The Impact of a High-Altitude Expedition on the Physical Performance and Nutritional Indices of Health Status of Alpinists
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Design
2.2.1. Analysis of Aerobic and Anaerobic Capacity
- Aerobic performance
- 2.
- Anaerobic performance
2.2.2. Analysis of Health Status
- Anthropometric measurements and body composition analysis
- 2.
- Blood and urine tests
2.2.3. Nutritional Analysis of Diet
2.2.4. Measurement of Energy Expenditure
2.2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Main Findings
4.2. Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALST | appendicular lean soft tissue |
ALT | alanine aminotransferase |
AST | aspartate aminotransferase |
BASO | basophils |
BM | body mass |
BMC | bone mineral content |
BMD | bone mineral density |
BMI | body mass index |
bw | body weight |
EOS | eosinophils |
ESR | erythrocyte sedimentation rate |
FFM | fat free mass |
FM | fat mass |
GGTP | gamma-glutamyl transpeptidase |
HCT | hematocrit |
HDL | high-density lipoprotein cholesterol |
HGB | hemoglobin |
HR | heart rate |
HRmax | maximum heart rate |
LBM | lean body mass |
LDL | low-density lipoprotein cholesterol |
LYMPH | lymphocytes |
MAP | maximum anaerobic power |
MCH | mean corpuscular hemoglobin |
MCHC | mean corpuscular hemoglobin concentration |
MCV | mean corpuscular volume |
MM | muscle mass |
MON | monocytes |
MPV | mean platelet volume |
NEU | neutrophils |
p | statistical significance |
Pmean | mean anaerobic power |
RDW | red blood cell distribution |
SD | standard deviation |
T | Student’s t-test for variables with parametric distribution |
TC | total cholesterol |
tm | time of maintaining maximum power |
tmax | effort duration |
tr | time of reaching maximum power |
E | pulmonary ventilation |
Emax | maximum minute pulmonary ventilation |
O2max | maximum oxygen uptake |
VT2 | second ventilatory threshold |
W | Wilcoxon rank test for variables with nonparametric distribution |
Wt | total work performed |
mean |
References
- Twight, M.; Martin, J.; Graydon, D. Extreme Alpinism: Climbing Light, Fast & High, 1st ed.; Mountaineers: Seattle, WA, USA, 1999. [Google Scholar]
- Kotarba, A.; Migoń, P. Góry Wysokie a Góry Średnie Europy-Spojrzenie Geomorfologa. Czas. Geogr. 2010, 81, 3–19. [Google Scholar]
- Salisbury, R.; Hawley, E.; Bierling, B. The Himalaya by the Numbers. A Statistical Analysis of Mountaineerng in the Nepal Himalaya, 1950–2019, 2nd ed.; The Himalayan Database: Ann Arbor, MI, USA, 2021. [Google Scholar]
- Bourrilhon, C.; Philippe, M.; Chennaoui, M.; Van Beers, P.; Lepers, R.; Dussault, C.; Guezennec, C.Y.; Gomez-Merino, D. Energy Expenditure During an Ultraendurance Alpine Climbing Race. Wilderness Environ. Med. 2009, 20, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Giles, L.V.; Rhodes, E.C.; Taunton, J.E. The Physiology of Rock Climbing. Sports Med. 2006, 36, 529–545. [Google Scholar] [CrossRef] [PubMed]
- Michael, M.K.; Witard, O.C.; Joubert, L.; Michael, M.; Witard, O. Physiological Demands and Nutritional Considerations for Olympic-Style Competitive Rock Climbing. Cogent Med. 2019, 6, 1667199. [Google Scholar] [CrossRef]
- Apollo, M. Meteorological Determinants of Mountain Climate and Climbing Seasonality of the Crown of the Earth Peaks. Episteme 2014, 23, 77–104. [Google Scholar]
- Hoppeler, H.; Howald, H.; Cerretelli, P. Human Muscle Structure after Exposure to Extreme Altitude. Experientia 1990, 46, 1185–1187. [Google Scholar] [CrossRef]
- Milledge, J.S.; Halliday, D.; Pope, C.; Ward, P.; Ward, M.P.; Williams, E.S. The Effect of Hypoxia on Muscle Glycogen Resynthesis in Man. Q. J. Exp. Physiol. Cogn. Med. Sci. 1977, 62, 237–245. [Google Scholar] [CrossRef]
- Lombardi, C.; Meriggi, P.; Agostoni, P.; Faini, A.; Bilo, G.; Revera, M.; Caldara, G.; Di Rienzo, M.; Castiglioni, P.; Maurizio, B.; et al. High-Altitude Hypoxia and Periodic Breathing during Sleep: Gender-Related Differences. J. Sleep Res. 2013, 22, 322–330. [Google Scholar] [CrossRef]
- Su, R.; Jia, S.; Zhang, N.; Wang, Y.; Li, H.; Zhang, D.; Ma, H.; Su, Y. The Effects of Long-Term High-Altitude Exposure on Cognition: A Meta-Analysis. Neurosci. Biobehav. Rev. 2024, 161, 105682. [Google Scholar] [CrossRef]
- Dünnwald, T.; Gatterer, H.; Faulhaber, M.; Arvandi, M.; Schobersberger, W. Body Composition and Body Weight Changes at Different Altitude Levels: A Systematic Review and Meta-Analysis. Front. Physiol. 2019, 10, 430. [Google Scholar] [CrossRef]
- Semenza, G.L. Regulation of Oxygen Homeostasis by Hypoxia-Inducible Factor 1. Physiology 2009, 24, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Pollard, A.; Murdoch, D. High Altitude Medicine Handbook, 3rd ed.; Radcliffe Publishing: London, UK, 2003. [Google Scholar]
- Imray, C.; Booth, A.; Wright, A.; Bradwell, A. Acute Altitude Illnesses. BMJ 2011, 343, d4943. [Google Scholar] [CrossRef] [PubMed]
- Frączek, B.; Pięta, A. Does the Paleo Diet Affect an Athlete’s Health and Sport Performance? Biol. Sport 2023, 40, 1124–1139. [Google Scholar] [CrossRef]
