Assessment of Youth Water Polo Players’ Swimming Sprint Potential: A New Approach to Building an International Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Testing Procedures and Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hraste, M.; Jelaska, I.; Lozovina, M. An analysis of the differences between young water polo players based on indicators of efficiency. Int. J. Perform. Anal. Sport. 2014, 14, 123–137. [Google Scholar] [CrossRef]
- Perazzetti, A.; Dopsaj, M.; Mandorino, M.; Tessitore, A. Assessment of the offensive play in elite water polo using the team Sport Assessment Procedure (TSAP) over an entire competitive season. J. Funct. Morphol. Kinesiol. 2023, 8, 130. [Google Scholar] [CrossRef] [PubMed]
- Perazzetti, A.; Dopsaj, M.; Tessitore, A. Technical and tactical evaluation of ball possession in international youth water polo matches using the Team Sport Assessment Procedure (TSAP) instrument. Monten. J. Sports Sci. Med. 2023, 19, 3–9. [Google Scholar] [CrossRef]
- Barrenetxea-Garcia, J.; Perazzetti, A.; Nuell, S.; Mielgo-Ayuso, J.; De Villarreal, E.S.; Calleja-González, J. Perceptions and use of recovery strategies in water polo players and coaches: A worldwide survey. J. Exerc. Rehabil. 2024, 20, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Canossa, S.; Fernandes, R.J.; Estriga, L.; Abraldes, J.A.; Lupo, C.; Garganta, J.M. Water polo offensive methods after the 2018 fina rules update. Int. J. Environ. Res. Public Health 2022, 19, 2568. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; McFadden, G.; Hubbard, M.; Royal, K.; Hahn, A. The water-polo intermittent shuttle test: A match-fitness test for water-polo players. Int. J. Sports Physiol. Perform. 2006, 1, 27–39. [Google Scholar] [CrossRef]
- Botonis, P.G.; Toubekis, A.G.; Platanou, T.I. Training loads, wellness and performance before and during tapering for a water-polo tournament. J. Hum. Kinet. 2019, 66, 131–141. [Google Scholar] [CrossRef]
- Perazzetti, A.; Dopsaj, M.; Sansone, P.; Mandorino, M.; Tessitore, A. Effects of playing position and contextual factors on internal match loads, post-match recovery and well-being responses of elite male water polo players. J. Funct. Morphol. Kinesiol. 2023, 8, 12. [Google Scholar] [CrossRef]
- Kondrič, M.; Uljević, O.; Gabrilo, G.; Kontić, D.; Sekulić, D. General anthropometric and specific physical fitness profile of high-level junior water polo players. J. Hum. Kinet. 2012, 32, 157–165. [Google Scholar] [CrossRef]
- Uljevic, O.; Spasic, M.; Sekulic, D. Sport-specific motor fitness tests in water polo: Reliability, validity and playing position differences. J. Sports Sci. Med. 2013, 12, 646–654. [Google Scholar]
- De Siati, F.; Laffaye, G.; Gatta, G.; Dello Iacono, A.; Ardigò, L.P.; Padulo, J. Neuromuscular and technical abilities related to age in water-polo players. J. Sports Sci. 2016, 34, 1466–1472. [Google Scholar] [CrossRef] [PubMed]
- Viero, V.; Triossi, T.; Bianchi, D.; Campagna, A.; Melchiorri, G. Physical and performance variables for talent identification in water polo. J. Sports Med. Phys. Fit. 2020, 60, 1309–1316. [Google Scholar] [CrossRef]
- Lupo, C.; Tessitore, A.; Cortis, C.; Ammendolia, A.; Figura, F.; Capranica, L. A physiological, time–motion, and technical comparison of youth water polo and Acquagoal. J. Sports Sci. 2009, 27, 823–831. [Google Scholar] [CrossRef]
- Dopsaj, M.; Mijalkovski, Z.; Vasilovski, N.; Copic, N.; Brzakovic, M.; Markovic, M. Morphological parameters and handgrip muscle force contractile characteristics in the first selection level in water polo: Differences between U15 water polo players and the control group. Hum. Sport Med. 2018, 18, 5–15. [Google Scholar] [CrossRef]
- Noronha, F.; Canossa, S.; Vilas-Boas, J.P.; Afonso, J.; Castro, F.; Fernandes, R.J. Youth water polo performance determinants: The INEX study. Int. J. Environ. Res. Public Health 2022, 19, 4938. [Google Scholar] [CrossRef]
- Perazzetti, A.; Dopsaj, M.; Nedeljković, A.; Mazić, S.; Tessitore, A. Survey on coaching philosophies and training methodologies of water polo head coaches from three different European national schools. Kinesiology 2023, 55, 49–61. [Google Scholar] [CrossRef]
