Experimental Assessment of a Novel Dual Opening Dewar for Use on a Liquid Air Energy Storage System Installed on Remote, Islanded, Renewable Microgrids
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Time (min) | Run 1 Mass (g) | Run 2 Mass (g) | Run 3 Mass (g) | Run 4 Mass (g) | Average Mass (g) | SD (g) |
---|---|---|---|---|---|---|
0 | 300 | 300 | 300 | 300 | 300.0 | 0.0 |
10 | 294 | 294 | 294 | 294 | 294.0 | 0.0 |
20 | 290 | 288 | 288 | 288 | 288.5 | 1.0 |
30 | 282 | 282 | 284 | 284 | 283.0 | 1.2 |
40 | 276 | 276 | 278 | 276 | 276.5 | 1.0 |
50 | 270 | 272 | 272 | 272 | 271.5 | 1.0 |
60 | 264 | 266 | 266 | 266 | 265.5 | 1.0 |
70 | 260 | 260 | 260 | 260 | 260.0 | 0.0 |
80 | 254 | 256 | 256 | 256 | 255.5 | 1.0 |
90 | 248 | 250 | 250 | 252 | 250.0 | 1.6 |
100 | 244 | 244 | 244 | 246 | 244.5 | 1.0 |
110 | 238 | 240 | 240 | 242 | 240.0 | 1.6 |
120 | 234 | 234 | 234 | 236 | 234.5 | 1.0 |
130 | 228 | 228 | 230 | 230 | 229.0 | 1.2 |
140 | 222 | 224 | 224 | 226 | 224.0 | 1.6 |
150 | 218 | 218 | 218 | 222 | 219.0 | 2.0 |
160 | 214 | 214 | 214 | 216 | 214.5 | 1.0 |
170 | 208 | 210 | 210 | 212 | 210.0 | 1.6 |
180 | 202 | 206 | 204 | 208 | 205.0 | 2.6 |
190 | 200 | 200 | 200 | 202 | 200.5 | 1.0 |
200 | 194 | 196 | 196 | 198 | 196.0 | 1.6 |
210 | 190 | 190 | 190 | 194 | 191.0 | 2.0 |
220 | 186 | 186 | 186 | 188 | 186.5 | 1.0 |
230 | 180 | 182 | 182 | 184 | 182.0 | 1.6 |
240 | 176 | 178 | 176 | 180 | 177.5 | 1.9 |
250 | 172 | 174 | 174 | 176 | 174.0 | 1.6 |
260 | 168 | 170 | 168 | 170 | 169.0 | 1.2 |
270 | 164 | 164 | 164 | 166 | 164.5 | 1.0 |
280 | 158 | 160 | 160 | 162 | 160.0 | 1.6 |
290 | 154 | 156 | 156 | 158 | 156.0 | 1.6 |
300 | 150 | 152 | 152 | 152 | 151.5 | 1.0 |
310 | 146 | 148 | 146 | 148 | 147.0 | 1.2 |
320 | 142 | 144 | 144 | 144 | 143.5 | 1.0 |
330 | 138 | 138 | 138 | 140 | 138.5 | 1.0 |
340 | 132 | 136 | 134 | 136 | 134.5 | 1.9 |
350 | 130 | 130 | 132 | 132 | 131.0 | 1.2 |
360 | 124 | 128 | 126 | 128 | 126.5 | 1.9 |
370 | 120 | 124 | 124 | 124 | 123.0 | 2.0 |
380 | 118 | 120 | 120 | 120 | 119.5 | 1.0 |
390 | 112 | 116 | 116 | 116 | 115.0 | 2.0 |
400 | 110 | 110 | 112 | 112 | 111.0 | 1.2 |
410 | 104 | 108 | 106 | 108 | 106.5 | 1.9 |
420 | 100 | 104 | 104 | 104 | 103.0 | 2.0 |
430 | 98 | 100 | 100 | 102 | 100.0 | 1.6 |
440 | 94 | 96 | 96 | 96 | 95.5 | 1.0 |
450 | 90 | 92 | 92 | 92 | 91.5 | 1.0 |
460 | 86 | 88 | 90 | 90 | 88.5 | 1.9 |
470 | 84 | 84 | 84 | 86 | 84.5 | 1.0 |
480 | 80 | 80 | 82 | 82 | 81.0 | 1.2 |
490 | 76 | 78 | 78 | 78 | 77.5 | 1.0 |
500 | 72 | 74 | 74 | 76 | 74.0 | 1.6 |
510 | 68 | 68 | 70 | 72 | 69.5 | 1.9 |
520 | 66 | 66 | 68 | 68 | 67.0 | 1.2 |
530 | 62 | 64 | 64 | 66 | 64.0 | 1.6 |
540 | 58 | 60 | 60 | 60 | 59.5 | 1.0 |
550 | 54 | 56 | 56 | 56 | 55.5 | 1.0 |
