Recent Developments in 3D Printing of Rare-Earth-Free Permanent Magnets
Abstract
:1. Introduction
2. 3D Printing Techniques for Magnetic Materials
3. 3D Printing of Rare-Earth-Free Permanent Magnetic Alloys
4. 3D Printing of Rare-Earth-Free Permanent Magnetic Ceramics
5. Computer Simulations and Applications of 3D-Printed Rare-Earth-Free Magnets
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirosawa, S.; Nishino, M.; Miyashita, S. Perspectives for high performance permanent magnets: Applications, coercivity, and new materials. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 013002. [Google Scholar] [CrossRef] [Green Version]
- Coey, J.M.D. Perspective and prospects for rare earth permanent magnets. Engineering 2020, 6, 119–131. [Google Scholar] [CrossRef]
- Pullar, R.C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 2012, 57, 1191–1334. [Google Scholar] [CrossRef]
- Yan, D.; Ro, S.O.S.; Kim, S. On the global rare earth elements utilization and its supply-demand in the future. IOP Conf. Ser. Earth Environ. Sci. 2020, 508, 012084. [Google Scholar] [CrossRef]
- Li, D.; Pan, D.S.; Li, S.J.; Zhang, Z.D. Recent developments of rare-earth-free hard-magnetic materials. Sci. China Phys. Mech. Astron. 2016, 59, 617501. [Google Scholar] [CrossRef]
- Cui, J.; Kramer, M.; Zhou, L.; Liu, F.; Gabay, A.; Hadjipanayis, G.; Balasubramanian, B.; Sellmyer, D. Current progress and future challenges in rare-earth-free permanent magnets. Acta Mater. 2018, 158, 118–137. [Google Scholar] [CrossRef]
- Yang, J.; Yang, W.; Shao, Z.; Liang, D.; Zhao, H.; Xia, Y.; Yang, Y. Mn-based permanent magnets. Chin. Phys. B 2018, 27, 117503. [Google Scholar] [CrossRef]
- Marenkina, S.F.; Ril’a, A.I. Al–Mn hard magnetic alloys as promising materials for permanent magnets (Review). Russ. J. Inorg. Chem. 2020, 65, 2007–2019. [Google Scholar] [CrossRef]
- Sarkar, A.; Mallick, A.B. Synthesizing the hard magnetic low-temperature phase of MnBi alloy: Challenges and prospects. JOM 2020, 72, 2812–2825. [Google Scholar] [CrossRef]
- Sirisathitkul, C. Recent developments of manganese-aluminium as rare-earth-free magnets. Adv. Mat. Res. 2020, 9, 323–335. [Google Scholar] [CrossRef]
- Poudyal, N.; Liu, J.P. Advances in nanostructured permanent magnets research. J. Phys. D Appl. Phys. 2013, 46, 043001. [Google Scholar] [CrossRef]
- Additive Manufacturing. Available online: https://engineeringproductdesign.com/knowledge-base/additive-manufacturing-processes/ (accessed on 10 August 2022).
- Li, L.; Post, B.; Kunc, V.; Elliott, A.M.; Paranthaman, M.P. Additive manufacturing of near-net-shape bonded magnets: Prospects and challenges. Scr. Mater. 2017, 135, 100–104. [Google Scholar] [CrossRef]
- Popov, V.; Koptyug, A.; Radulov, I.; Maccari, F.; Muller, G. Prospects of additive manufacturing of rare-earth and non-rare-earth permanent magnets. Procedia Manuf. 2018, 21, 100–108. [Google Scholar] [CrossRef]
- Périgo, E.A.; Jacimovic, J.; Ferré, F.G.; Scherf, L.M. Additive manufacturing of magnetic materials. Addit. Manuf. 2019, 30, 100870. [Google Scholar] [CrossRef]
- Chaudhary, V.; Mantri, S.A.; Ramanujan, R.V.; Banerjee, R. Additive manufacturing of magnetic materials. Prog. Mater. Sci. 2020, 114, 100688. [Google Scholar] [CrossRef]
- Goll, D.; Schurr, J.; Trauter, F.; Schanz, J.; Bernthaler, T.; Riegel, H.; Schneider, G. Additive manufacturing of soft and hard magnetic materials. Procedia CIRP 2020, 94, 248–253. [Google Scholar] [CrossRef]
- Charoensuk, T. Complex near-net-shape bonded magnet fabrication by additive manufacturing. Thai J. Phys. 2021, 38, 39–53. [Google Scholar]
- Silva, T.F.V.; Stoppa, M.H. Production of complex shape magnets using additive manufacturing: A state-of-the-art analysis. J. Thermoplast. Compos. Mater. 2022, 35, 1041–1058. [Google Scholar] [CrossRef]
