The Relationship Between Physical Activity and Gait Rhythm with Motor Imagery -Trial Using the Finger Tap Test-
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Materials
2.3. Rhythmic Ability Assessments
2.4. Motor Imagery Assessments
2.5. Data Analysis
3. Results
3.1. Group Attributes
3.2. Cognitive Function (MoCA-J)
3.3. Rhythm Variables
3.4. Delta (∆) Variables
3.5. Actual Walking Rhythm
3.6. ANCOVA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HA-Group | High activity group |
LA-Group | Low activity group |
MoCA-J | Japanese version of Montreal Cognitive Assessment |
C-walking | Comfortable walking |
M-walking | Maximum walking |
TUG | Timed Up and Go test |
iTUG | imaged Timed Up and Go test |
References
- Decety, J.; Jeannerod, M. Mentally simulated movements in virtual reality: Does fitts’s law hold in motor imagery? Behav. Brain Res. 1995, 72, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Jeannerod, M. The representing brain: Neural correlates of motor intention and imagery. Brain Behav. Sci. 1994, 17, 187–202. [Google Scholar] [CrossRef]
- Jeannerod, M. Mental imagery in the motor context. Neuropsychologia 1995, 33, 1419–1433. [Google Scholar] [CrossRef] [PubMed]
- Rozand, V.; Lebon, F.; Papaxanthis, C.; Lepers, R. Does a mental training session induce neuromuscular fatigue? Med. Sci. Sports Exerc. 2014, 46, 1981–1989. [Google Scholar] [CrossRef]
- Mateo, S.; Di Rienzo, F.; Bergeron, V.; Guillot, A.; Collet, C. Motor imagery reinforces brain compensation of reach-to-grasp movement after cervical spinal cord injury. Front. Behav. Neurosci. 2015, 9, 234. [Google Scholar] [CrossRef]
- Guillot, A.; Tolleron, C.; Collet, C. Does motor imagery enhance stretching and flexibility. J. Sports Sci. 2010, 28, 291–298. [Google Scholar] [CrossRef]
- Lebon, F.; Collet, C.; Guillot, A. Benefits of motor imagery training on muscle strength. J. Strength Cond. Res. 2010, 24, 1680–1687. [Google Scholar] [CrossRef]
- Mizuguchi, N.; Nakata, H.; Uchida, Y.; Kanosue, K. Motor imagery and sport performance. J. Phys. Fit. Sports Med. 2012, 1, 103–111. [Google Scholar] [CrossRef]
- Itotani, K.; Suganuma, I.; Morimoto, S.; Nakai, H.; Ogawa, N. The Relationship between Restrictions on Going Out and Motor Imagery among Medical University Students in Japan-Research with Small Samples. Life 2023, 13, 797. [Google Scholar] [CrossRef]
- Iacono, A.D.; Ashcroft, K.U.R.T.I.S.; Zubac, D.A.M.I.R. Ain’t just imagination! Effects of motor imagery training on strength and power performance of athletes during detraining. Med. Sci. Sports Exerc. 2021, 53, 2324–2332. [Google Scholar] [CrossRef]
- Pascual-Leone, A.; Nquyet, D.; Cohen, L.G.; Brasil-Neto, J.P.; Cammarota, A.; Hallett, M. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J. Neurophysiol. 1995, 74, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Mulder, T.; Zijistra, S.; Zijlstra, W.; Hochstenbach, J. The role of motor imagery in learning a totally novel movement. Exp. Brain Res. 2004, 154, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Rozand, V.; Lebon, F.; Stapley, P.J.; Papaxanthis, C.; Lepers, R. A prolonged motor imagery session alter imagined and actual movement durations: Potential implications for neurorehabilitation. Behav. Brain Res. 2016, 297, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Koshiro, H.; Kawakami, M. Using the Imagined Timed Up and Go Test to Identify Fall Risk over the 6-Month Period after Discharge in Patients with Stroke. Jpn. J. Rehabil. Med. 2015, 52, 352–357. [Google Scholar] [CrossRef]
- Beauchet, O.; Annweiler, C.; Assal, F.; Bridenbaugh, S.; Herrmann, F.R.; Kressig, R.W.; Allali, G. Imagined Timed Up & Go test: A new tool to assess higher-level gait and balance disorders in older adults? J. Neurol. Sci. 2010, 294, 102–106. [Google Scholar] [CrossRef]
- Bridenbaugh, S.A.; Beauchet, O.; Annweiler, C.; Allali, G.; Herrmann, F.; Kressig, R.W. Association between dual task-related decrease in walking speed and real versus imagined Timed Up and Go test performance. Aging Clin. Exp. Res. 2013, 25, 283–289. [Google Scholar] [CrossRef]
- Beauchet, O.; Launay, C.P.; Sejdić, E.; Allali, G.; Annweiler, C. Motor imagery of gait: A new way to detect mild cognitive impairment? J. Neuroeng. Rehabil. 2014, 11, 66. [Google Scholar] [CrossRef]
- Gardner, A.W.; Poehlman, E.T. Assessment of free-living daily physical activity in older claudicants: Validation against the doubly labeled water technique. J. Gerontol. A Biol. Sci. Med. Sci. 1998, 53, M275–M280. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Murase, N.; Katsumura, T.; Ueda, C.; Inoue, S.; Shimomitsu, T. Validity and reliability of Japanese version of International Physical Activity Questionnaire. J. Health Welf. Stat. 2002, 49, 1–9. Available online: https://www.hws-kyokai.or.jp/images/ronbun/all/200210-1.pdf (accessed on 3 February 2024). (In Japanese).
