Experimental Study on Performance Enhancement of a Photovoltaic Module Using a Combination of Phase Change Material and Aluminum Fins—Exergy, Energy and Economic (3E) Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Process
2.2. Phase Change Material
2.3. Data Reduction
2.4. Exergy Analysis
- There is no irreversibility for the environment.
- Uniformity in the environment relative to intensive properties.
2.5. Analysis of Measurement Errors
3. Results and Discussion
3.1. Weather Characteristics
3.2. Effect of Cooling Process on the Temperature of the Panel
3.3. Electrical Performance of the Module
3.4. Electrical and Exergy Efficiency
3.5. Economic Analysis
4. Conclusions and Future Research Recommendations
- The cooled panel’s average temperature for the entire experimentation period is 36.62 °C against 48.75 °C for the referenced PV module, this represents an average reduction of 12.13 °C.
- The average voltage for the cooled panel during the entire experimental period is 18.85 V while the referenced panel recorded 17.33 V. This represents a difference of 1.52 V, which is a significant drop in the voltage of the referenced panel.
- The cooled module recorded an average current of 0.65 A while the reference module recorded 0.63 A. The change is insignificant as the current for both panels remained almost same till after mid-day when the ambient temperature increased sharply which affected the temperature of the PV cell.
- The average power for the cooled PV module is 12.19 W against 10.95 W for the referenced module. This is 1.24 W difference between both panels, which is 11.33% improvement in the power output due to the temperature reduction of the cooled panel occasioned by the proposed cooling mechanism.
- The calculated average efficiency for the cooled or modified panel and the referenced modules are 14.30% and 13.60%, respectively. This represents an enhancement of 5.15% in the efficiency of the PV module.
- The cooled solar PV module recorded an average exergy efficiency of 7.99% against 5.61% for the referenced module.
- In terms of the economics, the results from the computations show that in the case of the first scenario (i.e., 365 days) the cooled panel would have an LCOE equivalent to 0.198 $/kWh compared to 0.221 $/kWh for the reference PV module. Furthermore, for the second scenario (i.e., 120 days), the cooled PV module recorded an LCOE of 0.603 $/kWh against 0.671 $/kWh for the reference PV module.
Author Contributions
Funding
Conflicts of Interest
References
- Adebayo, T.; Agboola, M.; Rjoub, H.; Adeshola, I.; Agyekum, E.; Kumar, N. Linking Economic Growth, Urbanization, and Environmental Degradation in China: What Is the Role of Hydroelectricity Consumption? Int. J. Environ. Res. Public Health 2021, 18, 6975. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, T.; Awosusi, A.; Oladipupo, S.; Agyekum, E.; Jayakumar, A.; Kumar, N. Dominance of Fossil Fuels in Japan’s National Energy Mix and Implications for Environmental Sustainability. Int. J. Environ. Res. Public Health 2021, 18, 7347. [Google Scholar] [CrossRef] [PubMed]
- Agyekum, E.; Ali, E.; Kumar, N. Clean Energies for Ghana—An Empirical Study on the Level of Social Acceptance of Renewable Energy Development and Utilization. Sustainability 2021, 13, 3114. [Google Scholar] [CrossRef]
