Influence of Talocrural Joint Position on the Quadriceps Femoris Muscle Torque Measured with an Isokinetic and EasyForce® Dynamometer in Young Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Testing Procedure
2.2.1. IKD Testing Procedure
2.2.2. HHFD Testing Procedure
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Comparison of the Effects of Three Different Talocrural Joint Positions on the QF Muscle Torque Measured with an IKD and HHFD
3.3. Comparison of the QF Muscle Torque Values Between IKD and HHFD
3.4. Degree of Correlation Between the Measured Methods
4. Discussion
4.1. Influence of Talocrural Joint Position on the QF Muscle Torque
4.2. Cybex CSMi vs. EasyForce®
4.3. Recommendations for Clinical Use of the EasyForce® Dynamometer
4.4. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
QF | Quadriceps femoris |
TA | Tibialis anterior |
DF | Dorsiflexion |
PF | Plantar flexion |
N | Neutral Position |
IKD | Isokinetic Dynamometer |
HHD | Hand-Held Dynamometry |
HHFD | Hand-Held Fixed Dynamometry |
Nm | Newton-meters |
N | Newtons |
m | meter |
cm | centimeter |
kg | kilogram |
M | Muscle torque |
F | Muscle strength |
d | Muscle moment arm |
Me | Median |
n | Sample size |
Q1 | Lower quartile |
Q3 | Upper quartile |
Min | Minimum |
Max | Maximum |
CI | Confidence Interval |
p | Probability value |
R | Spearman’s coefficient of rank correlation |
EHL | Extensor hallucis longus |
EDL | Extensor digitorum longus |
MVIC | Maximal Voluntary Isometric Contraction |
References
- Neumann, D.A. Ankle and Foot. In Kinesiology of the Musculoskeletal System, 3rd ed.; Neumann, D.A., Ed.; Elsevier Inc.: St. Louis, MO, USA, 2017; pp. 595–652. [Google Scholar]
- Wang, S.; Qian, Z.; Liu, X.; Song, G.; Wang, K.; Wu, J.; Liu, J.; Ren, L.; Ren, L. Intrinsic Kinematics of the Tibiotalar and Subtalar Joints during Human Walking based on Dynamic Biplanar Fluoroscopy. J. Bionic Eng. 2023, 20, 2059–2068. [Google Scholar] [CrossRef]
- Gontijo, L.B.; Pereira, P.D.; Neves, C.D.C.; Santos, A.P.; Machado, D.d.C.D.; Bastos, V.H.D.V. Evaluation of strength and irradiated movement pattern resulting from trunk motions of the proprioceptive neuromuscular facilitation. Rehabil. Res. Pract. 2012, 2012, 281937. [Google Scholar] [CrossRef] [PubMed]
- Horsczaruk, C.H.R.; Martins, J.V.P.; Vargas, C.; Oliveira, L.A.; Lemos, T.C. Electromyographic profile of the wrist and elbow flexors during pnf motor irradiation. Braz. J. Phys. Ther. 2024, 28 (Suppl. 1), 100677. [Google Scholar] [CrossRef]
- Özdinç, S.; Selçuk, H. Demonstrating the Irridation and Reinforcement Effects of Proprioceptive Neuromusculer Facilitation Technics. Turk. J. Sport Exe. 2022, 24, 233–237. [Google Scholar]
- Nunes, M.; Martins e Silva, D.; Moreira, R.; Sousa, F.; Lial, L.; Rocha, K.; Silva-Junior, F.; Orsini, M.; Dias, G.; Teixeira, S.; et al. Motor Irradiation According to the Concept of Proprioceptive Neuromuscular Facilitation: Measurement Tools and Future Prospects. Int. J. Phys. Med. Rehabil. 2016, 4, 330. [Google Scholar] [CrossRef]
- Eisner-Janowicz, I.; Chen, B.; Sangari, S.; Perez, M.A. Corticospinal excitability across lower limb muscles in humans. J. Neurophysiol. 2023, 130, 788–797. [Google Scholar] [CrossRef]
- Latash, M.L. Muscle coactivation: Definitions, mechanisms, and functions. J. Neurophysiol. 2018, 120, 88–104. [Google Scholar] [CrossRef]
- Bobinac, D.; Dujmović, M. Miologija. In Osnove Anatomije, 3rd ed.; Bobinac, D., Dujmović, M., Eds.; Glossa: Rijeka, Croatia, 2011; pp. 67–91. [Google Scholar]
