A Theoretical Terahertz Metamaterial Absorber Structure with a High Quality Factor Using Two Circular Ring Resonators for Biomedical Sensing
Abstract
:1. Introduction
2. Methods and Materials
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramakrishna, S.A.; Grzegorczyk, T.M. Physics and Applications of Negative Refractive Index Materials; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Tanaka, T. Metamaterial absorbers and their applications. In JSAP-OSA Joint Symposia; Optical Society of America: Washington, DC, USA, 2017. [Google Scholar]
- Kollatou, T.M.; Dimitriadis, A.I.; Assimonis, S.D.; Kantartzis, N.V.; Antonopoulos, C.S. Mulit-Band, Highly Absorbing, Microwave Metamaterial Structures. Appl. Phys. A Mater. Sci. Process. 2014, 115, 555–561. [Google Scholar] [CrossRef]
- Rhee, J.Y.; Yoo, Y.J.; Kim, K.W.; Kim, Y.J.; Lee, Y.P. Metamaterial-Based Perfect Absorbers. J. Electromagn. Waves Appl. 2014, 28, 1541–1580. [Google Scholar] [CrossRef]
- Appasani, B.; Prince, P.; Ranjan, R.K.; Gupta, N.; Verma, V.K. A Simple Multi-Band Metamaterial Absorber with Combined Polarization Sensitive and Polarization Insensitive Characteristics for Terahertz Applications. Plasmonics 2018, 14, 737–742. [Google Scholar] [CrossRef]
- Verma, V.K.; Mishra, S.K.; Kaushal, K.K.; Lekshmi, V.; Sudhakar, S.; Gupta, N.; Appasani, B. An Octaband Polarization Insensitive Terahertz Metamaterial Absorber Using Orthogonal Elliptical Ring Resonators. Plasmonics 2019, 15, 75–81. [Google Scholar] [CrossRef]
- Yen, T.J.; Padilla, W.J.; Fang, N.; Vier, D.C.; Smith, D.R.; Pendry, J.B.; Basov, D.N.; Zhang, X. Terahertz Magnetic Response from Artificial Materials. Science 2004, 303, 1494–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, X.; Xiao, Z.; Zheng, X. Tunable terahertz metamaterial absorber and the sensing application. J. Mater. Sci. Mater. Electron. 2017, 29, 1497–1503. [Google Scholar] [CrossRef]
- Tao, H.; Strikwerda, A.; Liu, M.; Mondia, J.P.; Ekmekci, E.; Fan, K.; Kaplan, D.L.; Padilla, W.J.; Zhang, X.; Averitt, R.D.; et al. Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications. Appl. Phys. Lett. 2010, 97, 261909. [Google Scholar] [CrossRef]
- Appasani, B. An Octaband Temperature Tunable Terahertz Metamaterial Absorber Using Tapered Triangular Structures. Prog. Electromagn. Res. Lett. 2021, 95, 9–16. [Google Scholar] [CrossRef]
- Appasani, B. Temperature Tunable Seven Band Terahertz Metamaterial Absorber Using Slotted Flower–Shaped Resonator on an InSb Substrate. Plasmonics 2021, 16, 833–839. [Google Scholar] [CrossRef]
- Cong, L.; Singh, R. Sensing with THz metamaterial absorbers. arXiv 2014, arXiv:1408.3711. [Google Scholar]
- Li, Y.; Chen, X.; Hu, F.; Li, D.; Teng, H.; Rong, Q.; Zhang, W.; Han, J.; Liang, H. Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein. J. Phys. D Appl. Phys. 2018, 52, 095105. [Google Scholar] [CrossRef]
- Shen, F.; Qin, J.; Han, Z. Planar antenna array as a highly sensitive terahertz sensor. Appl. Opt. 2019, 58, 540–544. [Google Scholar] [CrossRef]
- Cong, L.; Tan, S.; Yahiaoui, R.; Yan, F.; Zhang, W.; Singh, R. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the meta-surfaces. Appl. Phys. Lett. 2015, 106, 031107. [Google Scholar] [CrossRef]
- Rezagholizadeh, E.; Biabanifard, M.; Borzooei, S. Analytical design of tunable THz refractive index sensor for TE and TM modes using graphene disks. J. Phys. D Appl. Phys. 2020, 53, 295107. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Zeng, B.; Zhang, H.; Lv, H.; Huang, X.; Zhang, W.; Azad, A.K. A graphene based tunable terahertz sensor with double Fano resonances. Nanoscale 2015, 7, 12682–12688. [Google Scholar] [CrossRef]