- Sonnleitner, K.; Huber, C.; Teliban, I.; Kobe, S.; Saje, B.; Kagerbauer, D.; Reissner, M.; Lengauer, C.; Groenefeld, M.; Suess, D. 3D printing of polymer-bonded anisotropic magnets in an external magnetic field and by a modified production process. Appl. Phys. Lett. 2020, 116, 092403. [Google Scholar] [CrossRef]
- Khazdozian, H.A.; Li, L.; Paranthaman, M.P.; McCall, S.K.; Kramer, M.J.; Nlebedim, I.C. Low-field alignment of anisotropic bonded magnets for additive manufacturing of permanent magnet motors. JOM 2019, 71, 626–632. [Google Scholar] [CrossRef]
- Sarkar, A.; Somashekara, M.A.; Paranthaman, M.P.; Kramer, M.; Haase, C.; Nlebedim, I.C. Functionalizing magnet additive manufacturing with in-situ magnetic field source. Addit. Manuf. 2020, 34, 101289. [Google Scholar] [CrossRef]
- Sarkar, A.; Paranthaman, M.P.; Nlebedim, I.C. In-situ magnetic alignment model for additive manufacturing of anisotropic bonded magnets. Addit. Manuf. 2021, 46, 102096. [Google Scholar] [CrossRef]
- White, E.M.H.; Kassen, A.G.; Simsek, E.; Tang, W.; Ott, T.T.; Anderson, I.E. Net shape processing of alnico magnets by additive manufacturing. IEEE Trans. Magn. 2017, 53, 2101606. [Google Scholar] [CrossRef] [Green Version]
- White, E.; Rinko, E.; Prost, T.; Horn, T.; Ledford, C.; Rock, C.; Anderson, I. Processing of alnico magnets by additive manufacturing. Appl. Sci. 2019, 9, 4843. [Google Scholar] [CrossRef] [Green Version]
- Rottmann, P.F.; Polonsky, A.T.; Francis, T.; Emigh, M.G.; Krispin, M.; Rieger, G.; Echlin, M.P.; Levi, C.G.; Pollock, T.M. TriBeam tomography and microstructure evolution in additively manufactured alnico magnets. Mater. Today 2021, 49, 23–34. [Google Scholar] [CrossRef]
- Borkar, T.; Chaudhary, V.; Gwalani, B.; Choudhuri, D.; Mikler, C.V.; Soni, V.; Alam, T.; Ramanujan, R.V.; Banerjee, R. A combinatorial approach for assessing the magnetic properties of high entropy alloys: Role of Cr in AlCoxCr1–xFeNi. Adv. Eng. Mater. 2017, 19, 1700048. [Google Scholar] [CrossRef]
- Radulov, I.A.; Popov, V.V., Jr.; Koptyug, A.; Maccari, F.; Kovalevsky, A.; Essel, S.; Gassmann, J.; Skokov, K.P.; Bamberger, M. Production of net-shape Mn-Al permanent magnets by electron beam melting. Addit. Manuf. 2019, 30, 100787. [Google Scholar] [CrossRef]
- Palmero, E.M.; Rial, J.; de Vicente, J.; Camarero, J.; Skårman, B.; Vidarsson, H.; Larsson, P.O.; Bollero, A. Development of permanent magnet MnAlC/polymer composites and flexible filament for bonding and 3D-printing technologies. Sci. Technol. Adv. Mater. 2018, 19, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Palmero, E.M.; Casaleiz, D.; de Vicente, J.; Skårman, B.; Vidarsson, H.; Larsson, P.O.; Bollero, A. Effect of particle size distribution on obtaining novel MnAlC-based permanent magnet composites and flexible filaments for 3D-printing. Addit. Manuf. 2020, 33, 101179. [Google Scholar] [CrossRef]
- Hanemann, T.; Syperek, D.; Nötzel, D. 3D printing of ABS barium ferrite composites. Materials 2020, 13, 1481. [Google Scholar] [CrossRef] [Green Version]
- Palmero, E.M.; Casaleiz, D.; Jiménez, N.A.; Rial, J.; de Vicente, J.; Nieto, A.; Altimira, R.; Bollero, A. Magnetic-polymer composites for bonding and 3D printing of permanent magnets. IEEE Trans. Magn. 2019, 55, 2101004. [Google Scholar] [CrossRef]
- Li, D.; Li, Y.; Pan, D.; Zhang, Z.; Choi, C.J. Prospect and status of iron-based rare-earth-free permanent magnetic materials. J. Magn. Magn. Mater. 2019, 469, 535–544. [Google Scholar] [CrossRef]
- Zirhli, O.; Akdogan, N.G.; Odeh, Y.N.; Misirlioglu, I.B.; Devlin, E.; Akdogan, O. Fabrication and characterization of Fe16N2 micro-flake powders and their extrusion based 3D printing into permanent magnet form. Adv. Eng. Mater. 2020, 22, 2000311. [Google Scholar] [CrossRef]