- Frączek, B.; Szot, M.; Sagalara, A.; Krzepota, S.; Skorko, M.; Błachnio, D.; Bertrandt, B.; Szymaniuk, K.; Klimek, A. Assessment of Physical Activity, Exercise Capacity and Fitness Level of the Polish Esports Players. Phys. Act. Rev. 2024, 12, 32–46. [Google Scholar] [CrossRef]
- Frączek, B.; Grzelak, A.; Klimek, A.T. Analysis of Daily Energy Expenditure of Elite Athletes in Relation to Their Sport, the Measurement Method and Energy Requirement Norms. J. Hum. Kinet. 2019, 70, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Kurach, P.; Frączek, B.; Klimek, A.T. Does Multi-Strain Probiotic Supplementation Impact the Effort Capacity of Competitive Road Cyclists? Int. J. Environ. Res. Public Health 2022, 19, 12205. [Google Scholar] [CrossRef]
- Frączek, B.; Grzelak, A.; Klimek, A. Energy Expenditure of Endurance and Strength Athletes in the Light of the Polish Energy Intake Standards. Int. J. Occup. Med. Environ. Health 2019, 32, 1–13. [Google Scholar] [CrossRef]
- Bujas, P.; Maciejczyk, M.; Pałka, T.; Czerwińska-Ledwig, O.; Piotrowska, A.; Jaworski, J.; Tchórzewski, D.; Spieszny, M. Acute Effects of Combined Hypoxia and Fatigue on Balance in Young Men. Appl. Sci. 2024, 14, 568. [Google Scholar] [CrossRef]
- Maciejczyk, M.; Palka, T.; Wiecek, M.; Szymura, J.; Kusmierczyk, J.; Bawelski, M.; Masel, S.; Szygula, Z. Effects of Intermittent Hypoxic Training on Aerobic Capacity and Second Ventilatory Threshold in Untrained Men. Appl. Sci. 2023, 13, 9954. [Google Scholar] [CrossRef]
- Szymczak, R.K.; Grzywacz, T.; Ziemann, E.; Sawicka, M.; Laskowski, R. Prolonged Sojourn at Very High Altitude Decreases Sea-Level Anaerobic Performance, Anaerobic Threshold, and Fat Mass. Front. Physiol. 2021, 12, 743535. [Google Scholar] [CrossRef]
- Solberg, A.; Reikvam, H. Iron Status and Physical Performance in Athletes. Life 2023, 13, 2007. [Google Scholar] [CrossRef] [PubMed]
- Olaf Schumacher, Y.; Schmid, A.; Grathwohl, D.; Bültermann, D.; Berg, A. Hematological Indices and Iron Status in Athletes of Various Sports and Performances. Med. Sci. Sports Exerc. 2002, 34, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Mairbäurl, H. Red Blood Cells in Sports: Effects of Exercise and Training on Oxygen Supply by Red Blood Cells. Front. Physiol. 2013, 4, 332. [Google Scholar] [CrossRef] [PubMed]
- Khodaee, M.; Grothe, H.L.; Seyfert, J.H.; VanBaak, K. Athletes at High Altitude. Sports Health A Multidiscip. Approach 2016, 8, 126–132. [Google Scholar] [CrossRef]
- Saunders, P.U.; Pyne, D.B.; Gore, C.J. Endurance Training at Altitude. High Alt. Med. Biol. 2009, 10, 135–148. [Google Scholar] [CrossRef]
- Buchheit, M.; Simpson, B.M.; Garvican-Lewis, L.A.; Hammond, K.; Kley, M.; Schmidt, W.F.; Aughey, R.J.; Soria, R.; Sargent, C.; Roach, G.D.; et al. Wellness, Fatigue and Physical Performance Acclimatisation to a 2-Week Soccer Camp at 3600 m (ISA3600). Br. J. Sports Med. 2013, 47, i100–i106. [Google Scholar] [CrossRef]
- Levine, B.D.; Stray-Gundersen, J.; Mehta, R.D. Effect of Altitude on Football Performance. Scand. J. Med. Sci. Sports 2008, 18, 76–84. [Google Scholar] [CrossRef]
- Chaillou, T. Skeletal Muscle Fiber Type in Hypoxia: Adaptation to High-Altitude Exposure and Under Conditions of Pathological Hypoxia. Front. Physiol. 2018, 9, 1450. [Google Scholar] [CrossRef]
- Westerterp-Plantenga, M.S. Effects of Extreme Environments on Food Intake in Human Subjects. Proc. Nutr. Soc. 1999, 58, 791–798. [Google Scholar] [CrossRef]
- Hamad, N.; Travis, S.P.L. Weight Loss at High Altitude: Pathophysiology and Practical Implications. Eur. J. Gastroenterol. Hepatol. 2006, 18, 5–10. [Google Scholar] [CrossRef]
- Armellini, F.; Zamboni, M.; Robbi, R.; Todesco, T.; Bissoli, L.; Mino, A.; Angelini, G.; Micciolo, R.; Bosello, O. The Effects of High Altitude Trekking on Body Composition and Resting Metabolic Rate. Horm. Metab. Res. 1997, 29, 458–461. [Google Scholar] [CrossRef]
- Reynolds, R.D.; Lickteig, J.A.; Deuster, P.A.; Howard, M.P.; Conway, J.M.; Pietersma, A.; de Stoppelaar, J.; Deurenberg, P. Energy Metabolism Increases and Regional Body Fat Decreases While Regional Muscle Mass Is Spared in Humans Climbing Mt. Everest. J. Nutr. 1999, 129, 1307–1314. [Google Scholar] [CrossRef]
- Hoppeler, H.; Kleinert, E.; Schlegel, C.; Claassen, H.; Howald, H.; Kayar, S.R.; Cerretelli, P. II. Morphological Adaptations of Human Skeletal Muscle to Chronic Hypoxia. Int. J. Sports Med. 1990, 11, S3–S9. [Google Scholar] [CrossRef]
- Sergi, G.; Imoscopi, A.; Sarti, S.; Perissinotto, E.; Coin, A.; Inelmen, E.M.; Zambon, S.; Busetto, L.; Seresin, C.; Manzato, E. Changes in Total Body and Limb Composition and Muscle Strength after a 6-8 Weeks Sojourn at Extreme Altitude (5000–8000 m). J. Sports Med. Phys. Fit. 2010, 50, 450–455. [Google Scholar]
- Murdoch, D.R. Symptoms of Infection and Altitude Illness among Hikers in the Mount Everest Region of Nepal. Aviat. Space Environ. Med. 1995, 66, 148–151. [Google Scholar]
- Askew, E.W. Work at High Altitude and Oxidative Stress: Antioxidant Nutrients. Toxicology 2002, 180, 107–119. [Google Scholar] [CrossRef]
- Wehrlin, J.P.; Hallén, J. Linear Decrease in VO2max and Performance with Increasing Altitude in Endurance Athletes. Eur. J. Appl. Physiol. 2006, 96, 404–412. [Google Scholar] [CrossRef]
