Effects of Dynamic Stability Training with Water Inertia Load on Gait and Biomechanics in Older Women: A Randomized Clinical Trial
Abstract
1. Introduction
- (1)
- The training will improve spatiotemporal parameters such as gait speed, stride length, and cadence.
- (2)
- The ankle plantar flexor moment and positive mechanical work will increase, while compensatory hip moment will decrease.
2. Materials and Methods
2.1. Participants
- (1)
- Healthy women aged 65 years or older
- (1)
- History of musculoskeletal disorders within the past 3 months
- (2)
- Severe cardiopulmonary diseases (e.g., heart failure, myocardial infarction)
- (3)
- Use of medications such as anxiolytics, antidepressants, or sedatives
- (4)
- Diagnosis of chronic pulmonary disease
- (5)
- History of surgery within the past 6 months.
2.2. Gait Assessment and Data Acquisition
2.3. Exercise Intervention
2.4. Statistical Analysis
3. Results
3.1. Changes in Lower-Limb Joint Moments and Ankle Positive Mechanical Work
3.2. Change in Gait Parameters
4. Discussion
- The training intensity was regulated solely based on subjective RPE, without the use of objective physiological indicators.
- The relatively small sample size may limit the generalizability of the findings to broader populations.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait speed and survival in older adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Minneci, C.; Mello, A.M.; Mossello, E.; Baldasseroni, S.; Macchi, L.; Cipolletti; Marchionni, N.; Di Bari, M. Comparative study of four physical performance measures as predictors of death, incident disability, and falls in unselected older persons: The insufficienza Cardiaca negli Anziani Residenti a Dicomano Study. J. Am. Geriatr. Soc. 2015, 63, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.; Baudry, S. Age-related changes in leg proprioception: Implications for postural control. J. Neurophysiol. 2019, 122, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Schrack, J.A.; Simonsick, E.M.; Chaves, P.H.; Ferrucci, L. The role of energetic cost in the age-related slowing of gait speed. J. Am. Geriatr. Soc. 2012, 60, 1811–1816. [Google Scholar] [CrossRef]
- Schrack, J.A.; Zipunnikov, V.; Simonsick, E.M.; Studenski, S.; Ferrucci, L. Rising Energetic Cost of Walking Predicts Gait Speed Decline with Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 947–953. [Google Scholar] [CrossRef]
- Pol, F.; Baharlouei, H.; Taheri, A.; Menz, H.B.; Forghany, S. Foot and ankle biomechanics during walking in older adults: A systematic review and meta-analysis of observational studies. Gait Posture 2021, 89, 14–24. [Google Scholar] [CrossRef]
- Buddhadev, H.H.; Martin, P.E. Effects of age and physical activity status on redistribution of joint work during walking. Gait Posture 2016, 50, 131–136. [Google Scholar] [CrossRef]
- Boyer, K.A.; Johnson, R.T.; Banks, J.J.; Jewell, C.; Hafer, J.F. Systematic review and meta-analysis of gait mechanics in young and older adults. Exp. Gerontol. 2017, 95, 63–70. [Google Scholar] [CrossRef]
- Das, S.K.; Farooqi, A. Osteoarthritis. Best Pract. Res. Clin. Rheumatol. 2008, 22, 657–675. [Google Scholar] [CrossRef]
- Kaczmarczyk, K.; Wiszomirska, I.; Błażkiewicz, M.; Wychowański, M.; Wit, A. First signs of elderly gait for women. Med. Pr. 2017, 68, 441–448. [Google Scholar] [CrossRef]
