Calculating the Surface Layer Thickness and Surface Energy of Aircraft Materials
Abstract
:1. Introduction
- surface of solid bodies: this surface represents the layer through which the body interacts with the outside world (through its nanostructure to be more precise);
- determination of the solid bodies surface energy: this is the energy characteristic of the surface, nanostructure, and solid body, which determines all the physicochemical processes taking place on it up to its destruction;
- features of the aviation materials’ surface layer: they are related to the difference between the solid body ideal surface and its real surface with roughness;
- surface layer thickness of pure metals: this is the thickness for which the layer is considered a nanostructure (3–5 nm);
- surface layer thickness and surface energy of aviation materials: these are aluminum and nickel alloy materials that have a surface layer thickness of approximately 6–9 nm. However, for aircraft where the coating is in the form of metal oxides, the surface layer thickness is about 70–90 nm. In this case, the thickness of the oxide layer of these metallic materials can range from 5 to 90 nm depending on the modes of their processing.
2. Materials and Methods
2.1. Surface of Solid Bodies
2.2. Determination of the Solid Bodies Surface Energy
3. Results and Discussion
3.1. Features of Aviation Materials Surface Layer
3.2. Surface Layer Thickness of Pure Metals
3.3. Surface Layer Thickness and Surface Energy of Aviation Materials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aristov, V.Y. Structure and Electronic Properties of a Clean and Covered Surface of Semiconductors with Ultrathin Metal Layers in the Interval T°—10–1200 K. Ph.D. Thesis, Institute of Solid State Physics, Chernogolovka, Russia, 2002. [Google Scholar]
- Oura, K.; Lifshits, V.G.; Saranin, A.A.; Zotov, A.V.; Katayama, M. Introduction to Surface Physics; Science: Moscow, Russia, 2006. [Google Scholar]
- Mamonova, M.V.; Prudnikov, V.V.; Prudnikova, I.A. Surface Physics: Theoretical Models and Experimenal Methods; CRC Press: London, UK, 2016. [Google Scholar]
- Stevie, F.A.; Donley, C.L. Introduction to x-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A Vac. Surf. Film. 2020, 38, 063204. [Google Scholar] [CrossRef]
- Egerton, R.; Watanabe, M. Spatial Resolution in Transmission Electron Microscopy. Micron 2022, 160, 103304. [Google Scholar] [CrossRef] [PubMed]
- Polmear, Y. Light Alloys: From Traditional to Nanocrystalline; Tekhnosfera: Moscow, Russia, 2008. [Google Scholar]
- Alymov, M.I.; Andrianova, M.A.; Elmanov, G.N.; Kalin, B.A. Volume 5. Materials with Specified Properties. In Physical Materials Science; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute): Moscow, Russia, 2008. [Google Scholar]
- Zavodinskiy, V.G. Computer Simulation of Nanoparticles and Nanosystems; Fizmatlit: Moscow, Russia, 2013. [Google Scholar]