- Yaqoob, S.; Obed, A.; Zubo, R.; Al-Yasir, Y.; Fadhel, H.; Mokryani, G.; Abd-Alhameed, R. Flyback Photovoltaic Micro-Inverter with a Low Cost and Simple Digital-Analog Control Scheme. Energies 2021, 14, 4239. [Google Scholar] [CrossRef]
- Sudhakar, P.; Santosh, R.; Asthalakshmi, B.; Kumaresan, G.; Velraj, R. Performance augmentation of solar photovoltaic panel through PCM integrated natural water circulation cooling technique. Renew. Energy 2020, 172, 1433–1448. [Google Scholar] [CrossRef]
- Agyekum, E.; PraveenKumar, S.; Eliseev, A.; Velkin, V. Design and Construction of a Novel Simple and Low-Cost Test Bench Point-Absorber Wave Energy Converter Emulator System. Inventions 2021, 6, 20. [Google Scholar] [CrossRef]
- Alwan, N.T.; Shcheklein, S.; Ali, O.M. Experimental investigation of modified solar still integrated with solar collector. Case Stud. Therm. Eng. 2020, 19, 100614. [Google Scholar] [CrossRef]
- Amjad, F.; Shah, L.A. Identification and assessment of sites for solar farms development using GIS and density based clustering technique- A case of Pakistan. Renew. Energy 2020, 155, 761–769. [Google Scholar] [CrossRef]
- Yaqoob, S.J.; Saleh, A.L.; Motahhir, S.; Agyekum, E.B.; Nayyar, A.; Qureshi, B. Comparative study with practical validation of photovoltaic monocrystalline module for single and double diode models. Sci. Rep. 2021, 11, 19153. [Google Scholar] [CrossRef]
- Deokar, V.H.; Bindu, R.S.; Potdar, S.S. Active cooling system for efficiency improvement of PV panel and utilization of waste-recovered heat for hygienic drying of onion flakes. J. Mater. Sci. Mater. Electron. 2021, 32, 2088–2102. [Google Scholar] [CrossRef]
- Solangi, K.H.; Islam, M.R.; Saidur, R.; Rahim, N.A.; Fayaz, H. A review on global solar energy policy. Renew. Sustain. Energy Rev. 2011, 15, 2149–2163. [Google Scholar] [CrossRef]
- Mahdi, J.M.; Mohammed, H.I.; Talebizadehsardari, P. A new approach for employing multiple PCMs in the passive thermal management of photovoltaic modules. Sol. Energy 2021, 222, 160–174. [Google Scholar] [CrossRef]
- Ahmad, F.F.; Ghenai, C.; Hamid, A.K.; Rejeb, O.; Bettayeb, M. Performance enhancement and infra-red (IR) thermography of solar photovoltaic panel using back cooling from the waste air of building centralized air conditioning system. Case Stud. Therm. Eng. 2021, 24, 100840. [Google Scholar] [CrossRef]
- Libra, M.; Petrik, T.; Poulek, V.; Tyukhov, I.I.; Kourim, P. Changes in the Efficiency of Photovoltaic Energy Conversion in Temperature Range With Extreme Limits. IEEE J. Photovolt. 2021, PP, 1–6. [Google Scholar] [CrossRef]
- Gordon, J.M.; Moses, G.; Katz, E.A. Boosting silicon photovoltaic efficiency from regasification of liquefied natural gas. Energy 2020, 214, 118907. [Google Scholar] [CrossRef]
- Dupeyrat, P.; Ménézo, C.; Wirth, H.; Rommel, M. Improvement of PV module optical properties for PV-thermal hybrid collector application. Sol. Energy Mater. Sol. Cells 2011, 95, 2028–2036. [Google Scholar] [CrossRef]
- Ramkumar, R.; Kesavan, M.; Raguraman, C.; Ragupathy, A. Enhancing the performance of photovoltaic module using clay pot evaporative cooling water. In Proceedings of the 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS), Nagercoil, India, 7–8 April 2016; pp. 217–222. [Google Scholar] [CrossRef]