- Nagarajan, B.; Arshad, M.; Ullah, A.; Mertiny, P.; Qureshi, A.J. Additive manufacturing ferromagnetic polymers using stereolithography: Materials and process development. Manuf. Lett. 2019, 21, 12–16. [Google Scholar] [CrossRef]
- Nagarajan, B.; Mertiny, P.; Qureshi, A.J. Magnetically loaded polymer composites using stereolithography: Material processing and characterization. Mater. Today Commun. 2020, 25, 101520. [Google Scholar] [CrossRef]
- Nagarajan, B.; Kamkar, M.; Schoen, M.A.W.; Sundararaj, U.; Trudel, S.; Qureshi, A.J.; Mertiny, P. Development and characterization of stable polymer formulations for manufacturing magnetic composites. J. Manuf. Mater. Process. 2020, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Zhang, X.; Guo, Z.; Volinsky, A.A. 3D gel printing of Sr ferrite parts. Ceram. Int. 2018, 44, 22370–22377. [Google Scholar] [CrossRef]
- Wei, X.; Liu, Y.; Zhao, D.; Mao, X.; Jiang, W.; Ge, S.S. Net-shaped barium and strontium ferrites by 3D printing with enhanced magnetic performance from milled powders. J. Magn. Magn. Mater. 2020, 493, 165664. [Google Scholar] [CrossRef]
- Peng, E.; Wei, X.; Herng, T.S.; Garbe, U.; Yub, D.; Ding, J. Ferrite-based soft and hard magnetic structures by extrusion free-forming. RSC Adv. 2017, 7, 27128–27138. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Zhang, X.; Guo, Z.; Ye, S.; Sui, Y.; Volinsky, A.A. 3D printing of NdFeB bonded magnets with SrFe12O19 addition. J. Alloys Compd. 2019, 779, 900–907. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.; Jiang, L.; Tang, D.; Xu, H.; Zhao, P.; Fu, J.; Zhou, Q.; Chen, Y. 3D printing of functional magnetic materials: From design to applications. Adv. Funct. Mater. 2021, 31, 2102777. [Google Scholar] [CrossRef]
- Bernier, F.; Ibrahim, M.; Mihai, M.; Thomas, Y.; Lamarre, J.M. Additive manufacturing of soft and hard magnetic materials used in electrical machines. Met. Powder Rep. 2020, 75, 334–3431. [Google Scholar] [CrossRef]
- Lamichhane, T.N.; Sethuraman, L.; Dalagan, A.; Wang, H.; Keller, J.; Paranthaman, M.P. Additive manufacturing of soft magnets for electrical machines: A review. Mater. Today Phys. 2020, 15, 100255. [Google Scholar] [CrossRef]
- Naseer, M.U.; Kallaste, A.; Asad, B.; Vaimann, T.; Rassõlkin, A. A review on additive manufacturing possibilities for electrical machines. Energies 2021, 14, 1940. [Google Scholar] [CrossRef]
- Gundabattini, E.; Kuppan, R.; Solomon, D.G.; Kalam, A.; Kothari, D.P.; Abu Bakar, R. A review on methods of finding losses and cooling methods to increase efficiency of electric machines. Ain Shams Eng. J. 2021, 12, 497–505. [Google Scholar] [CrossRef]
- Wang, Z.; Huber, C.; Hu, J.; He, J.; Suess, D.; Wang, S.X. An electrodynamic energy harvester with a 3D printed magnet and optimized topology. Appl. Phys. Lett. 2019, 114, 013902. [Google Scholar] [CrossRef]
- Ortner, M.; Bandeira, L.G.C. Magpylib: A free Python package for magnetic field computation. SoftwareX 2020, 11, 100466. [Google Scholar] [CrossRef]
- Kovacs, A.; Fischbacher, J.; Gusenbauer, M.; Oezelt, H.; Herper, H.C.; Vekilova, O.Y.; Nieves, P.; Arapan, S.; Schrefl, T. Computational design of rare-earth reduced permanent magnets. Engineering 2020, 6, 148–153. [Google Scholar] [CrossRef]
- Kontos, S.; Ibrayeva, A.; Leijon, J.; Mörée, G.; Frost, A.E.; Schönström, L.; Gunnarsson, K.; Svedlindh, P.; Leijon, M.; Eriksson, S. An overview of MnAl permanent magnets with a study on their potential in electrical machines. Energies 2020, 13, 5549. [Google Scholar] [CrossRef]
- Andriushchenko, E.; Kallaste, A.; Belahcen, A.; Vaimann, T.; Rassõlkin, A.; Heidari, H.; Tiismus, H. Optimization of a 3D-printed permanent magnet coupling using genetic algorithm and Taguchi method. Electronics 2021, 10, 494. [Google Scholar] [CrossRef]