- Phinyomark, A.; Osis, S.T.; Hettinga, B.A.; Kobsar, D.; Ferber, R. Gender differences in gait kinematics for patients with knee osteoarthritis. BMC Musculoskelet. Disord. 2016, 17, 157. [Google Scholar] [CrossRef] [PubMed]
- Noce Kirkwood, R.; de Souza Moreira, B.; Mingoti, S.A.; Faria, B.F.; Sampaio, R.F.; Alves Resende, R. The slowing down phenomenon: What is the age of major gait velocity decline? Maturitas 2018, 115, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Buddhadev, H.H.; Smiley, A.L.; Martin, P.E. Effects of age, speed, and step length on lower extremity net joint moments and powers during walking. Hum. Mov. Sci. 2020, 71, 102611. [Google Scholar] [CrossRef]
- Wälchli, M.; Tokuno, C.D.; Ruffieux, J.; Keller, M.; Taube, W. Preparatory cortical and spinal settings to counteract anticipated and non-anticipated perturbations. Neuroscience 2017, 365, 12–22. [Google Scholar] [CrossRef]
- Ritzmann, R.; Lee, K.; Krause, A.; Gollhofer, A.; Freyler, K. Changes in Joint Kinematics and Segmental Strategy in Perturbed Upright Stance. Front. Integr. Neurosci. 2018, 12, 62. [Google Scholar] [CrossRef]
- López-de-Celis, C.; Sánchez-Alfonso, N.; Rodríguez-Sanz, J.; Romaní-Sánchez, S.; Labata-Lezaun, N.; Canet-Vintró, M.; Aiguadé, R.; Pérez-Bellmunt, A. Quadriceps and gluteus medius activity during stable and unstable loading exercises in athletes. A cross-sectional study. J. Orthop. Res. 2024, 42, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Kang, S.; Park, I. Effects of Unstable Exercise Using the Inertial Load of Water on Lower Extremity Kinematics and Center of Pressure During Stair Ambulation in Middle-Aged Women with Degenerative Knee Arthritis. Appl. Sci. 2025, 15, 2992. [Google Scholar] [CrossRef]
- Kang, S.; Park, I. Effects of Instability Neuromuscular Training Using an Inertial Load of Water on the Balance Ability of Healthy Older Women: A Randomized Clinical Trial. J. Funct. Morphol. Kinesiol. 2024, 9, 50. [Google Scholar] [CrossRef]
- Kang, S.; Park, I.; Ha, M.S. Effect of dynamic neuromuscular stabilization training using the inertial load of water on functional movement and postural sway in middle-aged women: A randomized controlled trial. BMC Women’s Health 2024, 24, 154. [Google Scholar] [CrossRef]
- Rizzato, A.; Bozzato, M.; Rotundo, L.; Zullo, G.; De Vito, G.; Paoli, A.; Marcolin, G. Multimodal training protocols on unstable rather than stable surfaces better improve dynamic balance ability in older adults. Eur. Rev. Aging Phys. Act. 2024, 21, 19. [Google Scholar] [CrossRef]
- Browne, M.G.; Franz, J.R. Ankle power biofeedback attenuates the distal-to-proximal redistribution in older adults. Gait Posture 2019, 71, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Franz, J.R.; Kram, R. Advanced age affects the individual leg mechanics of level, uphill, and downhill walking. J. Biomech. 2013, 46, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.; Colado, J.C. The effectiveness of resistance training using unstable surfaces and devices for rehabilitation. Int. J. Sports Phys. Ther. 2012, 7, 226–241. [Google Scholar]
- Zemková, E. Instability resistance training for health and performance. J. Tradit. Complement. Med. 2016, 7, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, X.; Zhang, B.; Zhou, B.; He, Z.; Liu, T. An IMU-Based Ground Reaction Force Estimation Method and Its Application in Walking Balance Assessment. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 223–232. [Google Scholar] [CrossRef]