- Yahiaoui, R.; Tan, S.; Cong, L.; Singh, R.; Yan, F.; Zhang, W. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. J. Appl. Phys. 2015, 118, 083103. [Google Scholar] [CrossRef]
- Islam, M.; Rao, S.J.M.; Kumar, G.; Pal, B.P.; Chowdhury, D.R. Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors. Sci. Rep. 2017, 7, 7355. [Google Scholar] [CrossRef] [Green Version]
- AI-Naib, I. Thin-film sensing via fano resonance excitation in symmetric terahertz metamaterials. J. Infrared Millim. Terahertz Waves 2018, 39, 1–5. [Google Scholar] [CrossRef]
- Saadeldin, A.S.; Hameed, M.F.O.; Elkaramany, E.M.; Obayya, S.S.A. Highly Sensitive Terahertz Metamaterial Sensor. IEEE Sens. J. 2019, 19, 7993–7999. [Google Scholar] [CrossRef]
- Xie, Q.; Dong, G.-X.; Wang, B.-X.; Huang, W.-Q. High-Q Fano Resonance in Terahertz Frequency Based on an Asymmetric Metamaterial Resonator. Nanoscale Res. Lett. 2018, 13, 294. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Lang, T.; Chen, H. All-Metal Terahertz Metamaterial Absorber and Refractive Index Sensing Performance. Photonics 2021, 8, 164. [Google Scholar] [CrossRef]
- Yahiaoui, R.; Strikwerda, A.C.; Jepsen, P.U. Terahertz Plasmonic Structure with Enhanced Sensing Capabilities. IEEE Sens. J. 2016, 16, 2484–2488. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Nath, U.; Shruti; Jha, A.V.; Pahadsingh, S.; Appasani, B.; Bizon, N.; Srinivasulu, A. A Terahertz Metamaterial Absorber Based Refractive Index Sensor with High Quality Factor. In Proceedings of the 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 1–3 July 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, B.-X.; He, Y.; Lou, P.; Xing, W. Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanoscale Adv. 2020, 2, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.T.; O’Hara, J.F.; Taylor, A.J.; Averitt, R.D.; Highstrete, C.; Lee, M.; Padilla, W.J. Complementary planar terahertz metamaterials. Opt. Express 2007, 15, 1084–1095. [Google Scholar] [CrossRef]
- Kollatou, T.M.; Dimitriadis, A.I.; Assimonis, S.D.; Kantartzis, N.V.; Antonopoulos, C. A Family of Ultra-Thin, Polarization-Insensitive, Multi-Band, Highly Absorbing Metamaterial Structures. Prog. Electromagn. Res. 2013, 136, 579–594. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Yang, H.-L.; Hou, X.-W.; Tian, Y.; Hou, D.-Y. Perfect Metamaterial Absorber with Dual Bands. Prog. Electromagn. Res. 2010, 108, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Cui, T.J.; Zhao, J.; Ma, H.F.; Jiang, W.X.; Li, H. Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express 2011, 19, 9401–9407. [Google Scholar] [CrossRef]
- Gu, S.; Barrett, J.; Hand, T.H.; Popa, B.; Cummer, S.A. A broadband low-reflection metamaterial absorber. J. Appl. Phys. 2010, 108, 064913. [Google Scholar] [CrossRef] [Green Version]
- Bilotti, F.; Toscano, A.; Alici, K.B.; Ozbay, E.; Vegni, L. Design of Miniaturized Narrowband Absorbers Based on Resonant-Magnetic Inclusions. IEEE Trans. Electromagn. Compat. 2010, 53, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Darvishzadeh, A.; Alharbi, N.; Mosavi, A.; Gorji, N.E. Modeling the strain impact on refractive index and optical transmission rate. Phys. B Condens. Matter 2018, 543, 14–17. [Google Scholar] [CrossRef]