560 | 50 | 52 | 52 | 54 | 52.0 | 1.6 |
570 | 48 | 50 | 48 | 50 | 49.0 | 1.2 |
Time (min) | Run 1 Mass (g) | Run 2 Mass (g) | Run 3 Mass (g) | Run 4 Mass (g) | Average Mass (g) | SD (g) |
---|---|---|---|---|---|---|
0 | 300 | 300 | 300 | 300 | 300.0 | 0.0 |
1 | 290 | 292 | 292 | 292 | 291.5 | 1.0 |
2 | 284 | 284 | 284 | 284 | 284.0 | 0.0 |
3 | 276 | 276 | 274 | 278 | 276.0 | 1.6 |
4 | 268 | 268 | 266 | 270 | 268.0 | 1.6 |
5 | 262 | 260 | 260 | 262 | 261.0 | 1.2 |
6 | 256 | 254 | 252 | 254 | 254.0 | 1.6 |
7 | 248 | 246 | 244 | 248 | 246.5 | 1.9 |
8 | 240 | 240 | 238 | 240 | 239.5 | 1.0 |
9 | 236 | 234 | 232 | 236 | 234.5 | 1.9 |
10 | 228 | 226 | 224 | 228 | 226.5 | 1.9 |
11 | 222 | 220 | 220 | 222 | 221.0 | 1.2 |
12 | 216 | 214 | 214 | 216 | 215.0 | 1.2 |
13 | 210 | 208 | 208 | 210 | 209.0 | 1.2 |
14 | 204 | 202 | 202 | 204 | 203.0 | 1.2 |
15 | 198 | 196 | 194 | 198 | 196.5 | 1.9 |
16 | 192 | 190 | 188 | 192 | 190.5 | 1.9 |
17 | 186 | 184 | 182 | 188 | 185.0 | 2.6 |
18 | 180 | 178 | 178 | 182 | 179.5 | 1.9 |
19 | 174 | 172 | 172 | 176 | 173.5 | 1.9 |
20 | 168 | 166 | 166 | 170 | 167.5 | 1.9 |
21 | 164 | 162 | 162 | 166 | 163.5 | 1.9 |
22 | 158 | 156 | 158 | 160 | 158.0 | 1.6 |
23 | 152 | 150 | 152 | 154 | 152.0 | 1.6 |
24 | 148 | 146 | 146 | 148 | 147.0 | 1.2 |
25 | 144 | 142 | 142 | 144 | 143.0 | 1.2 |
26 | 138 | 136 | 138 | 140 | 138.0 | 1.6 |
27 | 132 | 132 | 132 | 134 | 132.5 | 1.0 |
28 | 128 | 128 | 128 | 130 | 128.5 | 1.0 |
29 | 124 | 124 | 124 | 126 | 124.5 | 1.0 |
30 | 118 | 118 | 120 | 122 | 119.5 | 1.9 |
31 | 114 | 114 | 116 | 118 | 115.5 | 1.9 |
32 | 110 | 110 | 112 | 112 | 111.0 | 1.2 |
33 | 106 | 106 | 108 | 108 | 107.0 | 1.2 |
34 | 102 | 100 | 102 | 104 | 102.0 | 1.6 |
35 | 96 | 98 | 98 | 98 | 97.5 | 1.0 |
36 | 92 | 94 | 94 | 96 | 94.0 | 1.6 |
37 | 88 | 90 | 90 | 90 | 89.5 | 1.0 |
38 | 84 | 86 | 88 | 86 | 86.0 | 1.6 |
39 | 80 | 82 | 82 | 84 | 82.0 | 1.6 |
40 | 76 | 78 | 80 | 80 | 78.5 | 1.9 |
41 | 72 | 76 | 76 | 76 | 75.0 | 2.0 |
42 | 68 | 72 | 72 | 72 | 71.0 | 2.0 |
43 | 64 | 68 | 68 | 68 | 67.0 | 2.0 |
44 | 60 | 64 | 64 | 64 | 63.0 | 2.0 |
45 | 58 | 60 | 60 | 62 | 60.0 | 1.6 |
46 | 54 | 56 | 56 | 58 | 56.0 | 1.6 |
47 | 50 | 54 | 54 | 56 | 53.5 | 2.5 |
48 | 46 | 50 | 50 | 52 | 49.5 | 2.5 |
Time (min) | Run 1 Mass (g) | Run 2 Mass (g) | Run 3 Mass (g) | Run 4 Mass (g) | Average Mass (g) | SD (g) |
---|---|---|---|---|---|---|
0 | 300 | 300 | 300 | 300 | 300.0 | 0.0 |
1 | 294 | 294 | 294 | 292 | 293.5 | 1.0 |
2 | 286 | 288 | 286 | 284 | 286.0 | 1.6 |
3 | 280 | 282 | 280 | 276 | 279.5 | 2.5 |
4 | 274 | 274 | 272 | 268 | 272.0 | 2.8 |
5 | 266 | 270 | 266 | 262 | 266.0 | 3.3 |
6 | 260 | 262 | 260 | 256 | 259.5 | 2.5 |
7 | 254 | 256 | 256 | 250 | 254.0 | 2.8 |