- Pamukoff, D.N.; Haakonssen, E.C.; Zaccaria, J.A.; Madigan, M.L.; Miller, M.E.; Marsh, A.P. The effects of strength and power training on single-step balance recovery in older adults: A preliminary study. Clin. Interv. Aging 2014, 9, 697–704. [Google Scholar] [CrossRef]
- Ardestani, M.M.; Ferrigno, C.; Moazen, M.; Wimmer, M.A. From normal to fast walking: Impact of cadence and stride length on lower extremity joint moments. Gait Posture 2016, 46, 118–125. [Google Scholar] [CrossRef]
- Bytyçi, I.; Henein, M.Y. Stride Length Predicts Adverse Clinical Events in Older Adults: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 2670. [Google Scholar] [CrossRef]
- Pfister, A.; West, A.M.; Bronner, S.; Noah, J.A. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis. J. Med. Eng. Technol. 2014, 38, 274–280. [Google Scholar] [CrossRef]
- Peters, D.M.; Fritz, S.L.; Krotish, D.E. Assessing the reliability and validity of a shorter walk test compared with the 10-Meter Walk Test for measurements of gait speed in healthy, older adults. J. Geriatr. Phys. Ther. 2013, 36, 24–30. [Google Scholar] [CrossRef]
- Perrin, T.P.; Morio, C.Y.M.; Besson, T.; Kerhervé, H.A.; Millet, G.Y.; Rossi, J. Comparison of skin and shoe marker placement on metatarsophalangeal joint kinematics and kinetics during running. J. Biomech. 2023, 146, 111410. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Tiggemann, C.L.; Pietta-Dias, C.; Schoenell, M.C.W.; Noll, M.; Alberton, C.L.; Pinto, R.S.; Kruel, L.F.M. Rating of Perceived Exertion as a Method to Determine Training Loads in Strength Training in Elderly Women: A Randomized Controlled Study. Int. J. Environ. Res. Public Health 2021, 18, 7892. [Google Scholar] [CrossRef] [PubMed]
- Franz, J.R. The Age-Associated Reduction in Propulsive Power Generation in Walking. Exerc. Sport. Sci. Rev. 2016, 44, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Delabastita, T.; Hollville, E.; Catteau, A.; Cortvriendt, P.; De Groote, F.; Vanwanseele, B. Distal-to-proximal joint mechanics redistribution is a main contributor to reduced walking economy in older adults. Scand. J. Med. Sci. Sports 2021, 31, 1036–1047. [Google Scholar] [CrossRef]
- Mackey, D.C.; Robinovitch, S.N. Mechanisms underlying age-related differences in ability to recover balance with the ankle strategy. Gait Posture 2006, 23, 59–68. [Google Scholar] [CrossRef]
- Hunter, S.K.; Pereira, H.M.; Keenan, K.G. The aging neuromuscular system and motor performance. J. Appl. Physiol. 2016, 121, 982–995. [Google Scholar] [CrossRef]
- Boudreau, S.N.; Dwyer, M.K.; Mattacola, C.G.; Lattermann, C.; Uhl, T.L.; McKeon, J.M. Hip-muscle activation during the lunge, single-leg squat, and step-up-and-over exercises. J. Sport. Rehabil. 2009, 18, 91–103. [Google Scholar] [CrossRef]
- Porto, J.M.; Freire Júnior, R.C.; Bocarde, L.; Fernandes, J.A.; Marques, N.R.; Rodrigues, N.C.; de Abreu, D.C.C. Contribution of hip abductor-adductor muscles on static and dynamic balance of community-dwelling older adults. Aging Clin. Exp. Res. 2019, 31, 621–627. [Google Scholar] [CrossRef]
- Lanza, M.B.; Addison, O.; Ryan, A.S.; Perez, W.J.; Gray, V. Kinetic, muscle structure, and neuromuscular determinants of weight transfer phase prior to a lateral choice reaction step in older adults. J. Electromyogr. Kinesiol. 2020, 55, 102484. [Google Scholar] [CrossRef]