- Liu, B.; Xu, G.; Sun, B.; Wu, G.; Chen, J.; Gao, Y. Clinical and Biochemical Indices of People with High-Altitude Experience Linked to Acute Mountain Sickness. Travel. Med. Infect. Dis. 2023, 51, 102506. [Google Scholar] [CrossRef]
- Sawka, M.N.; Young, A.J.; Rock, P.B.; Lyons, T.P.; Boushel, R.; Freund, B.J.; Muza, S.R.; Cymerman, A.; Dennis, R.C.; Pandolf, K.B.; et al. Altitude Acclimatization and Blood Volume: Effects of Exogenous Erythrocyte Volume Expansion. J. Appl. Physiol. 1996, 81, 636–642. [Google Scholar] [CrossRef]
- Richalet, J.P.; Souberbielle, J.C.; Antezana, A.M.; Dechaux, M.; Le Trong, J.L.; Bienvenu, A.; Daniel, F.; Blanchot, C.; Zittoun, J. Control of Erythropoiesis in Humans during Prolonged Exposure to the Altitude of 6542 m. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1994, 266, R756–R764. [Google Scholar] [CrossRef]
- Sarkar, S.; Banerjee, P.K.; Selvamurthy, W. High Altitude Hypoxia: An Intricate Interplay of Oxygen Responsive Macroevents and Micromolecules. Mol. Cell Biochem. 2003, 253, 287–305. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.V.; Salhan, A.K.; Rawal, S.B.; Tyagi, A.K.; Kumar, N.; Verma, S.S.; Selvamurthy, W. Blood Gases, Hematology, and Renal Blood Flow during Prolonged Mountain Sojourns at 3500 and 5800 m. Aviat. Space Environ. Med. 2003, 74, 533–536. [Google Scholar]
- Karpęcka-Gałka, E.; Frączek, B. Nutrition, Hydration and Supplementation Considerations for Mountaineers in High-Altitude Conditions: A Narrative Review. Front. Sports Act. Living 2024, 6, 1435494. [Google Scholar] [CrossRef] [PubMed]
- Gaur, P.; Prasad, S.; Kumar, B.; Sharma, S.K.; Vats, P. High-Altitude Hypoxia Induced Reactive Oxygen Species Generation, Signaling, and Mitigation Approaches. Int. J. Biometeorol. 2021, 65, 601–615. [Google Scholar] [CrossRef]
- Koivisto-Mørk, A.E.; Paur, I.; Paulsen, G.; Garthe, I.; Raastad, T.; Bastani, N.E.; Blomhoff, R.; Bøhn, S.K. Dietary Adjustments to Altitude Training in Elite Endurance Athletes; Impact of a Randomized Clinical Trial With Antioxidant-Rich Foods. Front. Sports Act. Living 2020, 2, 106. [Google Scholar] [CrossRef]
- Draper, N.; Giles, D.; Schöffl, V.; Konstantin Fuss, F.; Watts, P.; Wolf, P.; Baláš, J.; Espana-Romero, V.; Blunt Gonzalez, G.; Fryer, S.; et al. Comparative Grading Scales, Statistical Analyses, Climber Descriptors and Ability Grouping: International Rock Climbing Research Association Position Statement. Sports Technol. 2015, 8, 88–94. [Google Scholar] [CrossRef]
- Kim, J.; Wang, Z.; Heymsfield, S.B.; Baumgartner, R.N.; Gallagher, D. Total-Body Skeletal Muscle Mass: Estimation by a New Dual-Energy X-Ray Absorptiometry Method. Am. J. Clin. Nutr. 2002, 76, 378–383. [Google Scholar] [CrossRef]
- Kunachowicz, H.; Przygoda, B.; Nadolna, I.; Iwanow, K. Tables of Composition and Nutritional Value of Foods, 2nd ed.; PZWL Medical Publishing House: Warszawa, Poland, 2017. [Google Scholar]
- Lukaski, H.C. Vitamin and Mineral Status: Effects on Physical Performance. Nutrition 2004, 20, 632–644. [Google Scholar] [CrossRef]
- Benardot, D. Advanced Sports Nutrition; Human Kinetics: Champaign, IL, USA, 2012. [Google Scholar]
- EFSA (European Food Safety Authority). Dietary Reference Values for Nutrients Summary Report. EFSA Support. Publ. 2017, 14, e15121. [Google Scholar] [CrossRef]
- Thomas, D.; Erdman, K.; Burke, L. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN Exercise & Sports Nutrition Review Update: Research & Recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Burchardt, P.; Chlebus, K.; Dobrowolski, P.; Dudek, D.; Dyrbuś, K.; Gąsior, M.; Jankowski, P.; Jóźwiak, J.; Kłosiewicz-Latoszek, L. Wytyczne PTL/KLRWP/PTK/PTDL/PTD/PTNT Diagnostyki i Leczenia Zaburzeń Lipidowych w Polsce 2021. Nadciśnienie Tętnicze W Praktyce 2021, 7, 113–222. [Google Scholar]
- Doria, C.; Verratti, V.; Pietrangelo, T.; Fanò-Illic, G.; Bisconti, A.V.; Shokohyar, S.; Rampichini, S.; Limonta, E.; Coratella, G.; Longo, S.; et al. Changes in Energy System Contributions to the Wingate Anaerobic Test in Climbers after a High Altitude Expedition. Eur. J. Appl. Physiol. 2020, 120, 1629–1636. [Google Scholar] [CrossRef]
- Grassi, B.; Ferretti, G.; Kayser, B.; Marzorati, M.; Colombini, A.; Marconi, C.; Cerretelli, P. Maximal Rate of Blood Lactate Accumulation during Exercise at Altitude in Humans. J. Appl. Physiol. 1995, 79, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Grassi, B.; Mognoni, P.; Marzorati, M.; Mattiotti, S.; Marconi, C.; Cerretelli, P. Power and Peak Blood Lactate at 5050 m with 10 and 30 s ‘All out’ Cycling. Acta Physiol. Scand. 2001, 172, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, G.; Hauser, H.; Di Prampero, P.E. VII. Maximal Muscular Power before and after Exposure to Chronic Hypoxia. Int. J. Sports Med. 1990, 11, S31–S34. [Google Scholar] [CrossRef]
- Schena, F.; Guerrini, F.; Tregnaghi, P.; Kayser, B. Branched-Chain Amino Acid Supplementation during Trekking at High Altitude. The Effects on Loss of Body Mass, Body Composition, and Muscle Power. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 65, 394–398. [Google Scholar] [CrossRef]