8 | 248 | 250 | 250 | 246 | 248.5 | 1.9 |
9 | 242 | 244 | 244 | 240 | 242.5 | 1.9 |
10 | 236 | 240 | 238 | 234 | 237.0 | 2.6 |
11 | 232 | 234 | 232 | 228 | 231.5 | 2.5 |
12 | 226 | 228 | 226 | 224 | 226.0 | 1.6 |
13 | 220 | 222 | 222 | 218 | 220.5 | 1.9 |
14 | 214 | 216 | 216 | 214 | 215.0 | 1.2 |
15 | 208 | 210 | 212 | 208 | 209.5 | 1.9 |
16 | 204 | 206 | 206 | 204 | 205.0 | 1.2 |
17 | 198 | 200 | 202 | 200 | 200.0 | 1.6 |
18 | 194 | 194 | 196 | 196 | 195.0 | 1.2 |
19 | 188 | 190 | 190 | 190 | 189.5 | 1.0 |
20 | 184 | 184 | 186 | 186 | 185.0 | 1.2 |
21 | 180 | 180 | 180 | 180 | 180.0 | 0.0 |
22 | 174 | 174 | 176 | 176 | 175.0 | 1.2 |
23 | 170 | 170 | 174 | 172 | 171.5 | 1.9 |
24 | 166 | 164 | 168 | 168 | 166.5 | 1.9 |
25 | 160 | 160 | 164 | 164 | 162.0 | 2.3 |
26 | 156 | 156 | 158 | 160 | 157.5 | 1.9 |
27 | 152 | 150 | 154 | 156 | 153.0 | 2.6 |
28 | 148 | 148 | 148 | 152 | 149.0 | 2.0 |
29 | 144 | 142 | 146 | 146 | 144.5 | 1.9 |
30 | 138 | 138 | 142 | 142 | 140.0 | 2.3 |
31 | 134 | 134 | 138 | 138 | 136.0 | 2.3 |
32 | 132 | 130 | 132 | 134 | 132.0 | 1.6 |
33 | 126 | 126 | 130 | 130 | 128.0 | 2.3 |
34 | 122 | 122 | 126 | 126 | 124.0 | 2.3 |
35 | 118 | 118 | 122 | 122 | 120.0 | 2.3 |
36 | 116 | 114 | 118 | 118 | 116.5 | 1.9 |
37 | 112 | 110 | 114 | 114 | 112.5 | 1.9 |
38 | 106 | 106 | 110 | 110 | 108.0 | 2.3 |
39 | 104 | 102 | 106 | 108 | 105.0 | 2.6 |
40 | 100 | 100 | 102 | 104 | 101.5 | 1.9 |
41 | 96 | 96 | 98 | 100 | 97.5 | 1.9 |
42 | 92 | 92 | 96 | 96 | 94.0 | 2.3 |
43 | 90 | 88 | 92 | 94 | 91.0 | 2.6 |
44 | 86 | 84 | 90 | 88 | 87.0 | 2.6 |
45 | 82 | 82 | 84 | 86 | 83.5 | 1.9 |
46 | 78 | 78 | 82 | 82 | 80.0 | 2.3 |
47 | 76 | 74 | 78 | 80 | 77.0 | 2.6 |
48 | 72 | 72 | 74 | 76 | 73.5 | 1.9 |
49 | 70 | 68 | 70 | 72 | 70.0 | 1.6 |
50 | 66 | 66 | 68 | 70 | 67.5 | 1.9 |
51 | 62 | 62 | 66 | 66 | 64.0 | 2.3 |
52 | 60 | 60 | 62 | 64 | 61.5 | 1.9 |
53 | 56 | 56 | 60 | 60 | 58.0 | 2.3 |
54 | 54 | 54 | 56 | 58 | 55.5 | 1.9 |
55 | 50 | 52 | 54 | 54 | 52.5 | 1.9 |
56 | 48 | 48 | 50 | 52 | 49.5 | 1.9 |
Time (min) | Run 1 Mass (g) | Run 2 Mass (g) | Run 3 Mass (g) | Run 4 Mass (g) | Average Mass (g) | SD (g) |
---|---|---|---|---|---|---|
0 | 300 | 300 | 300 | 300 | 300.0 | 0.0 |
1 | 292 | 292 | 294 | 294 | 293.0 | 1.2 |
2 | 286 | 286 | 288 | 286 | 286.5 | 1.0 |
3 | 282 | 280 | 280 | 280 | 280.5 | 1.0 |
4 | 276 | 274 | 276 | 274 | 275.0 | 1.2 |
5 | 270 | 268 | 268 | 268 | 268.5 | 1.0 |
6 | 264 | 262 | 264 | 262 | 263.0 | 1.2 |
7 | 258 | 258 | 258 | 256 | 257.5 | 1.0 |
8 | 252 | 252 | 252 | 250 | 251.5 | 1.0 |
9 | 246 | 246 | 246 | 244 | 245.5 | 1.0 |
10 | 240 | 242 | 240 | 240 | 240.5 | 1.0 |
11 | 234 | 236 | 236 | 234 | 235.0 | 1.2 |
12 | 230 | 232 | 230 | 228 | 230.0 | 1.6 |