- Botonis, P.G.; Toubekis, A.G.; Platanou, T.I. Physiological and tactical on-court demands of water polo. J. Strength Cond. Res. 2019, 33, 3188–3199. [Google Scholar] [CrossRef]
- Melchiorri, G.; Castagna, C.; Sorge, R.; Bonifazi, M. Game activity and blood lactate in men’s elite water-polo players. J. Strength Cond. Res. 2010, 24, 2647–2651. [Google Scholar] [CrossRef]
- Smith, H.K. Applied physiology of water polo. Sports Med. 1998, 26, 317–334. [Google Scholar] [CrossRef]
- Dopsaj, M.; Manojlović, N.; Bratuša, Z.; Okičić, I. The structure of swimming skills in water polo players at the first level of pre-selection. Exerc. Soc. J. Sport Sci. 2003, 34, 76–78. [Google Scholar]
- Dopsaj, M.; Madić, D.; Okičić, T. The assessment of the acquisition of various crawl style modes in water polo players with respect to age and competitive levels. Facta Univ. Ser. Phys. Educ. Sport 2007, 5, 109–120. [Google Scholar]
- Chirico, E.; Tessitore, A.; Demarie, S. Physiological swimming test for water polo players in the last twenty years: A systematic review. J. Sports Med. Phys. Fit. 2022, 62, 921–930. [Google Scholar] [CrossRef] [PubMed]
- De Jesus, K.; Figueiredo, P.; De Jesus, K.; Pereira, F.; Vilas-Boas, J.P.; Machado, L.; Fernandes, R.J. Kinematic analysis of three water polo front crawl styles. J. Sports Sci. 2012, 30, 715–723. [Google Scholar] [CrossRef]
- Perazzetti, A.; Dopsaj, M.; Tessitore, A. Analysis of different swimming abilities in youth water polo players and its comparison in two age categories. In Proceedings of the 15th Conference of Baltic Society of Sport Sciences, Kaunas, Lithuania, 28–29 April 2022. [Google Scholar]
- Dopsaj, M.; Majstorovic, N.; Milic, R.; Nesic, G.; Rauter, S.; Zadraznik, M. Multidimensional prediction approach in the assessment of male volleyball players’ optimal body composition: The case of two elite European teams. Int. J. Morphol. 2021, 39, 977–983. [Google Scholar] [CrossRef]
- Dopsaj, M.; Nenasheva, A.; Tretiakova, T.; Syromiatnikova, Y.; Surina-Marysheva, E.; Marković, S.; Dopsaj, V. Handgrip muscle force characteristics with general reference values at Chelyabinsk and Belgrade students. Hum. Sport Med. 2019, 19, 27–36. [Google Scholar] [CrossRef]
- Hair, J.; Anderson, R.; Tatham, R.; Black, W. Multivariate Data Analysis, 5th ed.; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1998. [Google Scholar]
- McNarry, M.A.; Lester, L.; Brown, J.; Mackintosh, K.A. Investigating the modulatory role of chronological and biological age on performance predictors in youth swimmers. J. Sci. Sport Exerc. 2020, 2, 349–358. [Google Scholar] [CrossRef]
- Sokołowski, K.; Strzała, M.; Stanula, A.; Kryst, Ł.; Radecki-Pawlik, A.; Krężałek, P.; Rosemann, T.; Knechtle, B. Biological age in relation to somatic, physiological, and swimming kinematic indices as predictors of 100 m front crawl performance in young female swimmers. Int. J. Environ. Res. Public Health 2021, 18, 6062. [Google Scholar] [CrossRef]
- Chaplins’kyy, M.; Briskin, Y.; Ostrov’ska, N.; Sydorko, O.; Ostrov’skyy, M.; Pityn, M.; Polehoiko, M. Evaluation of the training level of water polo swimming players (13–15 years old). J. Phys. Educ. Sport 2018, 18, 356–362. [Google Scholar] [CrossRef]
- Kovačević, N.; Mihanović, F.; Hrbić, K.; Mirović, M.; Galić, T. Anthropometric Characteristics and Specific Functional Swimming Capacities in Youth U12 Water Polo Players. Monten. J. Sports Sci. Med. 2023, 12, 29–34. [Google Scholar] [CrossRef]
- Pernigoni, M.; Perazzetti, A.; Digno, M.; Tessitore, A.; Kamandulis, S.; Conte, D. Chill without thrill: A crossover study on whole-body cryotherapy and postmatch recovery in high-level youth basketball players. Int. J. Sports Physiol. Perform. 2024, 19, 1218–1226. [Google Scholar] [CrossRef]
- World Aquatics. World Aquatics Competition Regulations. 2025. Available online: https://www.worldaquatics.com/rules/competition-regulations (accessed on 15 March 2025).