- Fujiwara, Y.; Suzuki, H.; Yasunaga, M.; Sugiyama, M.; Ijuin, M.; Sakuma, N.; Shinkai, S. Brief screening tool for mild cognitive impairment in older Japanese: Validation of the Japanese version of the Montreal Cognitive Assessment. Geriatr. Gerontol. Int. 2010, 10, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Edith, V.D.; Jeska, B.; Valerio, L. Instructed versus spontaneous entrainment of running cadence to music tempo. Ann. N. Y. Acad. Sci. 2021, 1, 91–102. [Google Scholar] [CrossRef]
- Hidde, P.P.; Tien, C.; Rosemary, J.K.; Emily, B.; Adrian, B. Sitting time and all-cause mortality risk in 222,497 Australian adults. Arch. Intern. Med. 2012, 172, 494–500. [Google Scholar] [CrossRef]
- Koyama, T.; Ozaki, E.; Kuriyama, N.; Tomida, S.; Yoshida, T.; Uehara, R.; Miura, K. Effect of underlying cardiometabolic diseases on the association between sedentary time and all-cause mortality in a large Japanese population: A cohort analysis based on the J-MICC study. J. Am. Heart Assoc. 2021, 10, e018293. [Google Scholar] [CrossRef]
- Kameda, M.; Niikawa, K.; Uematsu, A.; Tanaka, M. Sensory and motor representations of internalized rhythms in the cerebellum and basal ganglia. Proc. Natl. Acad. Sci. USA 2023, 120, e2221641120. [Google Scholar] [CrossRef]
- Breska, A.; Ivry, R.B. The human cerebellum is essential for modulating perceptual sensitivity based on temporal expectations. Elife 2021, 10, e66743. [Google Scholar] [CrossRef]
- Repp, B.H. Sensorimotor synchronization: A review of the tapping literature. Psychon. Bull. Rev. 2005, 12, 969–992. [Google Scholar] [CrossRef]
- Bijsterbosch, J.D.; Lee, K.H.; Hunter, M.D.; Tsoi, D.T.; Lankappa, S.; Wilkinson, I.D.; Woodruff, P.W. The role of the cerebellum in sub-and supraliminal error correction during sensorimotor synchronization: Evidence from fMRI and TMS. J. Cogn. Neurosci. 2011, 23, 1100–1112. [Google Scholar] [CrossRef]
- Robin, N.; Coudevylle, G.R.; Hue, O.; Toussaint, L. The influences of tropical climate on imagined walking time. J. Cogn. Psychol. 2018, 30, 98–107. [Google Scholar] [CrossRef]
Variables | Mean (SD) or Number (%) | |||||||
---|---|---|---|---|---|---|---|---|
Total | HA-Group | LA-Group | p Value | Effect Size | ||||
n = 28 | n = 8 | n = 20 | (r, φ) | |||||
Age, y | 44.6 | (27.1) | 65.1 | (18.9) | 36.6 | (25.8) | 0.009 | 0.48 |
Sex, male | 4 | (14.3) | 1 | (12.5) | 3 | (15.0) | n.s. | |
Height, cm | 158.9 | (7.9) | 155.4 | (6.5) | 160.3 | (8.2) | n.s. | 0.28 |
Weight, kg | 52.9 | (6.5) | 51.6 | (5.2) | 53.5 | (6.9) | n.s. | 0.13 |
BMI, kg/m2 | 20.9 | (1.9) | 21.4 | (1.6) | 20.8 | (2.1) | n.s. | 0.14 |
Sitting or lying down time, h/day | 6.2 | (4.1) | 2.1 | (1.2) | 7.9 | (3.6) | 0.0001 | 0.66 |
Sleep time, h/day | 6.6 | (1.4) | 6.5 | (1.3) | 6.6 | (1.5) | n.s. | 0.03 |
Crude Model | Mean (SD) or Number (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Total | HA-Group | LA-Group | p Value | Effect Size | ||||