- Bezyazyachny, V.F.; Scherek, M.; Pervov, M.L.; Timofeev, M.V.; Prokofiev, M.A. Investigation of the effect of temperature on the ability of metals to accumulate energy during their plastic deformation. Proc. Min. Inst. 2019, 235, 55–59. [Google Scholar] [CrossRef]
- Roldugin, V.I. Physical Chemistry of Surface; Intellekt: Dolgoprudnyi, Russia, 2008. [Google Scholar]
- Pashaev, A.M.; Janakhmedov, A.K.; Jabbarov, T.G. Aviation Materials Science; Apostroff: Baku, Azerbaijan, 2016. [Google Scholar]
- Yurov, V.M.; Makeeva, O.V.; Oleshko, V.S.; Fedorov, A.V. Development of a device for determining work electron output. Eurasian Phys. Tech. J. 2020, 17, 127–131. [Google Scholar]
- Starzynski, G.; Gambin, W. Natural surface layer of metals. Acta Phys. Pol. A 1996, 89, 377–381. [Google Scholar] [CrossRef]
- Dearnley, P.A. Introduction to Surface Engineering; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Chen, C.J. Introduction to Scanning Tunneling Microscopy; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Yurov, V.M.; Guchenko, S.A.; Laurinas, V.C. Surface Layer Thickness, Surface Energy and Atomic Volume of Element. Physical and Chemical Aspects of Cluster, Nanostructure and Nanomaterial Study; Tver State University: Tver, Russia, 2018. [Google Scholar]
- Uvarov, N.F.; Boldyrev, V.V. Size effects in chemistry of heterogeneous systems. Russ. Chem. Rev. 2001, 70, 265–284. [Google Scholar] [CrossRef]
- Gusev, A.I. Nanomaterials, Nanostructures, and Nanotechnologies; Fizmatlit: Moscow, Russia, 2005. [Google Scholar]
- Maritan, A.; Langie, G.; Indekeu, J.O. Derivation of Landau theories and lattice mean-field theories for surface and wetting phenomena from semiinfinite ising models. Physica A 1991, 170, 326–354. [Google Scholar] [CrossRef]
- Yurov, V.V.; Guchenko, S.A.; Laurinas, V.C.; Zavatskaya, O.N. Structural phase transition in a surface layer of metals. Bull. Karaganda Univ. Phys. 2019, 1, 50–60. [Google Scholar] [CrossRef]
- Gafner, Y.Y.; Gafner, S.L.; Zamulin, I.S.; Redel, L.V.; Baidyshev, V.S. Analysis of the heat capacity of nanoclusters of FCC metals on the example of Al, Ni, Cu, Pd, and Au. Phys. Met. Metallogr. 2015, 116, 568–575. [Google Scholar] [CrossRef]
- Buffat, P.; Borel, J.P. Size effect on the melting temperature of gold particles. Phys. Rev. A 1976, 13, 2287–2294. [Google Scholar] [CrossRef]
- Yurov, V.M. Surface Tension Measuring Method for Fluorescent Materials. RK Patent 23223, 15 November 2010. [Google Scholar]
- Tolman, R.C. The effect of droplet size on surface tension. J. Chem. Phys. 1949, 17, 333–337. [Google Scholar] [CrossRef]
- Rekhviashvili, S.S.; Kishtikova, E.V.; Karmokova, R.Y.; Karmokov, A.M. Calculating the Tolman constant. Tech. Phys. Lett. 2007, 33, 48–50. [Google Scholar] [CrossRef]
- Bokarev, V.P.; Krasnikov, G.Y. Anisotropy of physicochemical properties of single-crystal surfaces. Electron. Technol. Ser. 3. Microelectron. 2016, 4, 25–30. [Google Scholar]