- van Dieën, J.H.; van Leeuwen, M.; Faber, G.S. Learning to balance on one leg: Motor strategy and sensory weighting. J. Neurophysiol. 2015, 114, 2967–2982. [Google Scholar] [CrossRef] [PubMed]
- Glass, S.C.; Wisneski, K.A. Effect of Instability Training on Compensatory Muscle Activation during Perturbation Challenge in Young Adults. J. Funct. Morphol. Kinesiol. 2023, 8, 136. [Google Scholar] [CrossRef] [PubMed]
- Zelik, K.E.; Adamczyk, P.G. A unified perspective on ankle push-off in human walking. J. Exp. Biol. 2016, 219, 3676–3683. [Google Scholar] [CrossRef]
- Hortobágyi, T.; Lesinski, M.; Gäbler, M.; VanSwearingen, J.M.; Malatesta, D.; Granacher, U. Erratum to: Effects of Three Types of Exercise Interventions on Healthy Old Adults’ Gait Speed: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 453. [Google Scholar] [CrossRef]
- Perera, S.; Patel, K.V.; Rosano, C.; Rubin, S.M.; Satterfield, S.; Harris, T.; Ensrud, K.; Orwoll, E.; Lee, C.G.; Chandler, J.M.; et al. Gait Speed Predicts Incident Disability: A Pooled Analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 63–71. [Google Scholar] [CrossRef]
- Bogen, B.; Moe-Nilssen, R.; Ranhoff, A.H.; Aaslund, M.K. The walk ratio: Investigation of invariance across walking conditions and gender in community-dwelling older people. Gait Posture 2018, 61, 479–482. [Google Scholar] [CrossRef]
- Okubo, Y.; Schoene, D.; Lord, S.R. Step training improves reaction time, gait and balance and reduces falls in older people: A systematic review and meta-analysis. Br. J. Sports Med. 2017, 51, 586–593. [Google Scholar] [CrossRef]
- Peters, R.M.; Dalton, B.H.; Blouin, J.S.; Inglis, J.T. Precise coding of ankle angle and velocity by human calf muscle spindles. Neuroscience 2017, 349, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Damulin, I.V. Izmeneniia khod’by pri starenii [Changes in walking in the elderly]. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova 2018, 118, 100–104. (In Russian) [Google Scholar] [CrossRef]
- Kim, B.; Youm, C.; Park, H.; Lee, M.; Choi, H. Association of Muscle Mass, Muscle Strength, and Muscle Function with Gait Ability Assessed Using Inertial Measurement Unit Sensors in Older Women. Int. J. Environ. Res. Public Health 2022, 19, 9901. [Google Scholar] [CrossRef]
- Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. Effects of walking speed on gait biomechanics in healthy participants: A systematic review and meta-analysis. Syst. Rev. 2019, 8, 153. [Google Scholar] [CrossRef] [PubMed]
AG (n = 12) | CG (n = 12) | |
---|---|---|
Age (years) | 67.83 ± 2.41 | 68.67 ± 3.52 |
Weight (kg) | 59.63 ± 11.09 | 60.70 ± 10.37 |
Height (cm) | 157.17 ± 5.01 | 156.08 ± 4.22 |
BMI (kg/m2) | 24.35 ± 1.05 | 24.61 ± 1.30 |
Training | 0~6 Weeks | 7~12 Weeks | Time |
---|---|---|---|
Intensity | 9~11 RPE | 12~13 RPE | |
with weight (3 kg) | with weight (4 kg) | ||
2 sets | 1 set | ||
Warm-up | Hip and ankle joint mobility and spine stretch | Hip and ankle joint mobility and spine stretch | 10 min |
DST exercise | Squat | Squat and heel raise Balance | 30 min |
Squat and heel raise | Side squat followed by one-leg balance | ||
Side squat | Front lunge (dynamic speed) | ||
Split lunge | Back lunge (dynamic speed) | ||
Lunge with trunk rotation | Front lunge with trunk rotation (dynamic speed) | ||
Lunge (with step box) | One-leg balance with heel raise (with wall support) | ||
Side squat (with step box) | One-leg balance with heel raise and front lunge (with step box, dynamic speed) | ||