- Cha, Y.-J. Isokinetic training effect of ankle positions on knee extensor strength. J. Phys. Ther. Sci. 2014, 26, 1465–1467. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lee, J.-H.; Yu, S.-M.; An, C.-M. The Effects of Ankle Position on Torque and Muscle Activity of the Knee Extensor During Maximal Isometric Contraction. J. Sport Rehabil. 2020, 29, 37–42. [Google Scholar] [CrossRef]
- Shveta, K.; Quddas, N.; Vequar, Z. Effect of Ankle Position on Isometric Quadriceps Strengthening in Osteoarthritis of Knee Joint. Ind. J. Physio. Occup. 2010, 4, 71–75. [Google Scholar]
- Kim, K.; Cha, Y.-J.; Fell, D.W. Differential effects of ankle position on isokinetic knee extensor and flexor strength gains during strength training. Isokinet. Exerc. Sci. 2016, 24, 195–199. [Google Scholar] [CrossRef]
- Yoshizawa, T.; Kitamura, M.; Okamoto, N. Correlation between ankle plantar flexor strength and leg extensor torque. J. Phys. Ther. Sci. 2020, 32, 496–498. [Google Scholar] [CrossRef] [PubMed]
- Petrc, N.; Brentin, M.; Vučković, M.; Kehler, T. Excercise protocols in patient with spondyloarthropathies. J. Health Sci. 2024, 14, 56–62. [Google Scholar]
- Sahu, P.K.; Goodstadt, N.; Ramakrishnan, A.; Silfies, S.P. Test-retest reliability and concurrent validity of knee extensor strength measured by a novel device incorporated into a weight stack machine vs. handheld and isokinetic dynamometry. PLoS ONE 2024, 19, e0301872. [Google Scholar] [CrossRef]
- Almeida, G.P.L.; Albano, T.R.; Melo, A.K.P. Hand-held dynamometer identifies asymmetries in torque of the quadriceps muscle after anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 2494–2501. [Google Scholar] [CrossRef]
- Mentiplay, B.F.; Perraton, L.G.; Bower, K.J.; Adair, B.; Pua, Y.-H.; Williams, G.P.; McGaw, R.; Clark, R.A.; Haddad, J.M. Assessment of Lower Limb Muscle Strength and Power Using Hand-Held and Fixed Dynamometry: A Reliability and Validity Study. PLoS ONE 2015, 10, e0140822. [Google Scholar] [CrossRef]
- Hansen, E.M.; McCartney, C.N.; Sweeney, R.S.; Palimenio, M.R.; Grindstaff, T.L. Hand-held Dynamometer Positioning Impacts Discomfort During Quadriceps Strength Testing: A Validity and Reliability Study. Int. J. Sports Phys. Ther. 2015, 10, 62–68. [Google Scholar] [PubMed]
- Hirano, M.; Katoh, M.; Gomi, M.; Arai, S. Validity and reliability of isometric knee extension muscle strength measurements using a belt-stabilized hand-held dynamometer: A comparison with the measurement using an isokinetic dynamometer in a sitting posture. J. Phys. Ther. Sci. 2020, 32, 120–124. [Google Scholar] [CrossRef]
- Du, W.; Cornett, K.M.D.; Donlevy, G.A.; Burns, J.; McKay, M.J. Variability between Different Hand-Held Dynamometers for Measuring Muscle Strength. Sensors 2024, 24, 1861. [Google Scholar] [CrossRef]
- van der Woude, D.R.; Ruyten, T.; Bartels, B. Reliability of Muscle Strength and Muscle Power Assessments Using Isokinetic Dynamometry in Neuromuscular Diseases: A Systematic Review. Phys. Ther. 2022, 102, pzac099. [Google Scholar] [CrossRef]
- Schindler, I.F.S.R.; Pontes, S.S.; Bertoni, M.B.M.; Junior, G.F.; Júnior, B.R.N.; de Jesus, F.L.A.; Neto, M.G. A Systematic Review of Isokinetic Muscle Strength in a Healthy Population with Special Reference to Age and Gender. Sports Health 2023, 15, 328–332. [Google Scholar] [CrossRef]
- Trajković, N.; Kozinc, Ž.; Smajla, D.; Šarabon, N. Interrater and Intrarater Reliability of the EasyForce Dynamometer for Assessment of Maximal Shoulder, Knee and Hip Strength. Diagnostic 2022, 12, 442. [Google Scholar] [CrossRef] [PubMed]
- Meloq. EasyForce Digital Dynamometer. Available online: https://meloqdevices.com/pages/easyforce-digital-dynamometer (accessed on 24 April 2025).