- AI-Naib, I. Biomedical Sensing with Conductively Coupled Terahertz Metamaterial Resonators. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–5. [Google Scholar] [CrossRef]
- Ayyanar, N.; Thavasi Raja, G.; Sharma, M.; Kumar, D.S. Photonic crystal fiber-based refractive index sensor for early detection of cancer. IEEE Sens. J. 2018, 18, 7093–7099. [Google Scholar] [CrossRef]
- Chen, X.; Fan, W. Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon. Sci. Rep. 2017, 7, 2092. [Google Scholar] [CrossRef] [Green Version]
- Yi, Z.; Liang, C.; Chen, X.; Zhou, Z.; Tang, Y.; Ye, X.; Yi, Y.; Wang, J.; Wu, P. Dual-Band Plasmonic Perfect Absorber Based on Graphene Metamaterials for Refractive Index Sensing Application. Micromachines 2019, 10, 443. [Google Scholar] [CrossRef] [Green Version]
Ref. No. | Q-Factor | FOM | Range of Refractive Index | Step Size (RIU) |
---|---|---|---|---|
[12] | 7.036 | 2.67 | n = 1.0–1.8 | 0.2 |
[13] | 8.5 | 0.85 | n = 1.0–2.0 | 0.2 |
[14] | 5.5 | 0.4 | n = 1.0–1.4 | 0.1 |
[15] | 11.6 | 2.3 | n = 1.0–1.8 | 0.1 |
[16] | 40.1 | 11.75 | n = 1.0–1.8 | 0.1 |
[17] | 41.02 | 6.56 | n = 1.0–1.6 | 0.1 |
[18] | 15 | 3 | n = 1.0–2.0 | 0.2 |
[19] | 7 | 0.5 | n = 1.0–4.0 | 1.0 |
[20] | 40 | 1.5 | n = 1.1–2.5 | 0.2 |
[21] | 22.1 | 2.94 | n = 1.35–1.39 | 0.01 |
[22] | 58 | 7.5 | n = 1.1–1.6 | 0.2 |
[23] | 35.36 | 94.05 | n = 1.0–1.05 | 0.01 |
[24] | 15 | 3 | n = 1.0–2.0 | 0.2 |
[25] | 32.167 | 6.015 | n = 1.0–1.9 | 0.3 |
This paper | 44 | 25 | n = 1.34–1.39 | 0.005 |
Type of Design | Resonant Frequency | Absorption Rate | FWHM | Quality Factor |
---|---|---|---|---|
2 CRRs | 2.64 THz | 99.50% | 0.06 THz | 44 |
1 CRR | 2.62 THz | 87% | 0.065 THz, | 40.30 |
Refractive index | 1.34 | 1.345 | 1.35 | 1.355 | 1.36 | 1.365 | 1.37 | 1.375 | 1.38 | 1.385 | 1.39 |
Absorption | 99.99 | 97.25 | 93.14 | 88.0 | 75.0 | 68.0 | 72.0 | 82.0 | 95.0 | 98.5 | 99.99 |
Cell Name | Refractive Index (n) |
---|---|
Human blood (healthy) | 1.35 |
Basal cell (cancerous) | 1.38 |
Basal cell (normal) | 1.38 |
Normal breast cell (MDAMD-231) | 1.385 |
Normal cervical cell | 1.368 |
Jurkat (cancerous) | 1.39 |
Jurkat (normal) | 1.376 |
Normal breast cell (MCF-7) | 1.36 |
PC12 cell | 1.381 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banerjee, S.; Nath, U.; Dutta, P.; Jha, A.V.; Appasani, B.; Bizon, N. A Theoretical Terahertz Metamaterial Absorber Structure with a High Quality Factor Using Two Circular Ring Resonators for Biomedical Sensing. Inventions 2021, 6, 78. https://doi.org/10.3390/inventions6040078
Banerjee S, Nath U, Dutta P, Jha AV, Appasani B, Bizon N. A Theoretical Terahertz Metamaterial Absorber Structure with a High Quality Factor Using Two Circular Ring Resonators for Biomedical Sensing. Inventions. 2021; 6(4):78. https://doi.org/10.3390/inventions6040078
Chicago/Turabian StyleBanerjee, Sagnik, Uddipan Nath, Purba Dutta, Amitkumar Vidyakant Jha, Bhargav Appasani, and Nicu Bizon. 2021. "A Theoretical Terahertz Metamaterial Absorber Structure with a High Quality Factor Using Two Circular Ring Resonators for Biomedical Sensing" Inventions 6, no. 4: 78. https://doi.org/10.3390/inventions6040078
APA StyleBanerjee, S., Nath, U., Dutta, P., Jha, A. V., Appasani, B., & Bizon, N. (2021). A Theoretical Terahertz Metamaterial Absorber Structure with a High Quality Factor Using Two Circular Ring Resonators for Biomedical Sensing. Inventions, 6(4), 78. https://doi.org/10.3390/inventions6040078