 55.60 | 11.80 | −0.77 | −0.46 | −0.29 | 8.69 | 0.007 |
50 m crawl [s] | 50.80 | 12.90 | 46.10 | 37.80 | 79.00 | 41.20 | 0.93 | −0.52 | 36.30 | 3.37 | 35.60 | 31.90 | 45.10 | 13.30 | 1.13 | 0.81 | 0.35 | 16.50 | <0.001 |
Metric | Value |
---|---|
N | 14 |
R-squared | 0.44 |
RMSE (95% CIs) | 2.82 (1.76; 4.95) |
MAE | 2.13 |
AIC | 149.20 |
BIC | 161.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuberski, M.; Musial, A.; Błażkiewicz, M.; Wąsik, J. Determinants of 50 m Front Crawl Performance in Adolescent Non-Elite Female Swimmers: A Longitudinal Study. J. Funct. Morphol. Kinesiol. 2025, 10, 274. https://doi.org/10.3390/jfmk10030274
Kuberski M, Musial A, Błażkiewicz M, Wąsik J. Determinants of 50 m Front Crawl Performance in Adolescent Non-Elite Female Swimmers: A Longitudinal Study. Journal of Functional Morphology and Kinesiology. 2025; 10(3):274. https://doi.org/10.3390/jfmk10030274
Chicago/Turabian StyleKuberski, Mariusz, Agnieszka Musial, Michalina Błażkiewicz, and Jacek Wąsik. 2025. "Determinants of 50 m Front Crawl Performance in Adolescent Non-Elite Female Swimmers: A Longitudinal Study" Journal of Functional Morphology and Kinesiology 10, no. 3: 274. https://doi.org/10.3390/jfmk10030274
APA StyleKuberski, M., Musial, A., Błażkiewicz, M., & Wąsik, J. (2025). Determinants of 50 m Front Crawl Performance in Adolescent Non-Elite Female Swimmers: A Longitudinal Study. Journal of Functional Morphology and Kinesiology, 10(3), 274. https://doi.org/10.3390/jfmk10030274