13 | 226 | 226 | 226 | 224 | 225.5 | 1.0 |
14 | 220 | 220 | 220 | 218 | 219.5 | 1.0 |
15 | 214 | 216 | 216 | 214 | 215.0 | 1.2 |
16 | 210 | 210 | 210 | 208 | 209.5 | 1.0 |
17 | 206 | 206 | 206 | 204 | 205.5 | 1.0 |
18 | 200 | 200 | 200 | 200 | 200.0 | 0.0 |
19 | 196 | 196 | 196 | 194 | 195.5 | 1.0 |
20 | 192 | 192 | 192 | 190 | 191.5 | 1.0 |
21 | 186 | 186 | 186 | 186 | 186.0 | 0.0 |
22 | 182 | 184 | 182 | 182 | 182.5 | 1.0 |
23 | 178 | 178 | 178 | 176 | 177.5 | 1.0 |
24 | 172 | 174 | 176 | 172 | 173.5 | 1.9 |
25 | 168 | 170 | 170 | 168 | 169.0 | 1.2 |
26 | 164 | 166 | 166 | 164 | 165.0 | 1.2 |
27 | 160 | 162 | 162 | 160 | 161.0 | 1.2 |
28 | 156 | 158 | 158 | 156 | 157.0 | 1.2 |
29 | 152 | 154 | 154 | 152 | 153.0 | 1.2 |
30 | 148 | 150 | 150 | 148 | 149.0 | 1.2 |
31 | 144 | 146 | 146 | 144 | 145.0 | 1.2 |
32 | 142 | 142 | 142 | 140 | 141.5 | 1.0 |
33 | 138 | 140 | 140 | 138 | 139.0 | 1.2 |
34 | 134 | 136 | 136 | 134 | 135.0 | 1.2 |
35 | 130 | 132 | 132 | 130 | 131.0 | 1.2 |
36 | 128 | 128 | 128 | 126 | 127.5 | 1.0 |
37 | 124 | 126 | 126 | 124 | 125.0 | 1.2 |
38 | 122 | 122 | 124 | 120 | 122.0 | 1.6 |
39 | 118 | 120 | 120 | 116 | 118.5 | 1.9 |
40 | 114 | 116 | 116 | 114 | 115.0 | 1.2 |
41 | 112 | 114 | 112 | 110 | 112.0 | 1.6 |
42 | 108 | 110 | 110 | 108 | 109.0 | 1.2 |
43 | 106 | 106 | 106 | 104 | 105.5 | 1.0 |
44 | 102 | 104 | 104 | 102 | 103.0 | 1.2 |
45 | 100 | 100 | 100 | 98 | 99.5 | 1.0 |
46 | 98 | 98 | 98 | 96 | 97.5 | 1.0 |
47 | 94 | 94 | 94 | 92 | 93.5 | 1.0 |
48 | 90 | 92 | 92 | 90 | 91.0 | 1.2 |
49 | 88 | 90 | 90 | 88 | 89.0 | 1.2 |
50 | 86 | 86 | 86 | 84 | 85.5 | 1.0 |
51 | 82 | 84 | 84 | 82 | 83.0 | 1.2 |
52 | 80 | 80 | 82 | 80 | 80.5 | 1.0 |
53 | 78 | 78 | 78 | 76 | 77.5 | 1.0 |
54 | 74 | 76 | 76 | 74 | 75.0 | 1.2 |
55 | 72 | 74 | 74 | 72 | 73.0 | 1.2 |
56 | 70 | 72 | 72 | 68 | 70.5 | 1.9 |
57 | 66 | 68 | 70 | 66 | 67.5 | 1.9 |
58 | 64 | 66 | 66 | 62 | 64.5 | 1.9 |
59 | 64 | 64 | 64 | 60 | 63.0 | 2.0 |
60 | 60 | 60 | 62 | 58 | 60.0 | 1.6 |
61 | 58 | 58 | 58 | 56 | 57.5 | 1.0 |
62 | 56 | 56 | 56 | 54 | 55.5 | 1.0 |
63 | 52 | 54 | 54 | 52 | 53.0 | 1.2 |
64 | 50 | 52 | 52 | 48 | 50.5 | 1.9 |
65 | 48 | 50 | 48 | 48 | 48.5 | 1.0 |
Time (min) | Run 1 Mass (g) | Run 2 Mass (g) | Run 3 Mass (g) | Run 4 Mass (g) | Average Mass (g) | SD (g) |
---|---|---|---|---|---|---|
0 | 300 | 300 | 300 | 300 | 300.0 | 0.0 |
1 | 292 | 290 | 292 | 292 | 291.5 | 1.0 |
2 | 284 | 282 | 284 | 284 | 283.5 | 1.0 |
3 | 276 | 274 | 276 | 274 | 275.0 | 1.2 |
4 | 270 | 266 | 270 | 266 | 268.0 | 2.3 |
5 | 262 | 258 | 262 | 260 | 260.5 | 1.9 |
6 | 254 | 252 | 254 | 252 | 253.0 | 1.2 |
7 | 248 | 244 | 248 | 246 | 246.5 | 1.9 |
8 | 240 | 238 | 240 | 238 | 239.0 | 1.2 |