- Yurov, V.M.; Goncharenko, V.I.; Oleshko, V.S. Anisotropy of the surface of cubic body-centered crystal lattices. Eurasian Phys. Tech. J. 2021, 18, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Gleiter, H. Nanostructured materials: Basic concepts and microstructure. Acta Mater. 2000, 48, 1–29. [Google Scholar] [CrossRef]
- Bochkarev, V.P. Development of Physical and Chemical Principles for Assessing the Effect of Surface Energy on the Properties of Materials and Processes for Microelectronic Technology. Ph.D. Thesis, National Research University of Electronic Technology, Moscow, Russia, 2020. [Google Scholar]
- Skriver, H.L.; Rosengaard, N.M. Surface energy and work function of elemental metals. Phys. Rev. B 1992, 46, 7157–7168. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.Q. Surface energy and work function of fcc and bcc crystals: Density functional study. Surf. Sci. 2014, 630, 216–224. [Google Scholar] [CrossRef]
- Bokarev, V.P.; Krasnikov, G.Y.; Gornev, E.S. Anisotropy of crystals surface properties and its role in microelectronic technology. Tech. Comp. Micro-Nanoelectr. 2019, 4, 175–179. [Google Scholar]
- Khokonov, K.B.; Taova, T.M.; Alchagirov, B.B. Surface energy and surface tension of metals and their binary metal alloys in a solid state. Proc. Kabardino-Balkarian State Univ. 2019, 9, 5–19. [Google Scholar]
- Orowan, E. The fatigue of glass under stress. Nature 1944, 154, 341–343. [Google Scholar] [CrossRef]
- Vettegren, V.I.; Ponomarev, A.V.; Kulik, V.B.; Mamalimov, R.I.; Shcherbakov, I.P. Destruction of quartz diorite at friction. Geo-Phys. Res. 2020, 21, 35–50. [Google Scholar]
- Vettegren, V.I.; Ponomarev, A.V.; Mamalimov, R.I.; Shcherbakov, I.P. Nanocracks upon Fracture of Oligoclase. Izv. Phys. Solid Earth 2021, 57, 894–899. [Google Scholar] [CrossRef]
- Taube, A.x. Formation of Structure and Properties of Ni-Cr-Al System-Based Laminated Heat-Resistant Coatings. Ph.D. Thesis, Volgograd State Technical University, Volgograd, Russia, 2017. [Google Scholar]
- Shevtsova, L.I. Structure and Mechanical Properties of Materials Based on Nickel Aluminide Produced on the Technology of Spark Plasma Sintering Powder Mixtures; Novosibirsk State Technical University: Novosibirsk, Russia, 2015. [Google Scholar]
- Antashev, V.G.; Nochovnaya, N.A.; Shiriayev, A.A.; Izotova, A.Y. New Titanium Alloy Development Prospects; N.E. Bauman’s MGTU Bulletin Machine Engineering Series: Moscow, Russia, 2011. [Google Scholar]
- Quinn, R.D. A Method for Calculating Transient Surface Temperatures and Surface Heating Rates for High-Speed Aircraft; NASA/TP-2000-209034; Dryden Flight Research Center: Edwards, CA, USA, 2000. Available online: https://www.nasa.gov/centers/dryden/pdf/88700main_H-2427.pdf (accessed on 7 December 2022).
- Kellermann, H.; Habermann, A.L.; Hornung, M. Assessment of Aircraft Surface Heat Exchanger Potential. Aerospace 2019, 7, 1. [Google Scholar] [CrossRef]