Walking (with step box) | Side step followed by one-leg balance (with step box, dynamic speed) | ||
Side walking (with step box) | Side step jump over the step box (dynamic speed) | ||
Cool down | Cat stretch | Cat stretch | 10 min |
Spine stretch | Spine stretch | ||
Bear position | Bear position |
Variable | Group | 0 Weeks | 6 Weeks | 12 Weeks | Source | p | η2 | Post Hoc |
---|---|---|---|---|---|---|---|---|
Ankle plantarflexion (Nm/kg) | AG | −0.43 ± 0.36 | −0.61 ± 0.26 | −0.95 ± 0.30 | Time | <0.001 | 0.63 | 0–6 weeks: 0.034 |
0–12 weeks: <0.001 | ||||||||
6–12 weeks: <0.001 | ||||||||
CG | −0.38 ± 0.18 | −0.64 ± 0.35 | −0.70 ± 0.24 | Group × Time | 0.017 | 0.17 | 0–6 weeks: <0.01 | |
0–12 weeks: <0.001 | ||||||||
6–12 weeks: 1.000 | ||||||||
Hip extension (Nm/kg) | AG | −7.44 ± 3.40 | −6.21 ± 2.80 | −6.05 ± 2.61 | Time | 0.481 | ns | |
CG | −5.60 ± 3.60 | −5.70 ± 2.80 | −5.82 ± 2.82 | Group × Time | 0.329 | ns | ||
Ankle positive work (J/kg) | AG | 2.14 ± 1.74 | 3.35 ± 1.91 | 5.63 ± 2.12 | Time | <0.001 | 0.55 | 0–6 weeks: <0.01 |
0–12 weeks: <0.001 | ||||||||
6–12 weeks: <0.01 | ||||||||
CG | 1.46 ± 0.96 | 2.18 ± 0.84 | 2.37 ± 0.92 | Group × Time | <0.001 | 0.32 | 0–6 weeks: 0.066 | |
0–12 weeks: 0.087 | ||||||||
6–12 weeks: 1.000 |
Variable | Group | 0 Weeks | 6 Weeks | 12 Weeks | Source | p | η2 | Post Hoc |
---|---|---|---|---|---|---|---|---|
Cadence (step/min) | AG | 118.80 ± 8.85 | 121.86 ± 8.08 | 126.28 ± 7.00 | Time | <0.001 | 0.33 | 0–6 weeks: 0.751 |
0–12 weeks: 0.020 | ||||||||
6–12 weeks: 0.106 | ||||||||
CG | 118.73 ± 10.32 | 121.49 ± 9.59 | 124.51 ± 7.67 | Group × Time | 0.818 | 0.01 | 0–6 weeks: 0.478 | |
0–12 weeks: 0.044 | ||||||||
6–12 weeks: 0.274 | ||||||||
Stride length (m) | AG | 0.75 ± 0.05 | 0.81 ± 0.05 | 0.88 ± 0.05 | Time | <0.001 | 0.68 | 0–6 weeks: 0.011 |
0–12 weeks: <0.001 | ||||||||
6–12 weeks: <0.01 | ||||||||
CG | 0.75 ± 0.03 | 0.79 ± 0.05 | 0.80 ± 0.04 | Group × Time | <0.001 | 0.35 | 0–6 weeks: <0.01 | |
0–12 weeks: 0.011 | ||||||||
6–12 weeks: 1.000 | ||||||||
Walking speed (m/s) | AG | 0.74 ± 0.07 | 0.83 ± 0.06 | 0.93 ± 0.06 | Time | <0.001 | 0.73 | 0–6 weeks: <0.01 |
0–12 weeks: <0.001 | ||||||||
6–12 weeks: <0.001 | ||||||||
CG | 0.74 ± 0.07 | 0.80 ± 0.09 | 0.82 ± 0.08 | Group × Time | <0.001 | 0.32 | 0–6 weeks: <0.01 | |
0–12 weeks: <0.01 | ||||||||
6–12 weeks: 0.866 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.J.; Park, I.B. Effects of Dynamic Stability Training with Water Inertia Load on Gait and Biomechanics in Older Women: A Randomized Clinical Trial. J. Funct. Morphol. Kinesiol. 2025, 10, 207. https://doi.org/10.3390/jfmk10020207
Kim HJ, Park IB. Effects of Dynamic Stability Training with Water Inertia Load on Gait and Biomechanics in Older Women: A Randomized Clinical Trial. Journal of Functional Morphology and Kinesiology. 2025; 10(2):207. https://doi.org/10.3390/jfmk10020207
Chicago/Turabian StyleKim, Hyun Ju, and Il Bong Park. 2025. "Effects of Dynamic Stability Training with Water Inertia Load on Gait and Biomechanics in Older Women: A Randomized Clinical Trial" Journal of Functional Morphology and Kinesiology 10, no. 2: 207. https://doi.org/10.3390/jfmk10020207
APA StyleKim, H. J., & Park, I. B. (2025). Effects of Dynamic Stability Training with Water Inertia Load on Gait and Biomechanics in Older Women: A Randomized Clinical Trial. Journal of Functional Morphology and Kinesiology, 10(2), 207. https://doi.org/10.3390/jfmk10020207