9 | 234 | 230 | 234 | 232 | 232.5 | 1.9 |
10 | 228 | 224 | 226 | 224 | 225.5 | 1.9 |
11 | 220 | 218 | 220 | 218 | 219.0 | 1.2 |
12 | 214 | 210 | 214 | 212 | 212.5 | 1.9 |
13 | 208 | 206 | 208 | 206 | 207.0 | 1.2 |
14 | 200 | 200 | 200 | 200 | 200.0 | 0.0 |
15 | 194 | 192 | 194 | 194 | 193.5 | 1.0 |
16 | 188 | 186 | 188 | 188 | 187.5 | 1.0 |
17 | 184 | 180 | 184 | 182 | 182.5 | 1.9 |
18 | 178 | 174 | 178 | 176 | 176.5 | 1.9 |
19 | 170 | 168 | 172 | 170 | 170.0 | 1.6 |
20 | 166 | 164 | 166 | 166 | 165.5 | 1.0 |
21 | 160 | 158 | 160 | 160 | 159.5 | 1.0 |
22 | 154 | 152 | 156 | 154 | 154.0 | 1.6 |
23 | 150 | 146 | 150 | 150 | 149.0 | 2.0 |
24 | 144 | 140 | 144 | 144 | 143.0 | 2.0 |
25 | 138 | 134 | 138 | 138 | 137.0 | 2.0 |
26 | 134 | 130 | 134 | 134 | 133.0 | 2.0 |
27 | 128 | 124 | 128 | 128 | 127.0 | 2.0 |
28 | 124 | 120 | 124 | 124 | 123.0 | 2.0 |
29 | 118 | 116 | 120 | 118 | 118.0 | 1.6 |
30 | 114 | 110 | 114 | 114 | 113.0 | 2.0 |
31 | 108 | 106 | 112 | 110 | 109.0 | 2.6 |
32 | 104 | 100 | 106 | 106 | 104.0 | 2.8 |
33 | 100 | 96 | 100 | 100 | 99.0 | 2.0 |
34 | 96 | 92 | 96 | 96 | 95.0 | 2.0 |
35 | 92 | 88 | 92 | 92 | 91.0 | 2.0 |
36 | 86 | 84 | 86 | 88 | 86.0 | 1.6 |
37 | 82 | 80 | 82 | 84 | 82.0 | 1.6 |
38 | 78 | 76 | 78 | 80 | 78.0 | 1.6 |
39 | 74 | 72 | 74 | 76 | 74.0 | 1.6 |
40 | 72 | 68 | 70 | 72 | 70.5 | 1.9 |
41 | 66 | 64 | 66 | 68 | 66.0 | 1.6 |
42 | 62 | 60 | 62 | 64 | 62.0 | 1.6 |
43 | 58 | 56 | 58 | 60 | 58.0 | 1.6 |
44 | 54 | 52 | 54 | 56 | 54.0 | 1.6 |
45 | 52 | 50 | 50 | 54 | 51.5 | 1.9 |
46 | 46 | 46 | 46 | 48 | 46.5 | 1.0 |
Time (min) | Run 1 Mass (g) | Run 2 Mass (g) | Run 3 Mass (g) | Run 4 Mass (g) | Average Mass (g) | SD (g) |
---|---|---|---|---|---|---|
0 | 300 | 300 | 300 | 300 | 300.0 | 0.0 |
1 | 295 | 294 | 295 | 295 | 294.8 | 0.5 |
2 | 289 | 289 | 289 | 290 | 289.3 | 0.5 |
3 | 285 | 284 | 284 | 284 | 284.3 | 0.5 |
4 | 279 | 279 | 279 | 279 | 279.0 | 0.0 |
5 | 274 | 275 | 273 | 274 | 274.0 | 0.8 |
6 | 269 | 269 | 269 | 269 | 269.0 | 0.0 |
7 | 264 | 265 | 263 | 263 | 263.8 | 1.0 |
8 | 259 | 260 | 258 | 258 | 258.8 | 1.0 |
9 | 254 | 255 | 253 | 253 | 253.8 | 1.0 |
10 | 250 | 250 | 249 | 248 | 249.3 | 1.0 |
11 | 245 | 246 | 244 | 243 | 244.5 | 1.3 |
12 | 240 | 241 | 240 | 239 | 240.0 | 0.8 |
13 | 235 | 236 | 235 | 234 | 235.0 | 0.8 |
14 | 231 | 232 | 230 | 229 | 230.5 | 1.3 |
15 | 226 | 228 | 226 | 224 | 226.0 | 1.6 |
16 | 222 | 223 | 221 | 220 | 221.5 | 1.3 |
17 | 217 | 219 | 217 | 215 | 217.0 | 1.6 |
18 | 212 | 215 | 213 | 211 | 212.8 | 1.7 |
19 | 208 | 210 | 208 | 207 | 208.3 | 1.3 |
20 | 204 | 206 | 204 | 202 | 204.0 | 1.6 |
21 | 200 | 202 | 200 | 198 | 200.0 | 1.6 |
22 | 195 | 198 | 196 | 194 | 195.8 | 1.7 |
23 | 191 | 193 | 192 | 190 | 191.5 | 1.3 |