- Kayser, B.; Narici, M.; Milesi, S.; Grassi, B.; Cerretelli, P. Body Composition and Maximum Alactic Anaerobic Performance during a One Month Stay at High Altitude. Int. J. Sports Med. 1993, 14, 244–247. [Google Scholar] [CrossRef]
- West, J.B.; Schoene, R.B.; Milledge, J.S. Altitude Acclimatization and Deterioration. In High Altitude Medicine and Physiology; Shaw, P., Ed.; Hodder Arnold: London, UK, 2007; pp. 39–50. [Google Scholar]
- Doria, C.; Toniolo, L.; Verratti, V.; Cancellara, P.; Pietrangelo, T.; Marconi, V.; Paoli, A.; Pogliaghi, S.; Fanò, G.; Reggiani, C.; et al. Improved VO2 Uptake Kinetics and Shift in Muscle Fiber Type in High-Altitude Trekkers. J. Appl. Physiol. 2011, 111, 1597–1605. [Google Scholar] [CrossRef]
- Beneke, R.; Pollmann, C.; Bleif, I.; Leithäuser, R.M.; Hütler, H. How Anaerobic Is the Wingate Anaerobic Test for Humans? Eur. J. Appl. Physiol. 2002, 87, 388–392. [Google Scholar] [CrossRef]
- Raguso, C.A.; Guinot, S.L.; Janssens, J.P.; Kayser, B.; Pichard, C. Chronic Hypoxia: Common Traits between Chronic Obstructive Pulmonary Disease and Altitude. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, M.; Savard, G.K.; Areskog, N.H.; Lundby, C.; Saltin, B. Skeletal Muscle Adaptations to Prolonged Exposure to Extreme Altitude: A Role of Physical Activity? High Alt. Med. Biol. 2008, 9, 311–317. [Google Scholar] [CrossRef]
- Bondi, D.; Aloisi, A.M.; Pietrangelo, T.; Piccinelli, R.; Le Donne, C.; Jandova, T.; Pieretti, S.; Taraborrelli, M.; Santangelo, C.; Lattanzi, B.; et al. Feeding Your Himalayan Expedition: Nutritional Signatures and Body Composition Adaptations of Trekkers and Porters. Nutrients 2021, 13, 460. [Google Scholar] [CrossRef]
- D’Hulst, G.; Ferri, A.; Naslain, D.; Bertrand, L.; Horman, S.; Francaux, M.; Bishop, D.J.; Deldicque, L. Fifteen Days of 3200 m Simulated Hypoxia Marginally Regulates Markers for Protein Synthesis and Degradation in Human Skeletal Muscle. Hypoxia 2016, 4, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, R.A.; Lundby, A.M.; Fenk, S.; Gehrig, S.; Siebenmann, C.; Flück, D.; Kirk, N.; Hilty, M.P.; Lundby, C. Twenty-eight Days of Exposure to 3454 m Increases Mitochondrial Volume Density in Human Skeletal Muscle. J. Physiol. 2016, 594, 1151–1166. [Google Scholar] [CrossRef]
- Garvican-Lewis, L.A.; Sharpe, K.; Gore, C.J. Time for a New Metric for Hypoxic Dose? J. Appl. Physiol. 2016, 121, 352–355. [Google Scholar] [CrossRef]
- Netzer, N.C.; Chytra, R.; Küpper, T. Low Intense Physical Exercise in Normobaric Hypoxia Leads to More Weight Loss in Obese People than Low Intense Physical Exercise in Normobaric Sham Hypoxia. Sleep Breath. 2008, 12, 129–134. [Google Scholar] [CrossRef]
- Rausch, L.K.; Hofer, M.; Pramsohler, S.; Kaser, S.; Ebenbichler, C.; Haacke, S.; Gatterer, H.; Netzer, N.C. Adiponectin, Leptin and Visfatin in Hypoxia and Its Effect for Weight Loss in Obesity. Front. Endocrinol. 2018, 9, 615. [Google Scholar] [CrossRef] [PubMed]
- Kayser, B.; Verges, S. Hypoxia, Energy Balance and Obesity: From Pathophysiological Mechanisms to New Treatment Strategies. Obes. Rev. 2013, 14, 579–592. [Google Scholar] [CrossRef]
- Karpęcka-Gałka, E.; Mazur-Kurach, P.; Szyguła, Z.; Frączek, B. Diet, Supplementation and Nutritional Habits of Climbers in High Mountain Conditions. Nutrients 2023, 15, 4219. [Google Scholar] [CrossRef]
- Westerterp-Plantenga, M.S.; Westerterp, K.R.; Rubbens, M.; Verwegen, C.R.T.; Richelet, J.-P.; Gardette, B. Appetite at “High Altitude” [Operation Everest III (Comex-’97)]: A Simulated Ascent of Mount Everest. J. Appl. Physiol. 1999, 87, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, Z.; Sliwicka, E.; Hennig, K.; Pilaczyńska-Szczeniak, A.; Huta-Osiecka, A.; Nowak, A. Vitamin D, Iron Metabolism, and Diet in Alpinists During a 2-Week High-Altitude Climb. High Alt. Med. Biol. 2015, 16, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Holm, L.; Haslund, M.L.; Robach, P.; van Hall, G.; Calbet, J.A.L.; Saltin, B.; Lundby, C. Skeletal Muscle Myofibrillar and Sarcoplasmic Protein Synthesis Rates Are Affected Differently by Altitude-Induced Hypoxia in Native Lowlanders. PLoS ONE 2010, 5, e15606. [Google Scholar] [CrossRef]
- Barnholt, K.E.; Hoffman, A.R.; Rock, P.B.; Muza, S.R.; Fulco, C.S.; Braun, B.; Holloway, L.; Mazzeo, R.S.; Cymerman, A.; Friedlander, A.L. Endocrine Responses to Acute and Chronic High-Altitude Exposure (4300 Meters): Modulating Effects of Caloric Restriction. Am. J. Physiol.-Endocrinol. Metab. 2006, 290, E1078–E1088. [Google Scholar] [CrossRef]
- Berryman, C.E.; Young, A.J.; Karl, J.P.; Kenefick, R.W.; Margolis, L.M.; Cole, R.E.; Carbone, J.W.; Lieberman, H.R.; Kim, I.Y.; Ferrando, A.A.; et al. Severe Negative Energy Balance during 21 d at High Altitude Decreases Fat-Free Mass Regardless of Dietary Protein Intake: A Randomized Controlled Trial. FASEB J. 2018, 32, 894–905. [Google Scholar] [CrossRef]
- Ocobock, C.J. Body Fat Attenuates Muscle Mass Catabolism among Physically Active Humans in Temperate and Cold High Altitude Environments. Am. J. Hum. Biol. 2017, 29, e23013. [Google Scholar] [CrossRef] [PubMed]