- Chow, T. A review on photovoltaic/thermal hybrid solar technology. Appl. Energy 2010, 87, 365–379. [Google Scholar] [CrossRef]
- Koteswararao, B.; Radha, K.; Vijay, P.; Raja, R.S. Experimental Analysis of solar panel efficiency with different modes of cooling. Int. J. Eng. Technol. 2016, 8, 1451–1456. [Google Scholar]
- Nada, S.; El-Nagar, D. Possibility of using PCMs in temperature control and performance enhancements of free stand and building integrated PV modules. Renew. Energy 2018, 127, 630–641. [Google Scholar] [CrossRef]
- Duan, J. A novel heat sink for cooling concentrator photovoltaic system using PCM-porous system. Appl. Therm. Eng. 2021, 186, 116522. [Google Scholar] [CrossRef]
- Essa, M.A.; Talaat, M.; Amer, A.; Farahat, M. Enhancing the photovoltaic system efficiency using porous metallic media integrated with phase change material. Energy 2021, 225, 120299. [Google Scholar] [CrossRef]
- Arefin, A. Analysis of an Integrated Photovoltaic Thermal System by Top Surface Natural Circulation of Water. Front. Energy Res. 2019, 7, 97. [Google Scholar] [CrossRef]
- Alizadeh, H.; Ghasempour, R.; Shafii, M.B.; Ahmadi, M.H.; Yan, W.-M.; Nazari, M.A. Numerical simulation of PV cooling by using single turn pulsating heat pipe. Int. J. Heat Mass Transf. 2018, 127, 203–208. [Google Scholar] [CrossRef]
- Amr, A.A.-R.; Hassan, A.; Abdel-Salam, M.; El-Sayed, A.M. Enhancement of photovoltaic system performance via passive cooling: Theory versus experiment. Renew. Energy 2019, 140, 88–103. [Google Scholar] [CrossRef]
- Shmroukh, A.N. Thermal regulation of photovoltaic panel installed in Upper Egyptian conditions in Qena. Therm. Sci. Eng. Prog. 2019, 14, 100438. [Google Scholar] [CrossRef]
- Nižetić, S.; Čabo, F.G.; Marinić-Kragić, I.; Papadopoulos, A. Experimental and numerical investigation of a backside convective cooling mechanism on photovoltaic panels. Energy 2016, 111, 211–225. [Google Scholar] [CrossRef]
- Agyekum, E.B.; PraveenKumar, S.; Alwan, N.T.; Velkin, V.I.; Shcheklein, S.E. Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: Experimental investigation. Heliyon 2021, 7, e07920. [Google Scholar] [CrossRef]
- Bayrak, F.; Oztop, H.F.; Selimefendigil, F. Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Convers. Manag. 2020, 212, 112789. [Google Scholar] [CrossRef]
- Machniewicz, A.; Knera, D.; Heim, D. Effect of Transition Temperature on Efficiency of PV/PCM Panels. Energy Procedia 2015, 78, 1684–1689. [Google Scholar] [CrossRef] [Green Version]
- Klugmann-Radziemska, E.; Wcisło-Kucharek, P. Photovoltaic module temperature stabilization with the use of phase change materials. Sol. Energy 2017, 150, 538–545. [Google Scholar] [CrossRef]
- Chen, H.; Chen, X.; Li, S.; Ding, H. Comparative study on the performance improvement of photovoltaic panel with passive cooling under natural ventilation. Int. J. Smart Grid Clean Energy 2014, 3, 374–379. [Google Scholar] [CrossRef] [Green Version]