n = 28 | n = 8 | n = 20 | (r, φ) | ||||||
MoCA-J, score | 26.5 | (2.9) | 24.1 | (3.2) | 27.5 | (2.2) | 0.004 a | 0.53 | |
Rhythm ability, BPM | |||||||||
Visual rhythm | 99.8 | (2.6) | 98.3 | (2.2) | 100.4 | (2.7) | 0.049 b | 0.35 | |
Auditory rhythm | 145.9 | (54.8) | 178.4 | (48.2) | 130.7 | (53.9) | 0.023 b | 0.41 | |
Mental C-walking rhythm | 88.6 | (22.1) | 104.3 | (24.0) | 82.3 | (190.0) | 0.017 a | 0.45 | |
Mental M-walking rhythm | 124.5 | (36.9) | 156.7 | (42.0) | 111.6 | (27.5) | 0.002 a | 0.55 | |
Actual C-walking rhythm, BPM | 118.6 | (10.2) | 121.8 | (11.4) | 117.3 | (9.9) | n.s. | 0.20 | |
Actual M-walking rhythm, BPM | 153.0 | (22.1) | 139.1 | (8.6) | 158.6 | (24.1) | 0.025 b | 0.39 | |
Δ Rhythm ability, % | |||||||||
Δ Visual rhythm | 0.2 | (2.6) | 1.8 | (2.2) | −0.4 | (2.6) | 0.049 b | 0.35 | |
Δ Auditory rhythm | 20.1 | (38.4) | −2.2 | (31.5) | 31.4 | (38.5) | 0.023 b | 0.41 | |
Δ Mental C-walking rhythm | −14.9 | (31.6) | −37.6 | (28.8) | −5.8 | (30.3) | 0.015 a | 0.46 | |
Δ Mental M-walking rhythm | 23.1 | (31.9) | −8.9 | (23.9) | 35.9 | (26.2) | 0.001 a | 0.63 | |
Walking time per week, h | 6.7 | (7.9) | 4.9 | (6.9) | 7.5 | (8.3) | n.s. | 0.22 | |
TUG, s | 8.2 | (1.7) | 8.9 | (2.7) | 7.9 | (1.0) | n.s. | 0.30 | |
iTUG, s | 6.5 | (1.7) | 6.1 | (2.0) | 6.6 | (1.5) | n.s. | 0.14 | |
Δ TUG, % | 23.9 | (27.8) | 37.1 | (39.6) | 18.6 | (20.5) | n.s. | 0.29 |
Adjusted Model 1 | Mean (SD) or Number (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Total | HA-Group | LA-Group | p Value | Effect Size | ||||
n = 28 | n = 8 | n = 20 | (η2) | ||||||
MoCA-J, score | 26.5 | (2.9) | 24.1 | (3.2) | 27.5 | (2.2) | n.s. | 0.12 | |
Rhythm ability, BPM | |||||||||
Visual rhythm | 99.8 | (2.6) | 98.3 | (2.2) | 100.4 | (2.7) | n.s. | 0.12 | |
Auditory rhythm | 145.9 | (54.8) | 178.4 | (48.2) | 130.7 | (53.9) | n.s. | 0.11 | |
Mental C-walking rhythm | 88.6 | (22.1) | 104.3 | (24.0) | 82.3 | (19.0) | n.s. | 0.07 | |
Mental M-walking rhythm | 124.5 | (36.9) | 156.7 | (42.0) | 111.6 | (27.5) | 0.031 | 0.17 | |
Actual C-walking rhythm, BPM | 118.6 | (10.2) | 121.8 | (11.4) | 117.3 | (9.9) | n.s. | 0.00 | |
Actual M-walking rhythm, BPM | 153.0 | (22.1) | 139.1 | (8.6) | 158.6 | (24.1) | n.s. | 0.05 | |
Δ Rhythm ability, % | |||||||||
Δ Visual rhythm | 0.2 | (2.6) | 1.8 | (2.2) | −0.4 | (2.6) | n.s. | 0.12 | |
Δ Auditory rhythm | 20.1 | (38.4) | −2.2 | (31.5) | 31.4 | (38.5) | n.s. | 0.12 | |
Δ Mental C-walking rhythm | −14.9 | (31.6) | −37.6 | (28.8) | −5.8 | (30.3) | n.s. | 0.09 | |
Δ Mental M-walking rhythm | 23.1 | (31.9) | −8.9 | (23.9) | 35.9 | (26.2) | 0.009 | 0.24 | |
Walking time per week, h | 6.7 | (7.9) | 4.9 | (6.9) | 7.5 | (8.3) | n.s. | 0.001 | |
TUG, s | 8.2 | (1.7) | 8.9 | (2.7) | 7.9 | (1.0) | n.s. | 0.03 | |
iTUG, s | 6.5 | (1.7) | 6.1 | (2.0) | 6.6 | (1.5) | n.s. | 0.052 | |
