Wind Turbines Offshore Foundations and Connections to Grid
Abstract
:1. Introduction
2. Main Typologies of Direct or Fixed Structures
2.1. Monopile
2.2. Gravity Base Structure (GBS)
2.3. Jacket Foundation
2.4. Tripods
3. Other Types of Fixed Structures
- Dependency reduction from installation means;
- Extension of the installation window;
- Cost reduction thanks to big-scale production;
- Lower dependency from cost of steel;
- Adaptation to deeper waters;
- Improvement of offshore site conditions with a reduction of the installation period.
3.1. Tripile
3.2. Monopile Suction Bucket
- External diameter: 6900 mm;
- Thickness: 700 mm;
- Lowest level: −61.00 m;
- Upper level +3.50 m;
- Passive mass: 65 kg/m3;
- Active frame: 37 tendons with 22 wires of 15.7 mm (0.6′′);
- Weight: 2200 t.
3.3. “Zublin” Gravity Base
- Easy fabrication, although its installation is quite complex due to its weight;
- Suitable for water depths of around 40 m;
- No cathodic protection against corrosion required;
- Lower dependency from steel cost;
- Easy to dismantle.
4. Floating Structures
- Semisubmersible;
- Spar-buoy;
- Tension leg platform (TLP).
4.1. Semisubmersible
4.2. Spar Type Wind Turbines
4.3. Sway
4.4. Tension Leg Turbine Platform (TLTP)
5. Wind Farm Connections to Grid: An Overview
6. Wind Generator Modeling
7. Wind Generator Control
8. Conclusions
Author Contributions
Conflicts of Interest
References
- Oh, K.Y.; Nam, W.; Ryu, M.S.; Kim, J.Y.; Epureanu, B.I. A review of foundations of offshore wind energy convertors: Current status and future perspectives. Renew. Sustain. Energy Rev. 2018, 88, 16–36. [Google Scholar] [CrossRef]
- Shehzad, M.F.; Abdelghany, M.B.; Liuzza, D.; Mariani, V.; Glielmo, L. Mixed Logic Dynamic Models for MPC Control of Wind Farm Hydrogen-Based Storage Systems. Inventions 2019, 4, 57. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Escobedo, Q.; Saldaña-Flores, R.; Rodríguez-García, E.R.; Manzano-Agugliaro, F. Wind energy resource in Northern Mexico. Renew. Sustain. Energ. Rev. 2014, 32, 890–914. [Google Scholar] [CrossRef]
- Chakrabarti, S. Handbook of Offshore Engineering (2-volume set); Elsevier: Amsterdam, The Nederlands, 2005. [Google Scholar]
- Colmenar-Santos, A.; Perera-Perez, J.; Borge-Diez, D.; Depalacio-Rodríguez, C. Offshore wind energy: A review of the current status, challenges and future development in Spain. Renew. Sustain. Energ. Rev. 2016, 64, 1–18. [Google Scholar] [CrossRef]
- Mazidi, P.; Tohidi, Y.; Sanz-Bobi, M.A. Strategic Maintenance Scheduling of an Offshore Wind Farm in a Deregulated Power System. Energies 2017, 10, 313. [Google Scholar] [CrossRef] [Green Version]
- Nernheim, A.; Vasquez, A.; Wilke, F.; Kahle, H. Geotechnical site specific assessment for offshore-wind jackup vessels. GEOTECHNIK 2015, 38, 3–16. [Google Scholar] [CrossRef]
- Sumer, B.M. Flow-structure-seabed interactions in coastal and marine environments. J. Hydraul. Res. 2014, 52, 1–13. [Google Scholar] [CrossRef]
- International Energy Agency. Global Wind Statistics 2019. Available online: https://www.iea.org/reports/offshore-wind-outlook-2019 (accessed on 12 January 2020).