- Brent, M.B.; Emmanuel, T.; Simonsen, U.; Brüel, A.; Thomsen, J.S. Hypobaric Hypoxia Deteriorates Bone Mass and Strength in Mice. Bone 2022, 154, 116203. [Google Scholar] [CrossRef]
- Guner, I.; Uzun, D.D.; Yaman, M.O.; Genc, H.; Gelisgen, R.; Korkmaz, G.G.; Hallac, M.; Yelmen, N.; Sahin, G.; Karter, Y.; et al. The Effect of Chronic Long-Term Intermittent Hypobaric Hypoxia on Bone Mineral Density in Rats: Role of Nitric Oxide. Biol. Trace Elem. Res. 2013, 154, 262–267. [Google Scholar] [CrossRef]
- Tanaka, H.; Minowa, K.; Satoh, T.; Koike, T. Bone Atrophy at High Altitude. J. Bone Miner. Metab. 1992, 10, 31–36. [Google Scholar] [CrossRef]
- Papandreou, I.; Cairns, R.A.; Fontana, L.; Lim, A.L.; Denko, N.C. HIF-1 Mediates Adaptation to Hypoxia by Actively Downregulating Mitochondrial Oxygen Consumption. Cell Metab. 2006, 3, 187–197. [Google Scholar] [CrossRef]
- Reynafarje, C.; Lozano, R.; Valdivieso, J. The Polycythemia of High Altitudes: Iron Metabolism and Related Aspects. Blood 1959, 14, 433–455. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, G.; Boutellier, U.; Pendergast, D.R.; Moia, C.; Minetti, A.E.; Howald, H.; Di Prampero, P.E. IV. Oxygen Transport System before and after Exposure to Chronic Hypoxia. Int. J. Sports Med. 1990, 11, S15–S20. [Google Scholar] [CrossRef] [PubMed]
- Kurdziel, M.; Wasilewski, J.; Gierszewska, K.; Pytel, G.; Poloński, L.; Gąsior, M. Effect of Extreme Altitude Mountaineering on Iron Status. Pol. Arch. Intern. Med. 2018, 128, 134–137. [Google Scholar] [CrossRef]
- Rasmussen, P.; Siebenmann, C.; Diaz, V.; Lundby, C. Red Cell Volume Expansion at Altitude. Med. Sci. Sports Exerc. 2013, 45, 1767–1772. [Google Scholar] [CrossRef]
- Wachsmuth, N.B.; Völzke, C.; Prommer, N.; Schmidt-Trucksäss, A.; Frese, F.; Spahl, O.; Eastwood, A.; Stray-Gundersen, J.; Schmidt, W. The Effects of Classic Altitude Training on Hemoglobin Mass in Swimmers. Eur. J. Appl. Physiol. 2013, 113, 1199–1211. [Google Scholar] [CrossRef] [PubMed]
- Goetze, O.; Schmitt, J.; Spliethoff, K.; Theurl, I.; Weiss, G.; Swinkels, D.W.; Tjalsma, H.; Maggiorini, M.; Krayenbühl, P.; Rau, M.; et al. Adaptation of Iron Transport and Metabolism to Acute High-Altitude Hypoxia in Mountaineers. Hepatology 2013, 58, 2153–2162. [Google Scholar] [CrossRef]
- Govus, A.D.; Garvican-Lewis, L.A.; Abbiss, C.R.; Peeling, P.; Gore, C.J.; One, P. Pre-Altitude Serum Ferritin Levels and Daily Oral Iron Supplement Dose Mediate Iron Parameter and Hemoglobin Mass Responses to Altitude Exposure. PLoS ONE 2015, 10, e0135120. [Google Scholar] [CrossRef]
- Keller, K.; Friedrich, O.; Treiber, J.; Quermann, A.; Friedmann-Bette, B. Iron Deficiency in Athletes: Prevalence and Impact on VO2 Peak. Nutrition 2024, 126, 112516. [Google Scholar] [CrossRef]
- Mishra, K.P.; Ganju, L. Influence of High Altitude Exposure on the Immune System: A Review. Immunol. Investig. 2010, 39, 219–234. [Google Scholar] [CrossRef]
- Pham, K.; Vargas, A.; Frost, S.; Shah, S.; Heinrich, E.C. Changes in Immune Cell Populations during Acclimatization to High Altitude. Physiol. Rep. 2024, 12, e70024. [Google Scholar] [CrossRef]
- Manella, G.; Ezagouri, S.; Champigneulle, B.; Gaucher, J.; Mendelson, M.; Lemarie, E.; Stauffer, E.; Pichon, A.; Howe, C.A.; Doutreleau, S.; et al. The Human Blood Transcriptome Exhibits Time-of-Day-Dependent Response to Hypoxia: Lessons from the Highest City in the World. Cell Rep. 2022, 40, 111213. [Google Scholar] [CrossRef] [PubMed]
- Rocke, A.; Paterson, G.; Barber, M.; Jackson, A.; Main, S.; Stannett, C.; Schnopp, M.; Baillie, J.; Horne, E.; Moores, C.; et al. Thromboelastometry and Platelet Function during Acclimatization to High Altitude. Thromb. Haemost. 2018, 118, 063–071. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.G.; Bowen, A.L.; Navia, P.; Rios-Dalenz, J.; Pollard, A.J.; Williams, D.; Heath, D. The Effect of High Altitude on Platelet Counts, Thrombopoietin and Erythropoietin Levels in Young Bolivian Airmen Visiting the Andes. Int. J. Biometeorol. 1999, 43, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, S.; Krafft, A.; Huch, R.; Breymann, C. Effect of Altitude on Thrombopoietin and the Platelet Count in Healthy Volunteers. Thromb. Haemost. 2005, 93, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Chatterji, J.C.; Ohri, V.C.; Das, B.K.; Chadha, K.S.; Akhtar, M.; Bhatacharji, P.; Tewari, S.C.; Behl, A. Platelet Count, Platelet Aggregation and Fibrinogen Levels Following Acute Induction to High Altitude (3200 and 3771 Metres). Thromb. Res. 1982, 26, 177–182. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Yang, W.; Zeng, Q. Platelets and High-Altitude Exposure: A Meta-Analysis. High Alt. Med. Biol. 2022, 23, 43–56. [Google Scholar] [CrossRef]
- Smolichev, E.P. The Effect of High Altitude on the Protein Composition of Human Blood. Bull. Exp. Biol. Med. 1961, 50, 1053–1055. [Google Scholar] [CrossRef]
- Cabrerizo, S.; Cuadras, D.; Gomez-Busto, F.; Artaza-Artabe, I.; Marín-Ciancas, F.; Malafarina, V. Serum Albumin and Health in Older People: Review and Meta Analysis. Maturitas 2015, 81, 17–27. [Google Scholar] [CrossRef]