24 | 187 | 189 | 188 | 186 | 187.5 | 1.3 |
25 | 183 | 185 | 183 | 182 | 183.3 | 1.3 |
26 | 179 | 181 | 180 | 178 | 179.5 | 1.3 |
27 | 175 | 178 | 176 | 175 | 176.0 | 1.4 |
28 | 171 | 174 | 172 | 171 | 172.0 | 1.4 |
29 | 167 | 170 | 168 | 167 | 168.0 | 1.4 |
30 | 163 | 166 | 164 | 164 | 164.3 | 1.3 |
31 | 160 | 162 | 161 | 160 | 160.8 | 1.0 |
32 | 156 | 159 | 157 | 156 | 157.0 | 1.4 |
33 | 152 | 155 | 153 | 153 | 153.3 | 1.3 |
34 | 149 | 151 | 150 | 149 | 149.8 | 1.0 |
35 | 146 | 148 | 146 | 146 | 146.5 | 1.0 |
36 | 142 | 145 | 143 | 142 | 143.0 | 1.4 |
37 | 138 | 141 | 139 | 139 | 139.3 | 1.3 |
38 | 135 | 138 | 136 | 135 | 136.0 | 1.4 |
39 | 132 | 134 | 132 | 132 | 132.5 | 1.0 |
40 | 128 | 131 | 129 | 129 | 129.3 | 1.3 |
41 | 125 | 128 | 126 | 126 | 126.3 | 1.3 |
42 | 122 | 125 | 123 | 123 | 123.3 | 1.3 |
43 | 119 | 121 | 120 | 119 | 119.8 | 1.0 |
44 | 115 | 118 | 117 | 116 | 116.5 | 1.3 |
45 | 112 | 115 | 113 | 113 | 113.3 | 1.3 |
46 | 109 | 112 | 110 | 110 | 110.3 | 1.3 |
47 | 106 | 108 | 107 | 107 | 107.0 | 0.8 |
48 | 103 | 105 | 104 | 104 | 104.0 | 0.8 |
49 | 100 | 103 | 101 | 101 | 101.3 | 1.3 |
50 | 97 | 100 | 98 | 98 | 98.3 | 1.3 |
51 | 94 | 97 | 95 | 95 | 95.3 | 1.3 |
52 | 91 | 94 | 92 | 93 | 92.5 | 1.3 |
53 | 89 | 91 | 89 | 90 | 89.8 | 1.0 |
54 | 86 | 88 | 86 | 87 | 86.8 | 1.0 |
55 | 83 | 85 | 84 | 84 | 84.0 | 0.8 |
56 | 80 | 83 | 81 | 81 | 81.3 | 1.3 |
57 | 77 | 80 | 78 | 79 | 78.5 | 1.3 |
58 | 75 | 77 | 75 | 76 | 75.8 | 1.0 |
59 | 72 | 74 | 72 | 73 | 72.8 | 1.0 |
60 | 69 | 72 | 70 | 71 | 70.5 | 1.3 |
61 | 67 | 69 | 67 | 69 | 68.0 | 1.2 |
62 | 65 | 66 | 64 | 66 | 65.3 | 1.0 |
63 | 62 | 64 | 62 | 64 | 63.0 | 1.2 |
64 | 59 | 61 | 59 | 61 | 60.0 | 1.2 |
65 | 57 | 59 | 57 | 59 | 58.0 | 1.2 |
66 | 54 | 56 | 54 | 57 | 55.3 | 1.5 |
67 | 52 | 54 | 52 | 54 | 53.0 | 1.2 |
68 | 50 | 51 | 49 | 52 | 50.5 | 1.3 |
69 | 47 | 49 | 47 | 49 | 48.0 | 1.2 |
References
- Padmanaban, S.; Nithiyananthan, K.; Karthikeyan, S.P.; Holm-Nielsen, J.B. Microgrids, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-0-367-81592-9. [Google Scholar]
- Raya-Armenta, J.M.; Bazmohammadi, N.; Avina-Cervantes, J.G.; Sáez, D.; Vasquez, J.C.; Guerrero, J.M. Energy Management System Optimization in Islanded Microgrids: An Overview and Future Trends. Renew. Sustain. Energy Rev. 2021, 149, 111327. [Google Scholar] [CrossRef]
- Haerer, R. Whack-a-Mole Fuel Selection: Reducing Operational Risks and Mitigating New Challenges in the US Department of Defense. Climate and Security Fellowship Program, 2021. Available online: https://climateandsecurity.org/wp-content/uploads/2021/10/Climate-Security-Risk-Briefers_Climate-and-Security-Fellows-Program_October-2021-1.pdf#page=27 (accessed on 6 November 2022).
