Olympic Italian Female Water Polo Players: Analysis of Body Size and Body Composition Data over 20 Years
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Procedure
2.2.1. Anthropometric Measurements (Body Mass, Body Height, and Body Mass Index)
2.2.2. Body Composition Analysis
2.2.3. Relative Age
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borms, J. Secular Changes in Sport. Kinesiology 2003, 35, 91–96. [Google Scholar]
- Sedeaud, A.; Marc, A.; Schipman, J.; Schaal, K.; Danial, M.; Guillaume, M.; Berthelot, G.; Toussaint, J.F. Secular trend: Morphology and performance. J. Sports Sci. 2014, 32, 1146–1154. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M.; Figueiredo, A.J.; Coelho-E-Silva, M.J. Body Size of Male Youth Soccer Players: 1978–2015. Sports Med. 2017, 47, 1983–1992. [Google Scholar] [CrossRef] [PubMed]
- Kidokoro, T.; Kohmura, Y.; Fuku, N.; Someya, Y.; Suzuki, K. Secular trends in the grip strength and body mass index of sport university students between 1973 and 2016: J-Fit+ study. J. Exerc. Sci. Fit. 2020, 18, 21–30. [Google Scholar] [CrossRef]
- Sember, V.; Đurić, S.; Starc, G.; Leskošek, B.; Sorić, M.; Kovač, M.; Jurak, G. Secular trends in skill-related physical fitness among Slovenian children and adolescents from 1983 to 2014. Scand. J. Med. Sci. Sports 2023, 33, 2323–2339. [Google Scholar] [CrossRef]
- Lozovina, V.; Pavicić, L. Anthropometric changes in elite male water polo players: Survey in 1980 and 1995. Croat Med. J. 2004, 45, 202–205. [Google Scholar]
- Lupo, C.; Minganti, C.; Cortis, C.; Perroni, F.; Capranica, L.; Tessitore, A. Effects of competition level on the centre forward role of men’s water polo. J. Sports Sci. 2012, 30, 889–897. [Google Scholar] [CrossRef]
- Botonis, P.G.; Toubekis, A.G.; Terzis, G.D.; Geladas, N.D.; Platanou, T.I. Performance decrement and skill deterioration during a water polo game are linked with the conditioning level of the athletes. J. Strength Cond. Res. 2016, 30, 1033–1041. [Google Scholar] [CrossRef]
- Melchiorri, G.; Castagna, C.; Sorge, R.; Bonifazi, M. Game activity and blood lactate in men’s elite water-polo players. J. Strength Cond. Res. 2010, 24, 2647–2651. [Google Scholar] [CrossRef]
- Melchiorri, G.; Viero, V.; Sorge, R.; Triossi, T.; Campagna, A.; Volpe, L.S.; Lecis, D.; Tancredi, V.; Andreoli, A. Body composition analysis to study long-term training effects in elite male water polo athletes. J. Sports Med. Phys. Fit. 2018, 58, 1269–1274. [Google Scholar] [CrossRef]
- Fields, J.B.; Merrigan, J.J.; White, J.B.; Jones, M.T. Body Composition Variables By Sport And Sport-Position in Elite Collegiate Athletes. J. Strength Cond. Res. 2018, 32, 3153–3159. [Google Scholar] [CrossRef] [PubMed]
- Platanou, T.; Varamenti, E. Relationships between anthropometric and physiological characteristics with throwing velocity and on water jump of female water polo players. J. Sports Med. Phys. Fit. 2011, 51, 185–193. [Google Scholar] [PubMed]
- Lydia Nsekera. Gender Equality & Inclusion Report 2021. Available online: https://stillmed.olympics.com/media/Documents/Beyond-the-Games/Gender-Equality-in-Sport/2021-IOC-Gender-Equality-Inclusion-Report.pdf (accessed on 3 October 2021).