Classification | Principle | Variety of Methods | Advantage | Disadvantage |
---|---|---|---|---|
Powder bed fusion | Energy is focused on melting a layer of powder on a bed. | Fused by Heat, Laser, or Electron beams | Applicable to a wide range of metals, ceramics, and polymers | Energy- and time-consuming |
Direct energy deposition | Energy is focused on melting materials during their deposition. | Laser engineering net shape (LENS), Electron beam additive manufacturing (EBAM), Wire arc additive manufacturing (WAAM) | Achieves large 3D objects with good mechanical properties in a relatively short time | Relatively expensive |
Sheet lamination | 2D sheets are stacked and laminated. | Laminated by Ultrasonic welding, Brazing, or Diffusion bonding | Cost-effective for producing large 3D objects | Anisotropy and distortion susceptibility of products |
Binder jetting | Powders are bound by a selectively deposited binder adhesive. | Jetting using Phenolic, Silicate, or Aqueous-based binders | Applicable to a wide range of metals, ceramics, and polymers | Inferior mechanical properties due to binders |
Material jetting | Droplets of materials are deposited and cured by heat or light. | PolyJet, Nanoparticle jetting, Drop-on demand | Achieving smooth surface and delicate features with high resolution | Not applicable to a wide range of materials |
Vat photopolymerization | Photopolymers are selectively cured by exposure to UV or visible light. | Stereolithography, Direct light processing, Continuous liquid interface production | Achieves smooth surface and delicate features with high resolution | Limited choices and properties of photopolymers |
Extrusion | Materials are extruded through a nozzle for layer-by-layer deposition. | Extrusion free-forming, and Fused filament fabrication | Cost-effective for producing polymer composites | Low resolution and hence, unsuitable for delicate features |
Magnetic Materials | Polymer Matrix | Magnetic Loading (wt.%) | Extrusion Temperature (°C) | Coercivity (kOe) | Remanent Magnetization (emu/g) | Maximum Magnetization (emu/g) | Reference |
---|---|---|---|---|---|---|---|
MnAl(C) | PE | 72 | 120 | 1.5 | 26 | 58 | [29] |
MnAl(C) | ABS | 80 | 150 | 1.8 | 29 | 52 | [30] |
BaFe12O19 | ABS | 67 | 210 | 1.3 | N/A | N/A | [31] |
SrFe12O19 | EEA | 92 | 70 | 3.0 | 35 | 62 | [32] |
Magnetic Materials | Fabrication Methods | Printing Speed (mm/s) | Maximum Magnetization (emu/g) | Remanence (kG) | Coercivity (kOe) | Maximum Energy Product (MGOe) | Reference |
---|---|---|---|---|---|---|---|
SrFe12O19 | Jetting | N/A | 54 | N/A | 1.8 | N/A | [37] |
SrFe12O19 | Extrusion | N/A | N/A | 2.2 | 3.5 | N/A | [20] |
SrFe12O19 | Extrusion | 20 | N/A | 3.8 | 3.4 | 3.31 | [38] |
SrFe12O19 | Extrusion | 5 | 70 | N/A | 5.0 | 2.51 | [39] |
BaFe12O19 | Extrusion | 5 | 66 | N/A | 4.0 | 2.24 | [39] |
BaFe12O19 | Extrusion | 5 | 65 | N/A | 2.3 | N/A | [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirisathitkul, C.; Sirisathitkul, Y. Recent Developments in 3D Printing of Rare-Earth-Free Permanent Magnets. Inventions 2022, 7, 71. https://doi.org/10.3390/inventions7030071
Sirisathitkul C, Sirisathitkul Y. Recent Developments in 3D Printing of Rare-Earth-Free Permanent Magnets. Inventions. 2022; 7(3):71. https://doi.org/10.3390/inventions7030071
Chicago/Turabian StyleSirisathitkul, Chitnarong, and Yaowarat Sirisathitkul. 2022. "Recent Developments in 3D Printing of Rare-Earth-Free Permanent Magnets" Inventions 7, no. 3: 71. https://doi.org/10.3390/inventions7030071
APA StyleSirisathitkul, C., & Sirisathitkul, Y. (2022). Recent Developments in 3D Printing of Rare-Earth-Free Permanent Magnets. Inventions, 7(3), 71. https://doi.org/10.3390/inventions7030071