- Verratti, V.; Falone, S.; Doria, C.; Pietrangelo, T.; Di Giulio, C. Kilimanjaro Abruzzo Expedition: Effects of High-Altitude Trekking on Anthropometric, Cardiovascular and Blood Biochemical Parameters. Sport. Sci. Health 2015, 11, 271–278. [Google Scholar] [CrossRef]
- Férézou, J.; Richalet, J.P.; Coste, T.; Rathat, C. Changes in Plasma Lipids and Lipoprotein Cholesterol during a High Altitude Mountaineering Expedition (4800 m). Eur. J. Appl. Physiol. Occup. Physiol. 1988, 57, 740–745. [Google Scholar] [CrossRef]
- Benso, A.; Broglio, F.; Aimaretti, G.; Lucatello, B.; Lanfranco, F.; Ghigo, E.; Grottoli, S. Endocrine and Metabolic Responses to Extreme Altitude and Physical Exercise in Climbers. Eur. J. Endocrinol. 2007, 157, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Kopiasz, Ł. Właściwości Prozdrowotne i Mechanizmy Działania Beta-Glukanów Zbożowych. Kosmos 2019, 68, 259–268. [Google Scholar] [CrossRef]
- Zong, G.; Li, Y.; Wanders, A.J.; Alssema, M.; Zock, P.L.; Willett, W.C.; Hu, F.B.; Sun, Q. Intake of Individual Saturated Fatty Acids and Risk of Coronary Heart Disease in US Men and Women: Two Prospective Longitudinal Cohort Studies. BMJ 2016, 355, i5796. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Je, Y.; Giovannucci, E.L. Association between Dietary Fat Intake and Mortality from All-Causes, Cardiovascular Disease, and Cancer: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Clin. Nutr. 2021, 40, 1060–1070. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Deng, C.; Lin, Z.; Giovannucci, E.; Zhang, X. Dietary Fats, Serum Cholesterol and Liver Cancer Risk: A Systematic Review and Meta-Analysis of Prospective Studies. Cancers 2021, 13, 1580. [Google Scholar] [CrossRef]
- De La Puente Yagüe, M.; Collado Yurrita, L.; Cabañas, M.J.C.; Cenzual, M.A.C. Role of Vitamin D in Athletes and Their Performance: Current Concepts and New Trends. Nutrients 2020, 12, 579. [Google Scholar] [CrossRef]
- Krzywański, J.; Mikulski, T.; Pokrywka, A.; Młyńczak, M.; Krysztofiak, H.; Frączek, B.; Ziemba, A. Vitamin B12 Status and Optimal Range for Hemoglobin Formation in Elite Athletes. Nutrients 2020, 12, 1038. [Google Scholar] [CrossRef]
Altitude | Definition | Physiological Changes |
---|---|---|
1500–2500 m | Intermediate altitude | Physiological changes detectable. Arterial oxygen saturation > 90%. Altitude illness rare but possible with rapid ascent, exercise and a susceptible individual. |
2500–3500 m | High altitude | Altitude illness common during rapid ascents. |
3500–5800 m | Very high altitude | Altitude illness common. Arterial oxygen saturation < 90%. Marked hypoxemia during exercise. A total of 5800 m is the highest altitude of permanent human settlements. |
>5800 m | Extreme altitude | Marked hypoxemia at rest. Progressive deterioration despite maximal acclimatization. Permanent survival is considered impossible. |
>8000 m | “Death zone” | Prolonged acclimatization (>6 weeks) is essential. Most mountaineers require supplementary oxygen to climb safely. Arterial oxygen saturations about 55%. Rapid deterioration is inevitable and time spent above this altitude is strictly limited. |
Men (n = 17) | ||
---|---|---|
SD | ||
Age [years] | 30.29 | 5.8 |
Body height [cm] | 180.47 | 8.36 |
Body weight [kg] | 74.96 | 5.03 |
BMI [kg/m2] | 22.83 | 2.1 |
Number of Climbers Participating in the Expedition | Mountain Massif | Country | Mountain Goal |
---|---|---|---|
6 | Cordillera Blanca | Peru | the 800-m Cruz del Sur route on the La Esfinge rock monolith (5325 m); new route on Ocschapalca (5888 m); Nevado Churup (5495 m); ascents on Artesonraju (6025 m) and Alpamayo (5947 m) |
3 | Shuijerab, North Karakorum | Pakistan | virgin peaks: Trident Peak (6150 m) and Sakwa Sar (6050 m) |
3 | Gangotri Valley, Garhwal Himalaya | India | attempted virgin peaks, but failed due to weather conditions (the highest point of the expeditions—5000 m) |
2 | Himalaya | Western and Northern Nepal | unsuccessful attempt to climb a virgin peak (due to weather); the highest point—5000 m |
1 | Himalaya | Nepal | Annapurna (8091 m) and Dhaulagiri (8167 m) |
1 | Himalaya | Nepal | Ama Dablam (6812 m) |
1 | Lailak Valley, Pamir-Alai | Kyrgyzstan | ascent via Troschenko route on the north face of Ak-su (5217 m) |
Aerobic Performance Indices | Before Chronic Hypoxia | After Chronic Hypoxia | Statistical Test | p | ||
---|---|---|---|---|---|---|
SD | SD | |||||
O2max [L/min] | 4.07 | 0.37 | 3.85 | 0.39 | T | 0.0006 |
O2max [mL/kg/min] | 54.53 | 5.96 | 52.38 | 5.49 | T | 0.0232 |
Emax [L/min] | 149.34 | 15.88 | 138.05 | 14.43 | T | 0.0003 |
HRmax [beats/min] | 190 | 10 | 187 | 11 | T | 0.0397 |
tmax [min] | 20.38 | 1.95 | 18.82 | 2.16 | T | 0.0001 |
Aerobic Performance Indices at VT2 | Before Chronic Hypoxia | After Chronic Hypoxia | Statistical Test | p | ||
---|---|---|---|---|---|---|
SD | SD | |||||
O2 at VT2 [L/min] | 2.96 | 0.24 | 2.9 | 0.34 | T | 0.2545 |
O2 at VT2 [mL/kg/min] | 39.65 | 3.50 | 39.45 | 4.62 | T | 0.7722 |
%O2max at VT2 | 73.06 | 5.65 | 75.37 | 4.87 | T | 0.0642 |
E at VT2 [L/min] | 78.35 | 8.81 | 80.71 | 8.46 | T | 0.2824 |