- Campa, F.; Thomas, D.M.; Watts, K.; Clark, N.; Baller, D.; Morin, T.; Toselli, S.; Koury, J.K.; Melchiorri, G.; Andreoli, A.; et al. Reference Percentiles for Bioelectrical Phase Angle in Athletes. Biology 2022, 11, 264. [Google Scholar] [CrossRef] [PubMed]
- Coratella, G.; Campa, F.; Matias, C.N.; Toselli, S.; Koury, J.C.; Andreoli, A.; Sardinha, L.S.B.; Silva, A.M. Generalized bioelectric impedance-based equations underestimate body fluids in athletes. Scand. J. Med. Sci. Sports 2021, 31, 2123–2132. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Viero, V.; Triossi, T.; Bianchi, D.; Campagna, A.; Melchiorri, G. Physical and performance variables for talent identification in water polo. J. Sports Med. Phys. Fit. 2020, 60, 1309–1316. [Google Scholar] [CrossRef]
- Popkin, C.A.; Bayomi, A.F.; Ahmad, C.S. Early sport specialization. J. Am. Acad. Orthop. Surg. 2019, 2, 995–1000. [Google Scholar] [CrossRef]
- Sanchez-Diaz, S.; Yanci, J.; Castillo, D.; Scanlan, A.T.; Raya-Gonzalez, J. Effects of nutrition interventions in team sport players. A systematic review. Nutrients 2020, 12, 3664. [Google Scholar] [CrossRef]
- Garrido-Chamorro, R.P.; Sirvent-Belando, J.E.; Gonzalez-Lorenzo, M.; Martin-Carratala, L.M.; Roche, E. Correlation between body mass index and body composition in elite athletes. J. Sports Med. Phys. Fit. 2009, 49, 278–284. [Google Scholar]
- NCD Risk Factor Collaboration (NCD-RisC). Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: A pooled analysis of 2181 population-based studies with 65 million participants. Lancet 2020, 396, 1511–1524. [Google Scholar] [CrossRef]
- Cacciari, E.; Milani, S.; Balsamo, A.; Spada, E.; Bona, G.; Cavallo, L.; Cerutti, F.; Gargantini, L.; Greggio, N.; Tonini, G.; et al. Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). J. Endocrinol. Investig. 2006, 29, 581–593. [Google Scholar] [CrossRef]
- Annunziata, G.; Paoli, A.; Frias-Toral, E.; Marra, S.; Campa, F.; Verde, L.; Colao, A.; Lukaski, H.; Simancas-Racines, D.; Muscogiuri, G. Use of phase angle as an indicator of overtraining in sport and physical training. J. Transl. Med. 2024, 22, 1084. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Matias, C.N.; Marini, E.; Heymsfield, S.B.; Toselli, S.; Silva, A.M. Identifying Athlete Body-Fluid Changes During a Competitive Season With Bioelectrical Impedance Vector Analysis. Int. J. Sports Physiol. Perform 2019, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C.; Kyle, U.G.; Kondrup, J. Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: Phase angle and impedance ratio. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Di Vincenzo, O.; Marra, M.; Scaffi, L. Biolectrical impedance phase angle in sport: A systematic review. J. Int. Soc. Sport Nutr. 2019, 16, 49. [Google Scholar] [CrossRef]
Olympic Edition | Athens 2004 | Beijing 2008 | London 2012 | Rio 2016 | Tokyo 2021 | Paris 2024 |
---|---|---|---|---|---|---|
Sample number (n) | 14 | 15 | 17 | 16 | 16 | 15 |