- Gjersøe, N.F.; Pedersen, E.B.; Kristiansen, B.; Hansen, N.O.; Ibsen, L.B. Weight optimisation of steel monopile foundations for offshore windfarms. In Proceedings of the International Offshore and Polar Engineering Conference, Kona, HI, USA, 21–26 June 2015; pp. 245–252. [Google Scholar]
- Prakhya, G.; Zhang, C.; Harding, N. Grouted connections for monopiles-limits for large wind turbines. Struct. Eng. 2012, 90, 30–45. [Google Scholar]
- Seidel, M. Design, fabrication and installation of the offshore wind turbine REpower 5M. [Tragstruktur und Installation der Offshore-Windenergieanlage REpower 5M]. STAHLBAU 2007, 76, 650–656. [Google Scholar] [CrossRef]
- Pliego Marugán, A.; García Márquez, F.P.; Pinar Pérez, J.M. Optimal Maintenance Management of Offshore Wind Farms. Energies 2016, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- Vis, I.F.A.; Ursavas, E. Assessment approaches to logistics for offshore wind energy installation. Sustain. Energy Technol. Assess. 2016, 14, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Zhang, Z.; Liu, Y.; Ding, H. Experimental study on installation of composite bucket foundations for offshore wind turbines in silty sand. J. Offshore Mech. Arct. Eng. 2016, 138, 061901. [Google Scholar] [CrossRef]
- Manzano-Agugliaro, F.; Sanchez-Calero, M.; Perea-Moreno, A.J.; San-Antonio-Gomez, C. Ensayo de segregación en cimentaciones para la estructura soporte de aerogeneradores off-shore hechas por vertido en caída libre. DYNA 2018, 93, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Arany, L.; Bhattacharya, S.; Macdonald, J.H.G.; Hogan, S.J. Closed form solution of eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI. Soil Dyn. Earthq. Eng. 2016, 83, 18–32. [Google Scholar] [CrossRef] [Green Version]
- Bakhoday-Paskyabi, M.; Fer, I.; Reuder, J. Current and turbulence measurements at the FINO1 offshore wind energy site: Analysis using 5-beam ADCPs. Ocean Dyn. 2018, 68, 109–130. [Google Scholar] [CrossRef] [Green Version]
- Lind, P.; Vera-Tudela, L.; Wächter, M.; Kühn, M.; Peinke, J. Normal behaviour models for wind turbine vibrations: Comparison of neural networks and a stochastic approach. Energies 2017, 10, 1944. [Google Scholar] [CrossRef] [Green Version]
- Esteban, M.D.; Couñago, B.; López-Gutiérrez, J.S.; Negro, V.; Vellisco, F. Gravity based support structures for offshore wind turbine generators: Review of the installation process. Ocean Eng. 2015, 110, 281–291. [Google Scholar] [CrossRef]
- O’Kelly, B.C.; Arshad, M. Offshore wind turbine Foundations—Analysis and design. In Offshore Wind Farms: Technologies, Design and Operation; Woodhead Publishing: Oxford, UK, 2016; pp. 589–610. [Google Scholar] [CrossRef]
- Sánchez, S.; López-Gutiérrez, J.S.; Negro, V.; Esteban, M.D. Foundations in Offshore Wind Farms: Evolution, Characteristics and Range of Use. Analysis of Main Dimensional Parameters in Monopile Foundations. J. Mar. Sci. Eng. 2019, 7, 441. [Google Scholar] [CrossRef] [Green Version]
- Esteban, M.D.; López-Gutiérrez, J.S.; Negro, V.; Sanz, L. Riprap Scour Protection for Monopiles in Offshore Wind Farms. J. Mar. Sci. Eng. 2019, 7, 440. [Google Scholar] [CrossRef] [Green Version]
- Lesny, K.; Wiemann, J. Design aspects of monopiles in German offshore wind farms. In Proceedings of the International Symposium on Frontiers in Offshore Geotechnics, London, UK, 19–21 September 2005; pp. 383–389. [Google Scholar]
- Shadlou, M.; Bhattacharya, S. Dynamic stiffness of monopiles supporting offshore wind turbine generators. Soil Dyn. Earthq. Eng. 2016, 88, 15–32. [Google Scholar] [CrossRef]
- Dahlhaus, F.; Großmann, J. Design and installation of an innovative tension leg platform for 2 MW offshore wind turbine at baltic sea. In Proceedings of the Paper presented at the Offshore Technology Conference 2016, Houston, TX, USA, 2–5 May 2016; pp. 2441–2447. [Google Scholar] [CrossRef]
- Negro, V.; López-Gutiérrez, J.; Esteban, M.D.; Matutano, C. Uncertainties in the design of support structures and foundations for offshore wind turbines. Renew. Energy 2014, 63, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Rüdiger, S. Steel Engineering and Construction, 2013. Available online: https://www.max-boegl.de/dk/downloads-dk/806-steel-engineering-and-construction-2/file.html (accessed on 16 December 2019).