- Syasko, V.; Nikazov, A. Research and development of metrological assurance elements for leeb hardness measurements. Inventions 2021, 6, 86. [Google Scholar] [CrossRef]
- Mohammadizadeh, M.; Lu, H.; Gupta, A.; Hasanov, S.; Zhang, Z.; Fidan, I.; Tantawi, K.; Alifui-Segbaya, F.; Rennie, A. Mechanical and thermal analyses of metal-PLA components fabricated by metal material extrusion. Inventions 2020, 5, 44. [Google Scholar] [CrossRef]
Metal | Structure | (hkl) | d(I), nm | d(II), nm |
---|---|---|---|---|
Li | Im3m a = 0.3502 nm, Z = 2 | (100) | 2.2 (6) | 19.8 |
(110) | 3.1 (9) | 27.9 | ||
(111) | 1.3 (4) | 11.7 | ||
Na | Im3m a = 0.4282 nm, Z = 2 | (100) | 4.5 (11) | 40.5 |
(110) | 6.3 (15) | 56.7 | ||
(111) | 2.6 (6) | 23.4 | ||
K | Im3m a = 0.5247 nm, Z = 2 | (100) | 7.7 (15) | 71.1 |
(110) | 10.8 (21) | 97.2 | ||
(111) | 4.5 (9) | 40.5 | ||
Rb | Im3m a = 0.5710 nm, Z = 2 | (100) | 10.0 (18) | 90.0 |
(110) | 14.0 (25) | 126.0 | ||
(111) | 5.9 (10) | 53.1 | ||
Cs | Im3m a = 0.6141 nm, Z = 2 | (100) | 12.1 (20) | 108.9 |
(110) | 16.9 (24) | 152.1 | ||
(111) | 7.1 (12) | 63.9 | ||
Ca | Fm3m a = 0.5580 nm, Z = 4 | (100) | 4.4 (8) | 39.6 |
(110) | 6.2 (11) | 55.8 | ||
(111) | 5.2 (9) | 46.8 | ||
Ba | Im3m a = 0.5010 nm, Z = 2 | (100) | 6.6 (13) | 59.4 |
(110) | 9.2 (18) | 82.8 | ||
(111) | 3.9 (8) | 35.1 | ||
Al | Fm3m a = 0.4041 nm, Z = 4 | (100) | 1.6 (4) | 14.4 |
(110) | 2.2 (6) | 19.8 | ||
(111) | 1.9 (5) | 17.1 | ||
Si | Fd3m a = 0.5431 nm, Z = 8 | (100) | 1.1 (2) | 9.9 |
(110) | 1.5 (3) | 13.5 | ||
(111) | 2.5 (5) | 22.5 | ||
Ge | Fd3m a = 0.5660 nm, Z = 8 | (100) | 1.2 (2) | 10.8 |
(110) | 1.7 (3) | 15.3 | ||
(111) | 2.8 (5) | 25.2 | ||
Pb | Fm3m a = 0.4950 nm, Z = 4 | (100) | 3.1 (6) | 27.9 |
(110) | 4.3 (9) | 38.7 | ||
(111) | 3.7 (7) | 33.3 | ||
Cu | Fm3m a = 0.3615 nm, Z = 4 | (100) | 1.2 (3) | 10.8 |
(110) | 1.7 (5) | 15.3 | ||
(111) | 1.4 (4) | 12.6 | ||
Ag | Fm3m a = 0.4086 nm, Z = 4 | (100) | 1.7 (4) | 15.3 |
(110) | 2.4 (6) | 21.6 | ||
(111) | 2.0 (5) | 18.0 | ||
Au | Fm3m a = 0.4078 nm, Z = 4 | (100) | 1.7 (4) | 15.3 |
(110) | 2.4 (6) | 21.6 | ||
(111) | 2.0 (5) | 18.0 | ||
Cr | Im3m a = 0.2885 nm, Z = 2 | (100) | 1.2 (4) | 10.8 |
(110) | 1.7 (6) | 15.3 | ||
(111) | 0.7 (2) | 6.3 | ||
Mo | Im3m a = 0.3147 nm, Z = 2 | (100) | 1.6 (5) | 14.4 |
(110) | 2.2 (7) | 19.8 | ||
(111) | 0.9 (3) | 8.1 | ||
W | Im3m a = 0.3160 nm, Z = 2 | (100) | 1.6 (5) | 14.4 |
(110) | 2.2 (7) | 19.8 | ||
(111) | 0.9 (3) | 8.1 | ||
Mn | Im3m a = 0.8890 nm, Z = 2 | (100) | 1.3 (2) | 11.7 |
(110) | 1.8 (2) | 16.2 | ||
(111) | 0.8 (1) | 7.2 | ||
Fe | Im3m a = 0.2866 nm, Z = 2 | (100) | 1.2 (4) | 10.8 |
(110) | 1.7 (6) | 15.3 | ||
(111) | 0.7 (2) | 6.3 | ||
Ni | Fm3m a = 0.3524 nm, Z = 4 | (100) | 1.1 (3) | 9.9 |
(110) | 1.5 (5) | 13.5 | ||
(111) | 1.3 (4) | 11.7 | ||
Ce | Fm3m a = 0.5160 nm, Z = 4 | (100) | 3.6 (7) | 32.4 |
(110) | 5.0 (10) | 45.0 | ||
(111) | 4.2 (8) | 37.8 | ||
Eu | Im3m a = 0.4581 nm, Z = 2 | (100) | 5.0 (11) | 45.0 |
(110) | 7.0 (15) | 63.0 | ||