Age (yrs) | 27.6 ± 4.0 (P) | 27.8 ± 3.6 (P) | 24.9 ± 5.3 (P) | 25.1 ± 4.1 | 27.4 ± 3.3 (P) | 24.3 ± 4.1 (A-B-L-T) |
Body height (cm) | 171.6 ± 7.6 | 174.3 ± 7.1 | 173.0 ± 7.9 | 172.3 ± 3.9 | 172.7 ± 3.7 | 173.0 ± 3.5 |
Body Mass (kg) | 68.2 ± 7.0 (P) | 72.4 ± 12.4 | 71.7 ± 14.8 (P) | 71.4 ± 5.5 | 71.8 ± 9.1 | 74.3 ± 9.2 (A-L) |
BMI | 23.2 ± 2.6 | 23.8 ± 3.2 | 23.8 ± 3.4 | 24.0 ± 1.5 | 24.1 ± 3.0 | 24.8 ± 3.0 |
FM (kg) | 15.5 ± 2.3 | 17.4 ± 4.5 | 17.5 ± 4.6 | 17.2 ± 1.9 | 16.5 ± 3.7 | 16.8 ± 3.0 |
FM (%) | 22.6 ± 1.4 | 23.7 ± 2.2 | 24.3 ± 2.1 | 24.1 ± 2.1 | 22.8 ± 2.9 | 22.7 ± 2.4 |
FFM (kg) | 52.7 ± 4.9 (P) | 55.0 ± 8.1 | 54.1 ± 10.6 (P) | 54.2 ± 4.6 (P) | 55.3 ± 6.1 (A-P) | 57.4 ± 7.1 (A-L-R-T) |
FFM (%) | 77.4 ± 1.4 | 76.3 ± 2.2 | 75.7 ± 2.1 | 75.9 ± 2.1 | 77.2 ± 2.9 | 77.3 ± 2.4 |
PhA | 7.5 ± 1.2 (L) | 7.3 ± 0.5 (L) | 6.8 ± 0.5 (A-L-T-P) | 7.6 ± 0.8 (L) | 7.9 ± 0.6 (L) | 7.7 ± 0.7 (L) |
Year’s Quarter | I | II | III | IV |
---|---|---|---|---|
2004 n14 | 14.3% | 42.9% I 21 | 21.4% | 21.4% |
2008 n15 | 13.3% | 40.0% I 21 | 13.3% | 33.3% |
2012 n17 | 5.9% III 21; III,IV 12 | 11.8% | 41.2% I 12; I 21 | 41.2% I 12; I 21 |
2016 n16 | 18.8% | 18.8% | 25.0% | 37.5% |
2021 n16 | 6.3% II 04; II 08; III,IV 12 | 37.5% | 31.3% | 25.0% |
2024 n15 | 26.7% | 33.3% | 26.7% | 13.3% |
ECW (lt) | ECW (%) | ICW (lt) | ICW (%) | TBW (lt) | TBW (%) | |
---|---|---|---|---|---|---|
2004 | 16.2 ± 1.1 | 23.8 ± 1.0 | 21.8 ± 2.3 | 32.0 ± 0.6 | 38.0 ± 3.4 | 55.7 ± 1.0 |
2024 | 17.3 * ± 1.7 | 23.3 ± 0.8 | 23.9 * ± 3.2 | 32.2 ± 0.9 | 41.2 * ± 4.9 | 55.5 ± 1.5 |
p | 0.05 | 0.20 | 0.05 | 0.41 | 0.05 | 0.67 |
ES | 0.8 | 0.6 | 0.8 | 0.3 | 0.8 | 0.2 |
∆ | 1.1 | −0.5 | 2.1 | 0.2 | 3.2 | −0.2 |
∆% | 6.8 | −2.1 | 9.6 | 0.6 | 8.4 | −0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melchiorri, G.; Bonifazi, M.; Squeo, M.R.; Spada, R.; Tancredi, V.; Viero, V. Olympic Italian Female Water Polo Players: Analysis of Body Size and Body Composition Data over 20 Years. J. Funct. Morphol. Kinesiol. 2025, 10, 210. https://doi.org/10.3390/jfmk10020210
Melchiorri G, Bonifazi M, Squeo MR, Spada R, Tancredi V, Viero V. Olympic Italian Female Water Polo Players: Analysis of Body Size and Body Composition Data over 20 Years. Journal of Functional Morphology and Kinesiology. 2025; 10(2):210. https://doi.org/10.3390/jfmk10020210
Chicago/Turabian StyleMelchiorri, Giovanni, Marco Bonifazi, Maria Rosaria Squeo, Raffaella Spada, Virginia Tancredi, and Valerio Viero. 2025. "Olympic Italian Female Water Polo Players: Analysis of Body Size and Body Composition Data over 20 Years" Journal of Functional Morphology and Kinesiology 10, no. 2: 210. https://doi.org/10.3390/jfmk10020210
APA StyleMelchiorri, G., Bonifazi, M., Squeo, M. R., Spada, R., Tancredi, V., & Viero, V. (2025). Olympic Italian Female Water Polo Players: Analysis of Body Size and Body Composition Data over 20 Years. Journal of Functional Morphology and Kinesiology, 10(2), 210. https://doi.org/10.3390/jfmk10020210