25CHeadIN | 25CBall | 25CSI | 25CSIC | CSSP | CSSSP | OCSSS | ||
---|---|---|---|---|---|---|---|---|
Mean | 14.79 | 15.64 | 0.947 | 1.523 | 50.00 | 50.00 | 50.00 | |
SD | 1.08 | 1.23 | 0.043 | 0.155 | 16.67 | 16.67 | 16.67 | |
cV% | 7.30 | 7.86 | 4.54 | 10.18 | 33.34 | 33.34 | 33.34 | |
Min | 12.48 | 12.67 | 0.829 | 1.050 | −19.98 | 8.76 | 1.28 | |
Max | 18.68 | 21.09 | 1.072 | 1.528 | 106.39 | 100.66 | 92.13 | |
Std. Error. (aps, sec). | 0.066 | 0.074 | 0.003 | 0.009 | 1.009 | 1.009 | 1.009 | |
Std. Error. (rel, %). | 0.45 | 0.47 | 0.32 | 0.59 | 2.02 | 2.02 | 2.02 | |
95% Confidence Interval for Mean | Lower Bound | 14.66 | 15.50 | 0.941 | 1.505 | 48.01 | 48.01 | 48.01 |
Upper Bound | 14.92 | 15.79 | 0.952 | 1.542 | 51.99 | 51.99 | 51.99 |
Total Variance Explained Matrix | ||||||
Component | Initial Eigenvalues | Rotation Sums of Squared Loadings | ||||
Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
1 | 2.704 | 67.602 | 67.602 | 2.187 | 54.668 | 54.668 |
2 | 1.286 | 32.149 | 99.751 | 1.803 | 45.082 | 99.751 |
3 | 0.009 | 0.224 | 99.975 | |||
4 | 0.001 | 0.025 | 100.00 | |||
Rotated Component Matrix | ||||||
Component | ||||||
1 | 2 | |||||
25CHeadIN | 0.990 | 0.142 | ||||
25CBall | 0.898 | −0.436 | ||||
25CSI | 0.056 | 0.998 | ||||
25CSIC | −0.631 | 0.773 |
Subgroup | CSSP | Subgroup | CSSSP | Subgroup | OCSSS |
---|---|---|---|---|---|
Serbia * | 57.95 ± 13.99 | Germany # | 55.81 ± 15.28 | Serbia † | 57.58 ± 16.49 |
Slovenia | 54.35 ± 12.62 | Serbia # | 50.27 ± 16.73 | Slovenia | 57.29 ± 10.43 |
Germany | 46.67 ± 14.16 | Slovenia | 46.47 ± 10.07 | Türkiye | 56.22 ± 14.65 |
Türkiye | 43.36 ± 10.04 | Italy | 40.89 ± 16.23 | Italy | 48.63 ± 14.16 |
Italy * | 39.40 ± 21.77 | Türkiye | 36.09 ± 10.92 | Germany † | 41.13 ± 14.14 |
ANOVA | F = 14.17 p < 0.001 | F = 10.104 p < 0.001 | F = 16.936 p < 0.001 | ||
* Serbia vs. Germany, Türkiye and Italy, p < 0.001, =0.006 and <0.001, respectively. * Italy vs. Slovenia, p = 0.042. # Germany vs. Italy and Türkiye, p < 0.001 & <0.001, respectively. # Serbia vs. Italy and Türkiye, p = 0.013 and 0.012, respectively. † Serbia vs. Italy p = 0.014 † Germany vs. Serbia, Türkiye and Slovenia, p < 0.001, =0.003 and =0.008, respectively. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perazzetti, A.; Tessitore, A.; Özkol, M.Z.; Novoselac, N.; Dopsaj, M. Assessment of Youth Water Polo Players’ Swimming Sprint Potential: A New Approach to Building an International Model. J. Funct. Morphol. Kinesiol. 2025, 10, 200. https://doi.org/10.3390/jfmk10020200
Perazzetti A, Tessitore A, Özkol MZ, Novoselac N, Dopsaj M. Assessment of Youth Water Polo Players’ Swimming Sprint Potential: A New Approach to Building an International Model. Journal of Functional Morphology and Kinesiology. 2025; 10(2):200. https://doi.org/10.3390/jfmk10020200
Chicago/Turabian StylePerazzetti, Andrea, Antonio Tessitore, Mehmet Zeki Özkol, Nebojša Novoselac, and Milivoj Dopsaj. 2025. "Assessment of Youth Water Polo Players’ Swimming Sprint Potential: A New Approach to Building an International Model" Journal of Functional Morphology and Kinesiology 10, no. 2: 200. https://doi.org/10.3390/jfmk10020200
APA StylePerazzetti, A., Tessitore, A., Özkol, M. Z., Novoselac, N., & Dopsaj, M. (2025). Assessment of Youth Water Polo Players’ Swimming Sprint Potential: A New Approach to Building an International Model. Journal of Functional Morphology and Kinesiology, 10(2), 200. https://doi.org/10.3390/jfmk10020200