- Brockett, C.L.; Chapman, G.J. Biomechanics of the ankle. Orthop. Trauma 2016, 30, 232–238. [Google Scholar] [CrossRef]
- Lesnak, J.; Anderson, D.; Farmer, B.; Katsavelis, D.; Grindstaff, T.L. Validity of handheld dynamometry in measuring quadriceps strength and rate of torque development. Int. J. Sports Phys. Ther. 2019, 14, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Garnier, Y.M.; Lepers, R.; Canepa, P.; Martin, A.; Paizis, C. Effect of the Knee and Hip Angles on Knee Extensor Torque: Neural, Architectural, and Mechanical Considerations. Front. Physiol. 2022, 12, 789867. [Google Scholar] [CrossRef] [PubMed]
- de Oliviera, F.T.M.; de Oliviera Gomes, C.; Farinatti, P. Pennation angle of vastus lateralis during isometric contractions performed at two knee angles. Fizioter. Mov. 2017, 30 (Suppl. 1), S75–S83. [Google Scholar] [CrossRef]
- Murata, Y.; Kida, N.; Jiromaru, T.; Wachi, M.; Yoshikawa, K.; Noguchi, S.; Onishi, H. Effects of Ankle Joint Angles and Surrounding Muscles on Hip Joint Musculature. J. Funct. Morphol. Kinesiol. 2025, 10, 110. [Google Scholar] [CrossRef]
- Croce, R.V.; Miller, J.P.; Pierre, P.S. Effect of ankle position fixation on peak torque and electromyographic activity of the knee flexors and extensors. Electromyogr. Clin. Neurophysiol. 2000, 40, 365–373. [Google Scholar]
- Croce, R.V.; Miller, J.P. Angle- and velocity-specific alterations in torque and semg activity of the quadriceps and hamstrings during isokinetic extension-flexion movements. Electromyogr. Clin. Neurophysiol. 2006, 46, 83–100. [Google Scholar]
- Weavil, J.C.; Amann, M. Corticospinal excitability during fatiguing whole body exercise. Prog. Brain Res. 2018, 240, 219–246. [Google Scholar] [CrossRef]
- Valenčič, T.; Ansdell, P.; Brownstein, C.G.; Spillane, P.M.; Holobar, A.; Škarabot, J. Motor unit discharge rate modulation during isometric contractions to failure is intensity- and modality-dependent. J. Physiol. 2024, 602, 2287–2314. [Google Scholar] [CrossRef] [PubMed]
- Hirano, M.; Gomi, M.; Katoh, M. Effects of trunk stability on isometric knee extension muscle strength measurement while sitting. J. Phys. Ther. Sci. 2016, 28, 2474–2476. [Google Scholar] [CrossRef]
- Magnusson, S.P.; Geismar, R.A.; Gleim, G.W.; Nicholas, J.A. The effect of stabilization on isokinetic knee extension and flexion torque production. J. Athl. Train. 1993, 28, 221–225. [Google Scholar]
- Pinto-Ramos, J.; Moreira, T.; Costa, F.; Tavares, H.; Cabral, J.; Costa-Santos, C.; Barroso, J.; Sousa-Pinto, B.; Shaharudin, S. Handheld dynamometer reliability to measure knee extension strength in rehabilitation patients—A cross-sectional study. PLoS ONE 2022, 17, e0268254. [Google Scholar] [CrossRef]