- Kallehave, D.; Byrne, B.W.; LeBlanc Thilsted, C.; Mikkelsen, K.K. Optimization of monopiles for offshore wind turbines. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arany, L.; Bhattacharya, S.; MacDonald, J.H.G.; Hogan, S.J. A critical review of serviceability limit state requirements for monopile foundations of offshore wind turbines. In Proceedings of the Annual Offshore Technology Conference, Houston, TX, USA, 4–7 May 2015; Volume 4, pp. 2570–2587. [Google Scholar]
- Scharff, R.; Siems, M. Monopile foundations for offshore wind turbines–solutions for greater water depths. Steel Constr. 2013, 6, 47–53. [Google Scholar] [CrossRef]
- Fraenkel, P. The tide turns for marine current turbines. Int. Water Power Dam Constr. 2001, 53, 18–21. [Google Scholar]
- Bhattacharya, S.; Adhikari, S. Experimental validation of soil–structure interaction of offshore wind turbines. Soil Dyn. Earthq. Eng. 2011, 31, 805–816. [Google Scholar] [CrossRef]
- Bisoi, S.; Haldar, S. Dynamic analysis of offshore wind turbine in clay considering soil–monopile–tower interaction. Soil Dyn. Earthq. Eng. 2014, 63, 19–35. [Google Scholar] [CrossRef]
- Damgaard, M.; Ibsen, L.B.; Andersen, L.V.; Andersen, J.K. Cross-wind modal properties of offshore wind turbines identified by full scale testing. J. Wind Eng. Ind. Aerodyn. 2013, 116, 94–108. [Google Scholar] [CrossRef]
- Lackner, M.A.; Rotea, M.A. Passive structural control of offshore wind turbines. Wind Energy 2011, 14, 373–388. [Google Scholar] [CrossRef]
- Dvorak, M.J.; Archer, C.L.; Jacobson, M.Z. California offshore wind energy potential. Renew. Energy 2010, 35, 1244–1254. [Google Scholar] [CrossRef]
- Chiang, Y.; Lee, P.; Chen, P.; Lin, S.; Hsiao, S. A study on low-cost gravity base foundations for offshore wind turbine in Taiwan. In Proceedings of the International Offshore and Polar Engineering Conference, Kona, HI, USA, 21–26 June 2015; pp. 289–296. [Google Scholar]
- Whitehouse, R.J.S.; Sutherland, J.; Harris, J.M. Evaluating scour at marine gravity foundations. In Proceedings of the Institution of Civil Engineers: Maritime Engineering; Thomas Telford Ltd.: London, UK, 2011; Volume 164, pp. 143–157. Available online: https://www.icevirtuallibrary.com/doi/full/10.1680/maen.2011.164.4.143 (accessed on 21 December 2019).
- Landbø, T.; Wiley, N.M.; Godejord, A.; Sveen, D. Wind technology moves into deeper water. In Proceedings of the 16th Offshore Symposium—Energy from the Oceans, Houston, TX, USA, 9 February 2010; pp. A13–A23. [Google Scholar]
- Chiang, Y.; Lee, P.; Chen, C. A study on the mooring system for the sinking installation of the preassembling offshore wind turbine. In Proceedings of the International Offshore and Polar Engineering Conference, Rhodes, Greece, 26 June–2 July 2016; pp. 151–155. [Google Scholar]
- He, R.; Wang, L. Elastic rocking vibration of an offshore gravity base foundation. Appl. Ocean Res. 2016, 55, 48–58. [Google Scholar] [CrossRef]
- Zachert, H.; Wichtmann, T.; Triantafyllidis, T.; Hartwig, U. Simulation of a full-scale test on a gravity base foundation for offshore wind turbines using a high cycle accumulation model. In Proceedings of the Frontiers in Offshore Geotechnics III—3rd International Symposium on Frontiers in Offshore Geotechnics, Leiden, The Netherlands; Meyer, Ed.; Taylor & Francis Group: London, UK, 2015; pp. 819–824. ISBN 978-1-138-02848-7. [Google Scholar]
- Winkler, M.; Ole Stromme, S. Development Drilling and Production Platforms, 2014. Available online: http://www.npcarcticpotentialreport.org/pdf/tp/6-5_Development_Drilling_and_Production_Platforms.pdf (accessed on 16 December 2019).