- Agyekum, E.B.; PraveenKumar, S.; Alwan, N.T.; Velkin, V.I.; Shcheklein, S.E.; Yaqoob, S.J. Experimental Investigation of the Effect of a Combination of Active and Passive Cooling Mechanism on the Thermal Characteristics and Efficiency of Solar PV Module. Inventions 2021, 6, 63. [Google Scholar] [CrossRef]
- Tk, G.; Raj, V. Use of phase change material (PCM) for the improvement of thermal performance of cold storage. MOJ Curr. Res. Rev. 2018, 1, 49–61. [Google Scholar] [CrossRef]
- Choubineh, N.; Jannesari, H.; Kasaeian, A. Experimental study of the effect of using phase change materials on the performance of an air-cooled photovoltaic system. Renew. Sustain. Energy Rev. 2018, 101, 103–111. [Google Scholar] [CrossRef]
- Huang, M.J. The effect of using two PCMs on the thermal regulation performance of BIPV systems. Sol. Energy Mater. Sol. Cells 2011, 95, 957–963. [Google Scholar] [CrossRef]
- Preet, S.; Bhushan, B.; Mahajan, T. Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM). Sol. Energy 2017, 155, 1104–1120. [Google Scholar] [CrossRef]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Idoko, L.O.; Anaya-Lara, O.; McDonald, A. Enhancing PV modules efficiency and power output using multi-concept cooling technique. Energy Rep. 2018, 4, 357–369. [Google Scholar] [CrossRef]
- Agyekum, E.B. Techno-economic comparative analysis of solar photovoltaic power systems with and without storage systems in three different climatic regions, Ghana. Sustain. Energy Technol. Assess. 2020, 43, 100906. [Google Scholar] [CrossRef]
- Hachem, F.; Abdulhay, B.; Ramadan, M.; El Hage, H.; El Rab, M.G.; Khaled, M. Improving the performance of photovoltaic cells using pure and combined phase change materials—Experiments and transient energy balance. Renew. Energy 2017, 107, 567–575. [Google Scholar] [CrossRef]
- Rezvanpour, M.; Borooghani, D.; Torabi, F.; Pazoki, M. Using CaCl2·6H2O as a phase change material for thermo-regulation and enhancing photovoltaic panels’ conversion efficiency: Experimental study and TRNSYS validation. Renew. Energy 2020, 146, 1907–1921. [Google Scholar] [CrossRef]
- Hepbasli, A. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renew. Sustain. Energy Rev. 2008, 12, 593–661. [Google Scholar] [CrossRef]
- Akyuz, E.; Coskun, C.; Oktay, Z.; Dincer, I. A novel approach for estimation of photovoltaic exergy efficiency. Energy 2012, 44, 1059–1066. [Google Scholar] [CrossRef]
- Kline, S.J.; McClintock, F.A. Describing Uncertainties in Single-Sample Experiments. Mech. Eng. 1953, 75, 3–8. [Google Scholar]
- El Mays, A.; Ammar, R.; Hawa, M.; Akroush, M.A.; Hachem, F.; Khaled, M.; Ramadan, M. Improving Photovoltaic Panel Using Finned Plate of Aluminum. Energy Procedia 2017, 119, 812–817. [Google Scholar] [CrossRef]
- Mahamudul, H.; Rahman, M.; Metselaar, H.S.C.; Mekhilef, S.; Shezan, S.A.; Sohel, R.; Bin Abu Karim, S.; Badiuzaman, W.N.I. Temperature Regulation of Photovoltaic Module Using Phase Change Material: A Numerical Analysis and Experimental Investigation. Int. J. Photoenergy 2016, 2016, 5917028. [Google Scholar] [CrossRef]
- Hernandez-Perez, J.; Carrillo, J.; Bassam, A.; Flota-Banuelos, M.; Patino-Lopez, L. Thermal performance of a discontinuous finned heatsink profile for PV passive cooling. Appl. Therm. Eng. 2020, 184, 116238. [Google Scholar] [CrossRef]