- Nunes, J.P.; Cunha, P.M.; Mayhew, J.L.; Ribeiro, A.S.; Junior, P.S.; Fernandes, R.R.; Cyrino, E.S. Influence of Handgrip Stabilization During Isokinetic Knee Strength Assessment in Older Women. Percept. Mot. Skills 2020, 127, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Scopaz, K.A.; Piva, S.R.; Gil, A.B.; Woollard, J.D.; Oddis, C.V.; Fitzgerald, G.K. Effect of baseline quadriceps activation on changes in quadriceps strength after exercise therapy in subjects with knee osteoarthritis. Arthritis Rheum. 2009, 61, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Altubasi, I.M. Is quadriceps muscle strength a determinant of the physical function of the elderly? J. Phys. Ther. Sci. 2015, 27, 3035–3038. [Google Scholar] [CrossRef]
- Agre, J.C.; Rodriquez, A.A.; Franke, T.M. Strength, endurance, and work capacity after muscle strengthening exercise in postpolio subjects. Arch. Phys. Med. Rehabil. 1997, 78, 681–686. [Google Scholar] [CrossRef]
Variables | Me (Q1–Q3) | Min–Max | Title 1 | Title 2 | Title 3 |
---|---|---|---|---|---|
Age (years) | 19.00 (18.00–19.00) | 18.00–20.00 | entry 1 | data | data |
Gender | n (%) | entry 2 | data | data 1 | |
Female | 21 (63.64) | ||||
Male | 12 (36.36) | ||||
Height (cm) | 172.00 (165.00–181.00) | 155.00–198.00 | |||
Weight (kg) | 68.00 (62.00–80.00) | 49.00–102.00 | |||
Dominant leg | n (%) | ||||
Right | 31 (93.94) | ||||
Left | 2 (6.06) |
Variables | Intercept (95% CI) | Slope (95% CI) | Linear Model Validity (p) * |
---|---|---|---|
DF (IKD/HHFD) | −37.77 (−99.67 to −3.57) | 1.42 (1.16 to 1.83) | 1 |
PF (IKD/HHFD) | −40.58 (−97.00 to 2.50) | 1.62 (1.34 to 2.00) | 0.93 |
N (IKD/HHFD) | −36.64 (−118.02 to 12.95) | 1.49 (1.16 to 2.01) | 0.30 |
Variables | Spearman R | p-Value | Strength of Correlation |
---|---|---|---|
DF (IKD/HHFD) | 0.846 | p < 0.001 | Very good to very strong correlation |
PF (IKD/HHFD) | 0.808 | p < 0.001 | |
N (IKD/HHFD) | 0.773 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sović, I.; Brentin, M.; Vučković, M.; Lekić, A.; Starčević-Klasan, G.; Miletić, B.; Vlahović, H. Influence of Talocrural Joint Position on the Quadriceps Femoris Muscle Torque Measured with an Isokinetic and EasyForce® Dynamometer in Young Adults. J. Funct. Morphol. Kinesiol. 2025, 10, 245. https://doi.org/10.3390/jfmk10030245
Sović I, Brentin M, Vučković M, Lekić A, Starčević-Klasan G, Miletić B, Vlahović H. Influence of Talocrural Joint Position on the Quadriceps Femoris Muscle Torque Measured with an Isokinetic and EasyForce® Dynamometer in Young Adults. Journal of Functional Morphology and Kinesiology. 2025; 10(3):245. https://doi.org/10.3390/jfmk10030245
Chicago/Turabian StyleSović, Ivana, Matija Brentin, Mirela Vučković, Andrica Lekić, Gordana Starčević-Klasan, Bojan Miletić, and Hrvoje Vlahović. 2025. "Influence of Talocrural Joint Position on the Quadriceps Femoris Muscle Torque Measured with an Isokinetic and EasyForce® Dynamometer in Young Adults" Journal of Functional Morphology and Kinesiology 10, no. 3: 245. https://doi.org/10.3390/jfmk10030245
APA StyleSović, I., Brentin, M., Vučković, M., Lekić, A., Starčević-Klasan, G., Miletić, B., & Vlahović, H. (2025). Influence of Talocrural Joint Position on the Quadriceps Femoris Muscle Torque Measured with an Isokinetic and EasyForce® Dynamometer in Young Adults. Journal of Functional Morphology and Kinesiology, 10(3), 245. https://doi.org/10.3390/jfmk10030245