(111) | 2.9 (7) | 26.1 |
Metal | Structure | (hkl) | σ(hkl) d(I), J/m2 | σ(hkl) d(II), J/m2 |
---|---|---|---|---|
Li | Im3m a = 0.3502 nm, Z = 2 | (100) | 0.159 | 0.318 |
(110) | 0.186 | 0.445 | ||
(111) | 0.118 | 0.187 | ||
Na | Im3m a = 0.4282 nm, Z = 2 | (100) | 0.137 | 0.260 |
(110) | 0.160 | 0.364 | ||
(111) | 0.100 | 0.153 | ||
K | Im3m a = 0.5247 nm, Z = 2 | (100) | 0.118 | 0.236 |
(110) | 0.138 | 0.330 | ||
(111) | 0.087 | 0.139 | ||
Rb | Im3m a = 0.5710 nm, Z = 2 | (100) | 0.109 | 0.218 |
(110) | 0.127 | 0.305 | ||
(111) | 0.081 | 0.128 | ||
Cs | Im3m a = 0.6141 nm, Z = 2 | (100) | 0.106 | 0.211 |
(110) | 0.123 | 0.295 | ||
(111) | 0.078 | 0.124 | ||
Ca | Fm3m a = 0.5580 nm, Z = 4 | (100) | 0.389 | 0.778 |
(110) | 0.455 | 1.089 | ||
(111) | 0.421 | 0.915 | ||
Ba | Im3m a = 0.5010 nm, Z = 2 | (100) | 0.351 | 0.701 |
(110) | 0.408 | 0.981 | ||
(111) | 0.260 | 0.412 | ||
Al | Fm3m a = 0.4041 nm, Z = 4 | (100) | 0.327 | 0.654 |
(110) | 0.379 | 0.916 | ||
(111) | 0.355 | 0.769 | ||
Si | Fd3m a = 0.5431 nm, Z = 8 | (100) | 0.495 | 0.591 |
(110) | 0.571 | 0.844 | ||
(111) | 0.688 | 1.391 | ||
Ge | Fd3m a = 0.5660 nm, Z = 8 | (100) | 0.424 | 0.424 |
(110) | 0.497 | 0.605 | ||
(111) | 0.593 | 0.996 | ||
Pb | Fm3m a = 0.4950 nm, Z = 4 | (100) | 0.210 | 0.420 |
(110) | 0.244 | 0.588 | ||
(111) | 0.229 | 0.494 | ||
Cu | Fm3m a = 0.3615 nm, Z = 4 | (100) | 0.475 | 0.950 |
(110) | 0.557 | 1.330 | ||
(111) | 0.512 | 1.118 | ||
Ag | Fm3m a = 0.4086 nm, Z = 4 | (100) | 0.432 | 0.865 |
(110) | 0.432 | 1.211 | ||
(111) | 0.467 | 1.018 | ||
Au | Fm3m a = 0.4078 nm, Z = 4 | (100) | 0.468 | 0.936 |
(110) | 0.548 | 1.310 | ||
(111) | 0.430 | 1.101 | ||
Cr | Im3m a = 0.2885 nm, Z = 2 | (100) | 0.746 | 1.491 |
(110) | 0.874 | 2.087 | ||
(111) | 0.549 | 0.877 | ||
Mo | Im3m a = 0.3147 nm, Z = 2 | (100) | 1.014 | 2.027 |
(110) | 1.174 | 2.838 | ||
(111) | 0.730 | 1.190 | ||
W | Im3m a = 0.3160 nm, Z = 2 | (100) | 1.293 | 2.587 |
(110) | 1.497 | 3.622 | ||
(111) | 0.931 | 1.522 | ||
Mn | Im3m a = 0.8890 nm, Z = 2 | (100) | 0.531 | 1.062 |
(110) | 0.617 | 1.487 | ||
(111) | 0.405 | 0.625 | ||
Fe | Im3m a = 0.2866 nm, Z = 2 | (100) | 0.634 | 1.268 |
(110) | 0.743 | 1.775 | ||
(111) | 0.467 | 0.746 | ||
Ni | Fm3m a = 0.3524 nm, Z = 4 | (100) | 0.604 | 1.208 |
(110) | 0.697 | 1.691 | ||
(111) | 0.655 | 1.421 | ||
Ce | Fm3m a = 0.5160 nm, Z = 4 | (100) | 0.375 | 0.750 |
(110) | 0.439 | 1.050 | ||
(111) | 0.404 | 0.882 | ||
Eu | Im3m a = 0.4581 nm, Z = 2 | (100) | 0.385 | 0.769 |
(110) | 0.445 | 1.077 | ||
(111) | 0.282 | 0.452 |
Metal | Structure | (hkl) | σ(hkl), J/m2 (Counted by the Authors) | σ(hkl), J/m2 [29] | σ(hkl), J/m2 [30] | σ(hkl), J/m2 [31] |
---|---|---|---|---|---|---|
Li | Im3m a = 0.3502 nm, Z = 2 | (100) | 0.318 | 0.304 | 0.436 | 0.541 |
(110) | 0.445 | 0.430 | 0.458 | 0.585 | ||
(111) | 0.187 | 0.180 | - | 0.601 | ||
Na | Im3m a = 0.4282 nm, Z = 2 | (100) | 0.260 | 0.189 | 0.236 | 0.258 |