- Luo, Z.; Huang, Z.; Xie, N.; Gao, X.; Xu, T.; Fang, Y.; Zhang, Z. Numerical and experimental study on temperature control of solar panels with form-stable paraffin/expanded graphite composite PCM. Energy Convers. Manag. 2017, 149, 416–423. [Google Scholar] [CrossRef]
- Nada, S.; El-Nagar, D.; Hussein, H. Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles. Energy Convers. Manag. 2018, 166, 735–743. [Google Scholar] [CrossRef]
- Stropnik, R.; Stritih, U. Increasing the efficiency of PV panel with the use of PCM. Renew. Energy 2016, 97, 671–679. [Google Scholar] [CrossRef]
- Ramkiran, B.; Ck, S.; Sudhakar, K. Sustainable passive cooling strategy for PV module: A comparative analysis. Case Stud. Therm. Eng. 2021, 27, 101317. [Google Scholar] [CrossRef]
- Hasan, A.; McCormack, S.J.; Huang, M.J.; Norton, B. Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM) System through Temperature Regulation and Performance Enhancement of Photovoltaics. Energies 2014, 7, 1318–1331. [Google Scholar] [CrossRef] [Green Version]
- Karthick, A.; Ramanan, P.; Ghosh, A.; Stalin, B.; Kumar, R.V.; Baranilingesan, I. Performance enhancement of copper indium diselenide photovoltaic module using inorganic phase change material. Asia-Pacific J. Chem. Eng. 2020, 15, e2480. [Google Scholar] [CrossRef]
- Savvakis, N.; Tsoutsos, T. Theoretical design and experimental evaluation of a PV+PCM system in the mediterranean climate. Energy 2020, 220, 119690. [Google Scholar] [CrossRef]
- Kant, K.; Shukla, A.; Sharma, A.; Biwole, P. Heat transfer studies of photovoltaic panel coupled with phase change material. Sol. Energy 2016, 140, 151–161. [Google Scholar] [CrossRef]
- Kazemian, A.; Hosseinzadeh, M.; Sardarabadi, M.; Passandideh-Fard, M. Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints. Energy 2018, 162, 210–223. [Google Scholar] [CrossRef]
- Park, J.; Kim, T.; Leigh, S.-B. Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions. Sol. Energy 2014, 105, 561–574. [Google Scholar] [CrossRef]
- Hasan, A.; Sarwar, J.; Alnoman, H.; Abdelbaqi, S. Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate. Sol. Energy 2017, 146, 417–429. [Google Scholar] [CrossRef]
- Sharma, S.; Micheli, L.; Chang, W.; Tahir, A.; Reddy, K.S.; Mallick, T. Nano-enhanced Phase Change Material for thermal management of BICPV. Appl. Energy 2017, 208, 719–733. [Google Scholar] [CrossRef]
- Chahartaghi, M.; Nikzad, A. Exergy, environmental, and performance evaluations of a solar water pump system. Sustain. Energy Technol. Assess. 2021, 43, 100933. [Google Scholar]
- Agyekum, E.; Adebayo, T.; Bekun, F.; Kumar, N.; Panjwani, M. Effect of Two Different Heat Transfer Fluids on the Performance of Solar Tower CSP by Comparing Recompression Supercritical CO2 and Rankine Power Cycles, China. Energies 2021, 14, 3426. [Google Scholar] [CrossRef]
- Boddapati, V.; Daniel, S.A. Design and Feasibility Analysis of Hybrid Energy-Based Electric Vehicle Charging Station. Distrib. Gener. Altern. Energy J. 2021, 41–72. [Google Scholar] [CrossRef]
- Lai, C.S.; McCulloch, M.D. Levelized Cost of Energy for PV and Grid Scale Energy Storage Systems. arXiv 2016, arXiv:1609.06000. [Google Scholar]