Δ TUG, % | 23.9 | (27.8) | 37.1 | (39.6) | 18.6 | (20.5) | n.s. | 0.08 |
Adjusted Model 2 | Mean (SD) or Number (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Total | HA-Group | LA-Group | p Value | Effect Size | ||||
n = 28 | n = 8 | n = 20 | (η2) | ||||||
MoCA-J, score | 26.5 | (2.9) | 24.1 | (3.2) | 27.5 | (2.2) | n.s. | 0.12 | |
Rhythm ability, BPM | |||||||||
Visual rhythm | 99.8 | (2.6) | 98.3 | (2.2) | 100.4 | (2.7) | n.s. | 0.12 | |
Auditory rhythm | 145.9 | (54.8) | 178.4 | (48.2) | 130.7 | (53.9) | n.s. | 0.11 | |
Mental C-walking rhythm | 88.6 | (22.1) | 104.3 | (24.0) | 82.3 | (19.0) | n.s. | 0.07 | |
Mental M-walking rhythm | 124.5 | (36.9) | 156.7 | (42.0) | 111.6 | (27.5) | 0.019 | 0.24 | |
Actual C-walking rhythm, BPM | 118.6 | (10.2) | 121.8 | (11.4) | 117.3 | (9.9) | n.s. | 0.00 | |
Actual M-walking rhythm, BPM | 153.0 | (22.1) | 139.1 | (8.6) | 158.6 | (24.1) | n.s. | 0.05 | |
Δ Rhythm ability, % | |||||||||
Δ Visual rhythm | 0.2 | (2.6) | 1.8 | (2.2) | −0.4 | (2.6) | n.s. | 0.12 | |
Δ Auditory rhythm | 20.1 | (38.4) | −2.2 | (31.5) | 31.4 | (38.5) | n.s. | 0.12 | |
Δ Mental C-walking rhythm | −14.9 | (31.6) | −37.6 | (28.8) | −5.8 | (30.3) | n.s. | 0.09 | |
Δ Mental M-walking rhythm | 23.1 | (31.9) | −8.9 | (23.9) | 35.9 | (26.2) | 0.008 | 0.30 | |
Walking time per week, h | 6.7 | (7.9) | 4.9 | (6.9) | 7.5 | (8.3) | n.s. | 0.001 | |
TUG, s | 8.2 | (1.7) | 8.9 | (2.7) | 7.9 | (1.0) | n.s. | 0.03 | |
iTUG, s | 6.5 | (1.7) | 6.1 | (2.0) | 6.6 | (1.5) | n.s. | 0.052 | |
Δ TUG, % | 23.9 | (27.8) | 37.1 | (39.6) | 18.6 | (20.5) | n.s. | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itotani, K.; Taki, M.; Ueno, S.; Nakai, H.; Miki, Y.; Suganuma, I.; Harada, S.; Ogawa, N. The Relationship Between Physical Activity and Gait Rhythm with Motor Imagery -Trial Using the Finger Tap Test-. J. Funct. Morphol. Kinesiol. 2025, 10, 94. https://doi.org/10.3390/jfmk10010094
Itotani K, Taki M, Ueno S, Nakai H, Miki Y, Suganuma I, Harada S, Ogawa N. The Relationship Between Physical Activity and Gait Rhythm with Motor Imagery -Trial Using the Finger Tap Test-. Journal of Functional Morphology and Kinesiology. 2025; 10(1):94. https://doi.org/10.3390/jfmk10010094
Chicago/Turabian StyleItotani, Keisuke, Mirai Taki, Shinnosuke Ueno, Hina Nakai, Yuta Miki, Ippei Suganuma, Shun Harada, and Noriyuki Ogawa. 2025. "The Relationship Between Physical Activity and Gait Rhythm with Motor Imagery -Trial Using the Finger Tap Test-" Journal of Functional Morphology and Kinesiology 10, no. 1: 94. https://doi.org/10.3390/jfmk10010094
APA StyleItotani, K., Taki, M., Ueno, S., Nakai, H., Miki, Y., Suganuma, I., Harada, S., & Ogawa, N. (2025). The Relationship Between Physical Activity and Gait Rhythm with Motor Imagery -Trial Using the Finger Tap Test-. Journal of Functional Morphology and Kinesiology, 10(1), 94. https://doi.org/10.3390/jfmk10010094