(110) | 0.364 | 0.267 | 0.307 | 0.247 | ||
(111) | 0.153 | 0.109 | - | 0.302 | ||
K | Im3m a = 0.5247 nm, Z = 2 | (100) | 0.236 | 0.124 | 0.129 | 0.148 |
(110) | 0.330 | 0.175 | 0.116 | 0.137 | ||
(111) | 0.139 | 0.072 | 0.112 | 0.165 | ||
Rb | Im3m a = 0.5710 nm, Z = 2 | (100) | 0.218 | 0.101 | 0.107 | 0.126 |
(110) | 0.305 | 0.143 | 0.092 | 0.110 | ||
(111) | 0.128 | 0.058 | 0.089 | 0.135 | ||
Cs | Im3m a = 0.6141 nm, Z = 2 | (100) | 0.211 | 0.085 | 0.092 | 0.114 |
(110) | 0.295 | 0.120 | 0.072 | 0.097 | ||
(111) | 0.124 | 0.049 | 0.070 | 0.119 | ||
Ca | Fm3m a = 0.5580 nm, Z = 4 | (100) | 0.778 | 0.630 | - | 0.529 |
(110) | 1.089 | 0.445 | 0.339 | 0.635 | ||
(111) | 0.915 | 0.728 | 0.352 | 0.548 | ||
Ba | Im3m a = 0.5010 nm, Z = 2 | (100) | 0.701 | 0.365 | - | 0.415 |
(110) | 0.981 | 0.516 | 0.260 | 0.407 | ||
(111) | 0.412 | 0.211 | 0.258 | 0.495 | ||
(111) | 0.494 | - | - | - | ||
Cr | Im3m a = 0.2885 nm, Z = 2 | (100) | 1.491 | 1.460 | 2.270 | - |
(110) | 2.087 | 2.017 | - | - | ||
(111) | 0.877 | 2.852 | 3.090 | - | ||
Mo | Im3m a = 0.3147 nm, Z = 2 | (100) | 2.027 | 2.306 | - | 3.661 |
(110) | 2.838 | 3.261 | 3.180 | 3.174 | ||
(111) | 1.190 | 1.331 | 2.500 | 3.447 | ||
W | Im3m a = 0.3160 nm, Z = 2 | (100) | 2.587 | 3.020 | - | 4.403 |
(110) | 3.622 | 4.270 | 3.840 | 3.649 | ||
(111) | 1.522 | 1.743 | 2.500 | 3.939 |
Aluminide | Molar Mass, mol−1 | Density, g/cm3 | Melting Point, K | d(I), nm | σ, J/m2 |
---|---|---|---|---|---|
NiAl3 | 139.65 | 3.957 | 1127 | 8.5 (13) a = 0.661 | 0.879 |
Ni2Al3 | 174.42 | 4.787 | 1406 | 8.7 (22) a = 0.4036 | 1.097 |
Ni3Al | 202.84 | 7.293 | 1668 | 6.7 (19) a = 0.3589 | 1.301 |
Alloy | Molar Mass, mol−1 | Density, g/cm3 | Melting Point, K | d(I), nm | σ, J/m2 |
---|---|---|---|---|---|
Ti + 0.03Al + 0.15V + 0.03Sn + 0.03Cr + 0.015Zr + 0.015Mo | 64.28 | 4.774 | 1033 | 3.2 | 0.806 |
Ti + 0.03Al + 0.06V + 0.11Cr + 0.015Mo + Zr | 157.46 | 4.890 | 993 | 7.7 | 0.775 |
CuNiAlFeCr | 257.10 | 7.165 | 1369 | 8.6 | 1.068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurov, V.M.; Goncharenko, V.I.; Oleshko, V.S.; Ryapukhin, A.V. Calculating the Surface Layer Thickness and Surface Energy of Aircraft Materials. Inventions 2023, 8, 66. https://doi.org/10.3390/inventions8030066
Yurov VM, Goncharenko VI, Oleshko VS, Ryapukhin AV. Calculating the Surface Layer Thickness and Surface Energy of Aircraft Materials. Inventions. 2023; 8(3):66. https://doi.org/10.3390/inventions8030066
Chicago/Turabian StyleYurov, Victor M., Vladimir I. Goncharenko, Vladimir S. Oleshko, and Anatoly V. Ryapukhin. 2023. "Calculating the Surface Layer Thickness and Surface Energy of Aircraft Materials" Inventions 8, no. 3: 66. https://doi.org/10.3390/inventions8030066
APA StyleYurov, V. M., Goncharenko, V. I., Oleshko, V. S., & Ryapukhin, A. V. (2023). Calculating the Surface Layer Thickness and Surface Energy of Aircraft Materials. Inventions, 8(3), 66. https://doi.org/10.3390/inventions8030066