- Ton, D.T.; Smith, M.A. The U.S. Department of Energy’s Microgrid Initiative. Electr. J. 2012, 25, 84–94. [Google Scholar] [CrossRef]
- Holdmann, G.P.; Wies, R.W.; Vandermeer, J.B. Renewable Energy Integration in Alaska’s Remote Islanded Microgrids: Economic Drivers, Technical Strategies, Technological Niche Development, and Policy Implications. Proc. IEEE 2019, 107, 1820–1837. [Google Scholar] [CrossRef]
- Van Broekhoven, S.; Judson, N.; Galvin, J.; Marqusee, J. Leading the Charge: Microgrids for Domestic Military Installations. IEEE Power Energy Mag. 2013, 11, 40–45. [Google Scholar] [CrossRef]
- Kafetzis, A.; Ziogou, C.; Panopoulos, K.D.; Papadopoulou, S.; Seferlis, P.; Voutetakis, S. Energy Management Strategies Based on Hybrid Automata for Islanded Microgrids with Renewable Sources, Batteries and Hydrogen. Renew. Sustain. Energy Rev. 2020, 134, 110118. [Google Scholar] [CrossRef]
- Ganesan, S.; Subramaniam, U.; Ghodke, A.A.; Elavarasan, R.M.; Raju, K.; Bhaskar, M.S. Investigation on Sizing of Voltage Source for a Battery Energy Storage System in Microgrid With Renewable Energy Sources. IEEE Access 2020, 8, 188861–188874. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Zhang, W.; Yurkovich, B.; Rizzoni, G. Energy Management Problems Under Uncertainties for Grid-Connected Microgrids: A Chance Constrained Programming Approach. IEEE Trans. Smart Grid 2017, 8, 2585–2596. [Google Scholar] [CrossRef]
- Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.; Muttaqi, K.M.; Moghavvemi, S. Effective Utilization of Excess Energy in Standalone Hybrid Renewable Energy Systems for Improving Comfort Ability and Reducing Cost of Energy: A Review and Analysis. Renew. Sustain. Energy Rev. 2015, 42, 726–734. [Google Scholar] [CrossRef]
- Altin, M.; Hansen, A.D.; Barlas, T.K.; Das, K.; Sakamuri, J.N. Optimization of Short-Term Overproduction Response of Variable Speed Wind Turbines. IEEE Trans. Sustain. Energy 2018, 9, 1732–1739. [Google Scholar] [CrossRef]
- Rahman, M.M.; Oni, A.O.; Gemechu, E.; Kumar, A. Assessment of Energy Storage Technologies: A Review. Energy Convers. Manag. 2020, 223, 113295. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M.A. A Review of Energy Storage Types, Applications and Recent Developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Musolino, V.; Pievatolo, A.; Tironi, E. A Statistical Approach to Electrical Storage Sizing with Application to the Recovery of Braking Energy. Energy 2011, 36, 6697–6704. [Google Scholar] [CrossRef]
- O’Callaghan, O.; Donnellan, P. Liquid Air Energy Storage Systems: A Review. Renew. Sustain. Energy Rev. 2021, 146, 111113. [Google Scholar] [CrossRef]
- Damak, C.; Leducq, D.; Hoang, H.M.; Negro, D.; Delahaye, A. Liquid Air Energy Storage (LAES) as a Large-Scale Storage Technology for Renewable Energy Integration—A Review of Investigation Studies and near Perspectives of LAES. Int. J. Refrig. 2020, 110, 208–218. [Google Scholar] [CrossRef]
- Borri, E.; Tafone, A.; Romagnoli, A.; Comodi, G. A Review on Liquid Air Energy Storage: History, State of the Art and Recent Developments. Renew. Sustain. Energy Rev. 2021, 137, 110572. [Google Scholar] [CrossRef]
- Wang, S.X.; Xue, X.D.; Zhang, X.L.; Guo, J.; Zhou, Y.; Wang, J.J. The Application of Cryogens in Liquid Fluid Energy Storage Systems. Phys. Procedia 2015, 67, 728–732. [Google Scholar] [CrossRef]
- Benato, A.; Stoppato, A. Pumped Thermal Electricity Storage: A Technology Overview. Therm. Sci. Eng. Prog. 2018, 6, 301–315. [Google Scholar] [CrossRef]
- Joshi, D.M.; Patel, H.K. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS. J. Instrum. 2015, 10, T10001. [Google Scholar] [CrossRef]
- Howe, T.A.; Pollman, A.G.; Gannon, A.J. Operating Range for a Combined, Building-Scale Liquid Air Energy Storage and Expansion System: Energy and Exergy Analysis. Entropy 2018, 20, 770. [Google Scholar] [CrossRef]
- Willis, R.; Pollman, A.; Gannon, A.; Hernandez, A. Preliminary Modeling of a Building-Scale Liquid Air Energy Storage Systems Using Aspen HYSYS. In Proceedings of the 2018 MORS Symposium, Monterey, CA, USA, 18–21 June 2018. [Google Scholar]
- Girouard, C.; Pollman, A.; Hernandez, A. Modeling and Simulation Informed Conceptual Design, Analysis, and Initial Component Selection of A Supply-Side Building Scale Laes System for Renewable, Islanded Microgrid Resiliency. In Proceedings of the 87th Military Operations Society Symposium, Colorado Springs, CO, USA, 17–20 June 2019. [Google Scholar]
- Fredrickson, A.; Pollman, A.; Gannon, A.; Smith, W. Selection of a Heat Exchanger for a Small-Scale Liquid Air Energy Storage System. In Proceedings of the ASME 2021 Power Conference, Anaheim, CA, USA, 20–22 July 2021. [Google Scholar]