HR at VT2 [beats/min] | 159 | 10 | 155 | 10 | T | 0.0358 |
%HRmax at VT2 | 73.06 | 5.65 | 75.36 | 4.87 | T | 0.6418 |
t at VT2 [min] | 11.11 | 2.15 | 11.08 | 2.33 | T | 0.9330 |
Anaerobic Performance Indices (Legs) | Before Chronic Hypoxia | After Chronic Hypoxia | Statistical Test | p | ||
---|---|---|---|---|---|---|
/Me | SD/(Q1; Q3) | /Me | SD/(Q1; Q3) | |||
MAP [W] | 807.46 | 73.66 | 767.83 | 78.52 | T | 0.0015 |
MAP [W/kg] | 10.73 | 0.77 | 10.4 | 0.71 | T | 0.0130 |
Pmean [W] | 668.24 | 49.57 | 629.66 | 45.85 | T | 0.0004 |
Pmean [W/kg] | 8.89 | 0.64 | 8.54 | 0.49 | T | 0.0022 |
Wt [kJ] | 13.36 | 0.99 | 12.59 | 0.91 | T | 0.0004 |
tr [s] | 5.67 | 0.63 | 5.46 | 1.06 | T | 0.3053 |
tm [s] | 3.69 | (2.90; 4.42) | 3.44 | (2.51; 3.62) | W | 0.0024 |
Anaerobic Performance Indices (Arms) | Before Chronic Hypoxia | After Chronic Hypoxia | Statistical Test | p | ||
---|---|---|---|---|---|---|
/Me | SD/(Q1; Q3) | /Me | SD/(Q1; Q3) | |||
MAP [W] | 556.64 | 79.45 | 536.67 | 90.53 | T | 0.1346 |
MAP [W/kg] | 7.38 | 0.8 | 7.25 | 0.86 | T | 0.4472 |
Pmean [W] | 439.51 | 44.65 | 414.32 | 47.45 | T | 0.0015 |
Pmean [W/kg] | 6.02 | (5.55; 6.15) | 5.64 | (5.41; 5.81) | W | 0.0245 |
Wt [kJ] | 8.79 | 0.89 | 8.29 | 0.95 | T | 0.0015 |
tr [s] | 5.56 | (3.99; 8.46) | 4.07 | (3.46; 7.20) | W | 0.0683 |
tm [s] | 3.95 | (2.23; 5.02) | 2.53 | (2.16; 4.55) | W | 0.1239 |
Anthropometric Indices | Before Chronic Hypoxia | After Chronic Hypoxia | Statistical Test | p | ||
---|---|---|---|---|---|---|
/Me | SD/(Q1; Q3) | /Me | SD/(Q1; Q3) | |||
BM [kg] | 74.96 | 5.03 | 73.79 | 5.53 | T | 0.0149 |
BMI [kg/m2] | 22.83 | 2.10 | 22.43 | 1.43 | T | 0.1606 |
FM [kg] | 9.64 | (8.42; 12.62) | 9.30 | (7.99; 10.47) | W | 0.1024 |
FM [%] | 12.80 | (11.50; 17.60) | 12.90 | (11.60; 16.20) | W | 0.1626 |
FFM [kg] | 64.51 | 5.09 | 63.99 | 4.90 | T | 0.1330 |
FFM [%] | 87.78 | (83.05; 88.89) | 87.66 | (84.46; 88.99) | W | 0.1488 |
MM [kg] | 33.72 | 2.91 | 33.10 | 2.73 | T | 0.0071 |
MM [%] | 44.97 | 2.05 | 44.88 | 2.15 | T | 0.7851 |
LBM [kg] | 61.35 | 4.83 | 61.01 | 4.74 | T | 0.4437 |
LBM [%] | 83.39 | (79.00; 84.64) | 83.43 | (80.73; 84.69) | W | 0.1626 |
LBM Arms [kg] | 8.25 | 0.76 | 8.08 | 0.73 | T | 0.0224 |
LBM Legs [kg] | 20.72 | 2.00 | 20.35 | 1.80 | T | 0.0391 |
ALST [kg] | 28.98 | 2.58 | 28.43 | 2.43 | T | 0.0071 |
BMC [g] | 3.16 | 0.33 | 3.16 | 0.33 | T | 0.7562 |
BMD [g/cm2] | 1.30 | 0.07 | 1.29 | 0.05 | T | 0.1054 |
Health Status Indices | Before Chronic Hypoxia | After Chronic Hypoxia | Statistical Test | p | ||
---|---|---|---|---|---|---|
/Me | SD/(Q1; Q3) | /Me | SD/(Q1; Q3) | |||
Blood counts | ||||||
Leukocytes [109/L] | 5.65 | 1.05 | 6.68 | 2 | T | 0.0066 |
Erythrocytes [1012/L] | 5.18 | 0.31 | 5.43 | 0.36 | T | 0.0007 |
HGB [g/dL] | 15.39 | 0.86 | 16.16 | 0.88 | T | 0.0004 |
HCT [%] | 47.26 | 2.72 | 49.61 | 3.41 | T | 0.0025 |
MCV [fL] | 91.34 | 2.84 | 91.53 | 2.8 | T | 0.7862 |
MCH [pg] | 29.79 | 1.43 | 29.87 | 1.41 | T | 0.7134 |
MCHC [g/dL] | 32.61 | 1.08 | 32.64 | 1.28 | T | 0.9402 |
RDW [%] | 13.25 | 1.00 | 13.25 | 0.90 | T | 0.9986 |
Platelets [109/L] | 203.8 | (193.2; 256.8) | 240 | (222; 260) | W | 0.0075 |
MPV [fL] | 8.6 | 1.56 | 8.51 | 1.37 | T | 0.8161 |
NEU [%] | 55.10 | (46.10; 57.27) | 57.16 | (49.58; 61.15) | W | 0.7583 |
NEU [109/L] | 3 | (2.75; 3.19) | 3.62 | (2.5; 5.5) | W | 0.0442 |
LYMPH [%] | 34.45 | 6.51 | 29.55 | 10.06 | T | 0.1687 |
LYMPH [109/L] | 1.81 | (1.61; 2.00) | 2 | (1.83; 2.15) | W | 0.0929 |
MON [%] | 8.18 | 1.79 | 8.13 | 2.92 | T | 0.9267 |
MON [109/L] | 0.45 | (0.40; 0.51) | 0.54 | (0.49; 0.71) | W | 0.0064 |
EOS [%] | 3.11 | 2.12 | 2.31 | 1.44 | T | 0.1393 |
EOS [109/L] | 0.11 | (0.08; 0.27) | 0.15 | (0.10; 0.24) | W | 0.9382 |
BASO [%] | 1.11 | 0.34 | 0.84 | 0.58 | T | 0.1018 |
BASO [109/L] | 0.06 | (0.05; 0.07) | 0.06 | (0.04; 0.08) | W | 0.6592 |
ESR [mm/h] | 2 | (2; 2) | 2 | (2; 5) | W | 0.0759 |
Electrolytes | ||||||
Sodium [mmol/L] | 140.41 | 1.09 | 140.71 | 2.02 | T | 0.6071 |
Potassium [mmol/L] | 4.33 | 0.16 | 4.42 | 0.24 | T | 0.1139 |
Chlorides [mmol/L] | 102 | (100; 104) | 104 | (102; 104) | W | 0.2115 |
Calcium [mmol/L] | 2.36 | 0.12 | 2.36 | 0.13 | T | 0.9379 |
Magnesium [mmol/L] | 0.85 | 0.04 | 0.85 | 0.08 | T | 0.8599 |
Lipid profile | ||||||
TC [mmol/L] | 4.49 | 0.79 | 4.13 | 0.77 | T | 0.0197 |
LDL [mmol/L] | 2.59 | 0.66 | 2.37 | 0.6 | T | 0.0942 |
HDL [mmol/L] | 1.56 | 0.25 | 1.38 | 0.3 | T | 0.0162 |
TG [mmol/L] | 0.70 | (0.57; 0.81) | 0.62 | (0.55; 0.99) | W | 0.2659 |
Kidney parameters | ||||||
Creatinine [μmol/L] | 78.83 | 9.8 | 75.20 | 10.48 | T | 0.1855 |
Urea [mmol/L] | 5.23 | 0.7 | 4.85 | 1.2 | T | 0.3155 |
Uric acid [μmol/L] | 308.17 | 57.15 | 327.12 | 62.90 | T | 0.1317 |
Urine pH | 5.88 | 0.47 | 6.26 | 0.79 | T | 0.072 |
Urine specific gravity | 1.02 | (1.02; 1.03) | 1.02 | (1.01; 1.02) | W | 0.125 |
Liver parameters | ||||||
AST [U/L] | 23 | 4.42 | 20.06 | 4.49 | T | 0.0710 |
ALT [U/L] | 21 | (16; 23) | 21 | (16; 26) | W | 0.3636 |
Total bilirubin [μmol/L] | 19.81 | 7.98 | 11.66 | 5.41 | T | 0.0001 |
GGTP [U/L] | 17 | (16; 19) | 19 | (17; 20) | W | 0.0501 |
Albumin [g/L] | 47 | (45;4; 49.3) | 45.9 | (43.5; 46.6) | W | 0.0171 |