- Amjad, F.; Agyekum, E.B.; Shah, L.A.; Abbas, A. Site location and allocation decision for onshore wind farms, using spatial multi-criteria analysis and density-based clustering. A techno-economic-environmental assessment, Ghana. Sustain. Energy Technol. Assess. 2021, 47, 101503. [Google Scholar] [CrossRef]
- Baloch, A.A.B.; Bahaidarah, H.M.; Gandhidasan, P.; Al-Sulaiman, F.A. Experimental and numerical performance analysis of a converging channel heat exchanger for PV cooling. Energy Convers. Manag. 2015, 103, 14–27. [Google Scholar] [CrossRef]
Instrument | Range | Accuracy | Uncertainty, % |
---|---|---|---|
GM 1362-EN-01 thermometer, °C | −30–70 | ±2% | 1.15 |
Clamp meter, V | ±1.5 | 0.87 | |
Pyranometer, W/m2 | 0–2000 | ±5% | 2.89 |
Anemometer, m/s | 0–25 | 0.2 | 0.12 |
Thermocouple, °C | −200–1370 | ±0.1 | 0.06 |
Reference | Cooling Mechanism | TPV without Cooling, °C | TPV with Cooling, °C | Temperature Reduction, °C | Efficiency Improvement, % |
---|---|---|---|---|---|
[51] | PCM RT28HC | 75.2 | 57.7 | 18 | 1.1–2.8 |
[52] | PCM | 53.7 | 49.2 | 4.2 | 1.49 |
[53] | PCM RT-22 | 53 | 35 | 18 | 2.3–4.5 |
[54] | Inorganic PCM | 63 | 54 | 9 | 10.0 |
[55] | PCM RT27 | 32.6 | 22.4 | 10.2 | 5.90 |
[56] | RT35, 35 °C/240 kJ/kg | 60 | 54.9 | 5.1 | 5.00 |
[57] | Organic PCM (melting temperature: 46–48 °C) | 54.88 | 47.58 | 7.30 | 4.22% |
[52] | PCM | 53.7 | 49.2 | 4.2 | 1.49% |
[58] | Organic PCM (melting temperature 25 °C | 36 | 31 | 5 | 3.10 |
[59] | RT42 | 53 | 42.5 | 10.5 | 5.9% |
[60] | RT42, 38–43 °C/174 kJ/kg, (0.5 wt% CuO added) | 72 | 62 | 10 | 5.35% |
[41] | Organic PCM (melting temperature: 36–60 °C) | 56.1 | 50.5 | 5.6 | - |
[53] | Paraffin wax | 58 | 47 | 11 | - |
[31] | PV with Praffin | 71 | 64 | 7 | - |
Current study | PCM (paraffin wax) and aluminum fins | 48.75 | 36.62 | 12.13 | 5.15 |
Parameter | Cooled PV | Referenced PV |
---|---|---|
Investment cost (), $ | 62.88 | 60.00 |
Annual operation and maintenance cost (), $ | 3.50 | 3.50 |
Effective discount rate (), % | 5.00 | 5.00 |
Lifetime of the plant (n), years | 30.00 | 30.00 |
Nominal escalation rate (), % | 1.00 | 1.00 |
Capital recover factor (CRF), (%) | 6.50 | 6.50 |
0.96 | 0.96 | |
Levelized cost of fuel (), $/kWh | 0 | 0 |
Constant-escalation levelization factor O&M, (CELF) | 1.10 | 1.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agyekum, E.B.; PraveenKumar, S.; Alwan, N.T.; Velkin, V.I.; Adebayo, T.S. Experimental Study on Performance Enhancement of a Photovoltaic Module Using a Combination of Phase Change Material and Aluminum Fins—Exergy, Energy and Economic (3E) Analysis. Inventions 2021, 6, 69. https://doi.org/10.3390/inventions6040069
Agyekum EB, PraveenKumar S, Alwan NT, Velkin VI, Adebayo TS. Experimental Study on Performance Enhancement of a Photovoltaic Module Using a Combination of Phase Change Material and Aluminum Fins—Exergy, Energy and Economic (3E) Analysis. Inventions. 2021; 6(4):69. https://doi.org/10.3390/inventions6040069
Chicago/Turabian StyleAgyekum, Ephraim Bonah, Seepana PraveenKumar, Naseer T. Alwan, Vladimir Ivanovich Velkin, and Tomiwa Sunday Adebayo. 2021. "Experimental Study on Performance Enhancement of a Photovoltaic Module Using a Combination of Phase Change Material and Aluminum Fins—Exergy, Energy and Economic (3E) Analysis" Inventions 6, no. 4: 69. https://doi.org/10.3390/inventions6040069