- Swanson, H.M.; Pollman, A.G.; Hernandez, A. Experimental Evaluation of Dewar Volume and Cryocooler Cold Finger Size in a Small-Scale Stirling Liquid Air Energy Storage (LAES) System. In Proceedings of the ASME 2021 Power Conference, Virtual, 20–22 July 2021. [Google Scholar]
- Torosyan, M.; Pollman, A.; Gannon, A.; Hernandez, A. Performance and Complexity Trade Study of Candidate Liquid Air Generation Techniques. In Proceedings of the ASME 2021 Power Conference, Virtual, 20–22 July 2021. [Google Scholar]
- Bailey, N.A.; Girouard, C.M.; Pollman, A.G. Dual Stirling Cycle Liquid Air Battery. U. S. Patent 20220042478A1, 10 February 2022. [Google Scholar]
- Arnold, S.; Fackrell, C.; Horton, D.; Pollman, A.; Smeeks, F.; Sweet, J. Need, Function, and Requirements Analysis for Liquid Air Energy Storage Prototype on a Military Microgrid. In Proceedings of the MORS Symposium, Quantico, VA, USA, 13–16 June 2022. [Google Scholar]
- Lobunets, Y. Thermoelectric Generator for Utilizing Cold Energy of Cryogen Liquids. J. Electron. Mater. 2019, 48, 5491–5496. [Google Scholar] [CrossRef]
- Barron, R.; Nellis, G. Cryogenic Heat Transfer, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4822-2744-4. [Google Scholar]
- Bostock, T.D.; Scurlock, R.G. Low-Loss Storage and Handling of Cryogenic Liquids: The Application of Cryogenic Fluid Dynamics; Springer: Berlin, Germany, 2019; ISBN 978-3-030-10641-6. [Google Scholar]
- Lynam, P.; Mustafa, A.; Proctor, W.; Scurlock, R. Reduction of the Heat Flux into Liquid Helium in Wide Necked Metal Dewars. Cryogenics 1969, 9, 242–247. [Google Scholar] [CrossRef]
- Swartz, E.T. Efficient Cryogenic Design, a System Approach. J. Low Temp. Phys. 1995, 101, 249–252. [Google Scholar] [CrossRef]
- Bailey, N.A.; Pollman, A.G.; Paulo, E.P. Energy Recovery for Dual-Stirling Liquid Air Energy Storage Prototype. In Proceedings of the ASME 2020 Power Conference collocated with the 2020 International Conference on Nuclear Engineering, Virtual, 4–5 August 2020. [Google Scholar]
- National Institute of Standards and Technology. Available online: https://www.nist.gov/ (accessed on 16 August 2022).
Experimental Dewar Configuration | Description |
---|---|
A | Baseline 473 mL Hydro Flask TempShield bottle-Dewar with no modification. Contains a vacuum jacket. |
B | Modified baseline bottle-Dewar with a hole in the bottom outer shell and no vacuum jacket. |
C | Modified baseline bottle-Dewar with a hole in the bottom outer and inner shells, a bottom mounted capped brass fitting that does not have metal-metal conduction to the outer bottle-Dewar shell, and no vacuum jacket. |
D | Modified baseline bottle-Dewar with a capped threaded Teflon fastener penetrating the bottom outer and inner shells with no vacuum jacket. |
E | Modified baseline bottle-Dewar with a capped threaded brass fastener penetrating the bottom outer and inner shells with no vacuum jacket. |
F | Modified baseline bottle-Dewar with a capped threaded brass fastener penetrating the bottom outer and inner shells with a vacuum jacket. |
Experimental Dewar Configuration | Normalized Evaporation Equation and R2 Value | Final LN2 Mass (g) | Evaporation Time (min) |
---|---|---|---|
A | y = 1.147e−0.8685x − 0.1477e0.7679x R2 = 1.0000 | 49.0 | 570 |
B | y = 1.081e−1.121x − 0.08338e0.811x R2 = 1.0000 | 49.5 | 48 |
C | y = 1.102e−1.07x − 0.1056e0.7096x R2 = 1.0000 | 49.5 | 56 |
D | y = 1.045e−1.317x − 0.04467e0.967x R2 = 1.0000 | 48.5 | 65 |
E | y = 1.207e−0.9559x − 0.2102e0.3818x R2 = 1.0000 | 46.5 | 46 |
F | y = 1.231e−0.9628x − 0.2302e0.2965x R2 = 1.0000 | 48.0 | 69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fackrell, C.; Pollman, A.; Van Bossuyt, D.L.; Gannon, A.J. Experimental Assessment of a Novel Dual Opening Dewar for Use on a Liquid Air Energy Storage System Installed on Remote, Islanded, Renewable Microgrids. Inventions 2022, 7, 101. https://doi.org/10.3390/inventions7040101
Fackrell C, Pollman A, Van Bossuyt DL, Gannon AJ. Experimental Assessment of a Novel Dual Opening Dewar for Use on a Liquid Air Energy Storage System Installed on Remote, Islanded, Renewable Microgrids. Inventions. 2022; 7(4):101. https://doi.org/10.3390/inventions7040101
Chicago/Turabian StyleFackrell, Christofer, Anthony Pollman, Douglas L. Van Bossuyt, and Anthony J. Gannon. 2022. "Experimental Assessment of a Novel Dual Opening Dewar for Use on a Liquid Air Energy Storage System Installed on Remote, Islanded, Renewable Microgrids" Inventions 7, no. 4: 101. https://doi.org/10.3390/inventions7040101
APA StyleFackrell, C., Pollman, A., Van Bossuyt, D. L., & Gannon, A. J. (2022). Experimental Assessment of a Novel Dual Opening Dewar for Use on a Liquid Air Energy Storage System Installed on Remote, Islanded, Renewable Microgrids. Inventions, 7(4), 101. https://doi.org/10.3390/inventions7040101