Total acid phosphatase [U/L] | 3.6 | (3; 4) | 4.3 | (4.0; 4.4) | W | 0.0151 |
Another indices | ||||||
Total protein [g/L] | 72.36 | 3.52 | 68.62 | 5.74 | T | 0.0029 |
Glucose [mmol/L] | 5.01 | (4.68; 5.24) | 4.88 | (4.72; 5.04) | W | 0.2659 |
Inorganic phosphorus [mmol/L] | 1.09 | 0.14 | 1.26 | 0.12 | T | 0.0003 |
Iron [μmol/L] | 26.67 | 9.01 | 21.02 | 7.85 | T | 0.0567 |
Ferritin [ng/mL] | 70.82 | 32.19 | 66.82 | 36.29 | T | 0.4492 |
Vitamin D (25(OH)D) total [ng/mL] | 31.76 | 7.93 | 31.92 | 7.31 | T | 0.8941 |
Vitamin B12 [pg/mL] | 402 | (329; 449) | 409 | (337; 433) | W | 0.4074 |
Diet of Climbers During the Expedition | Nutritional Recommendations for Athletes | |
---|---|---|
Me (Q1; Q3) | RDA/AI | |
Energy and macronutrients intake | ||
Energy [kcal] | 2700.8 (2023.6; 3036.9) | Daily energy expenditure |
Protein [%] | 13.8 (11.7; 15.5) | 15–20 1 |
Protein [g] | 90.2 (72.4; 105.4) | - |
Plant protein [g] | 48.90 (36.9; 51.6) | - |
Animal protein [g] | 33.3 (32.3; 54.4) | - |
Protein [g/kg bw] | 1.16 (1.01; 1.34) | 1.2–2.2 1 |
Carbohydrates [%] | 52.2 (49.8; 54.4) | 45–65 2 |
Carbohydrates [g] | 332.2 (268.2; 443.4) | - |
Carbohydrates [g/kg bw] | 4.37 (3.81; 5.91) | 6–12 3 |
Simple carbohydrates [g] | 102 (84.8; 136.3) | - |
Simple carbohydrates [%] | 16.77 (13.26; 23.33) | <20 4 |
Fiber [g] | 26.7 (21.8; 33.2) | >25 4 |
Fats [%] | 32.8 (27.9; 36) | 20–35 2,3,4 |
Fats [g] | 96.6 (78.6; 114.8) | - |
Fats [g/kg bw] | 1.23 (1.04; 1.56) | 0.5–1.5 1 |
SFA [%] | 11.56 (8.42; 14.4) | <10 3; ALAP 4 |
SFA [g] | 34.7 (28.3; 38.9) | ALAP 4 |
MUFA [g] | 23.2 (10.1; 32.6) | - |
PUFA [g] | 12.4 (10; 12.8) | ALA 0.5%, LA 4% |
Cholesterol [mg] | 225.2 (144; 271.5) | <300 5 |
Micronutrients intake | ||
Sodium [mg] (AI) | 2832 (2070; 2897.3) | 1500–>10,000 2 |
Potassium [mg] (AI) | 2039.7 (1358.1; 2715.4) | 3500 4–4700 2 |
Calcium [mg] | 445.3 (349.4; 611) | 1000 1–2000 3 |
Phosphorus [mg] | 866.2 (587.2; 901.9) | 700 1–1500 2 |
Magnesium [mg] | 278.8 (201.5; 398.7) | 420 1 |
Iron [mg] | 7.8 (4.8; 10.4) | 11 4 |
Zinc [mg] | 5.4 (4.8; 7.1) | 11–15 2 |
Copper [mg] | 1 (0.7; 1.7) | 0.9 2–1.6 4 |
Selenium [µg] | 5.1 (1.6; 12.2) | 50–55 2 |
Iodine [µg] | 22.8 (13.8; 39.1) | 120–150 2 |
Vit. A [µg] | 729.2 (473.1; 1570.8) | 900 1 |
Vit. D [µg] | 2.6 (1.2; 4.8) | 15 2,4 |
Vit. E [mg] | 14.2 (9.9; 17.8) | 15 1,2 |
Vit. C [mg] | 90.5 (74.5; 164.5) | 110 4–200 2 |
Vit. B1 [mg] | 1.4 (1.2; 1.7) | 1.2 1 |
Vit. B2 [mg] | 1.4 (0.8; 2.2) | 1.3 1,4 |
Vit. B3 [mg] | 13.7 (5.1; 20.1) | 14–20 2 |
Vit. B6 [mg] | 1.8 (1.2; 2.3) | 1.5–2 2 |
Vit. B9 [µg] | 325.4 (203.9; 477.1) | 400 1,2 |
Vit. B12 [µg] | 2.8 (1.6; 4.1) | 2.4 1–4 4 |
Vit. K [µg] | 4.2 (2.2; 14.4) | 120 1–700 2 |
Nutritional Indices of Health Status After Chronic Hypoxia | Percentage of Climbers Whose Test Results of Health Indicators Were Consistent with Laboratory Standards [%] | Macro- and Micronutrients of the Diet | Percentage of Climbers Realizing the Requirement for a Given Dietary Nutrient [%] |
---|---|---|---|
Erythrocytes [1012/L] HGB [g/dL] HCT [%] MCV [fL] MCH [pg] MCHC [g/dL] Iron [μmol/L] Ferritin [ng/mL] Vitamin B12 [pg/mL] | 100 100 76.47 94.12 94.12 70.59 94.12 76.47 94.12 | Iron [mg] Vitamin B9 [µg] Vitamin B12 [µg] | 29.41 35.29 58.82 |
Sodium [mmol/L] | 100 | Sodium [mg] | 100 |
Potassium [mmol/L] | 100 | Potassium [mg] | 23.53 |
Calcium [mmol/L] | 82.35 | Calcium [mg] | 0 |
Magnesium [mmol/L] | 100 | Magnesium [mg] | 11.76 |
Vitamin D (25(OH)D) total [ng/mL] | 52.94 | Vitamin D [µg] | 17.65 |
TC [mmol/L] | 82.35 | Cholesterol [mg] | 82.35 |
LDL [mmol/L] | 82.35 | Fibre [g] | 58.82 |
HDL [mmol/L] | 88.24 | Simple carbohydrates [%] | 70.59 |
TG [mmol/L] | 88.24 | Vitamin C [mg] | 35.29 |
Glucose [mmol/L] | 100 | Vitamin E [mg] | 52.94 |
Vitamin A [µg] | 41.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpęcka-Gałka, E.; Bawelski, M.; Pięta, A.; Mazur-Kurach, P.; Pięta, P.; Frączek, B. The Impact of a High-Altitude Expedition on the Physical Performance and Nutritional Indices of Health Status of Alpinists. J. Funct. Morphol. Kinesiol. 2025, 10, 143. https://doi.org/10.3390/jfmk10020143
Karpęcka-Gałka E, Bawelski M, Pięta A, Mazur-Kurach P, Pięta P, Frączek B. The Impact of a High-Altitude Expedition on the Physical Performance and Nutritional Indices of Health Status of Alpinists. Journal of Functional Morphology and Kinesiology. 2025; 10(2):143. https://doi.org/10.3390/jfmk10020143
Chicago/Turabian StyleKarpęcka-Gałka, Ewa, Marek Bawelski, Aleksandra Pięta, Paulina Mazur-Kurach, Paweł Pięta, and Barbara Frączek. 2025. "The Impact of a High-Altitude Expedition on the Physical Performance and Nutritional Indices of Health Status of Alpinists" Journal of Functional Morphology and Kinesiology 10, no. 2: 143. https://doi.org/10.3390/jfmk10020143
APA StyleKarpęcka-Gałka, E., Bawelski, M., Pięta, A., Mazur-Kurach, P., Pięta, P., & Frączek, B. (2025). The Impact of a High-Altitude Expedition on the Physical Performance and Nutritional Indices of Health Status of Alpinists. Journal of Functional Morphology and Kinesiology, 10(2), 143. https://doi.org/10.3390/jfmk10020143