- Van Poppel, R. In-shop to offshore: Shop coating steel for the thornton bank wind farm. J. Prot. Coat. Linings 2014, 31, 52–57. [Google Scholar]
- Zhu, B.; Byrne, B.W.; Houlsby, G.T. Long-term lateral cyclic response of suction caisson foundations in sand. J. Geotech. Geoenvironmental Eng. 2012, 139, 73–83. [Google Scholar] [CrossRef]
- Dixon, J.C.; Swift, R.H. Structure design for compliant tower offshore wind turbines. In Proceedings of the 4th BWEA Conference, Cranfield, UK, 24–26 March 1982; pp. 299–306. [Google Scholar]
- Harte, M.; Basu, B.; Nielsen, S.R. Dynamic analysis of wind turbines including soil-structure interaction. Eng. Struct. 2012, 45, 509–518. [Google Scholar] [CrossRef]
- Harris, J.M.; Whitehouse, R.J.; Sutherland, J. Marine Scour and Offshore Wind: Lessons Learnt and Future Challenges. In Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, The Netherlands, 19–24 June 2011; pp. 849–858. [Google Scholar]
- Plodpradit, P.; Dinh, V.N.; Kim, K.D. Coupled analysis of offshore wind turbine jacket structures with pile-soil-structure interaction using FAST v8 and X-SEA. Appl. Sci. 2019, 9, 1633. [Google Scholar] [CrossRef] [Green Version]
- Carbon Trust (2020). Available online: www.carbontrust.com (accessed on 11 January 2020).
- Crampsie, S. Firm foundations. Eng. Technol. 2014, 9, 64–67. [Google Scholar] [CrossRef]
- Betke, K. Underwater construction and operational noise at alpha ventus. In Ecological Research at the Offshore Windfarm Alpha Ventus: Challenges, Results and Perspectives; Springer Spektrum: Wiesbaden, Germany, 2014; pp. 171–180. [Google Scholar] [CrossRef]
- Seidel, M.; Foss, G. Impact of different substructures on turbine loading and dynamic behaviour for the DOWNVInD Project in 45m water depth. In Proceedings of the Conference Proceedings EWEC 2006, Athens, Greece, 27 February–2 March 2006; Available online: https://pdfs.semanticscholar.org/48eb/98c5f5833238ba4d2b0e493e006df3a47269.pdf?_ga=2.202964371.343505474.1579545842-1304111355.1579545842 (accessed on 20 December 2019).
- 4C Offshore. 4C Offshore, 2015. Available online: http://www.4coffshore.com/windfarms/siemens-passes-on-sylwin1-nid1701.html (accessed on 20 December 2019).
- Shi, W.; Park, H.; Chung, C.; Baek, J.; Kim, Y.; Kim, C. Load analysis and comparison of different jacket foundations. Renew. Energy 2013, 54, 201–210. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, D.; Sun, K.; Zhang, Z. Ship impact behavior on jacket type offshore wind turbine foundation. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering—OMAE, San Francisco, CA, USA, 8–13 June 2014; Volume 4B. [Google Scholar] [CrossRef]
- Alati, N.; Arena, F.; Failla, G.; Nava, V. Fatigue analysis of tripods and jackets for offshore wind turbines. In Proceedings of the Sustainable Maritime Transportation and Exploitation of Sea Resources—14th International Congress of the International Maritime Association of the Mediterranean, Shanghai, China, In Proceedings of the Sustainable Maritime Transportation and Exploitation of Sea Resources—14th International Congress of the International Maritime Association of the Mediterranean, Genova, Italy, 13–16 September 2011; Volume 2, pp. 1099–1106. [Google Scholar]
- Chen, D.; Huang, K.; Bretel, V.; Hou, L. Comparison of structural properties between monopile and tripod offshore wind-turbine support structures. Adv. Mech. Eng. 2013, 5, 175684. [Google Scholar] [CrossRef] [Green Version]
- Offshore Wind Industry (2020). Available online: http://www.offshorewindindustry.com (accessed on 10 January 2020).
- Resterhellweg, A.; Cañadillas, B.; Kinder, F.; Neumann, T. Wake measurements at alpha ventus—Dependency on stability and turbulence intensity. J. Phys. Conf. Ser. 2014, 555, 012106. [Google Scholar] [CrossRef] [Green Version]
- Junginger, M.; Faaij, A.; Turkenburg, W.C. Cost reduction prospects for offshore wind farms. Wind Eng. 2004, 28(1), 97–118. [Google Scholar] [CrossRef]
- Von Wedel, H. Vessel design criteria for valuable assets in the logistical chain of offshore wind park erection and maintenance. In Proceedings of the RINA; Royal Institution of Naval Architects—Marine Renewable and Offshore Wind Energy: London, UK, 2010; pp. 165–169. [Google Scholar]
- Kirsch, F.; Klingmüller, O. Driving of foundation piles for offshore wind turbines. In Proceedings of the Geotechnical Special Publication, Oakland, CA, USA, 20 June 2012; pp. 471–482. [Google Scholar] [CrossRef]
- Goseberg, N.; Franz, B.; Schlurmann, T. The potential co-use of aquaculture and offshore wind energy structures. In Proceedings of the 6th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, CGJOINT, Keelung, Taiwan, 23–29 September 2012; pp. 597–603. [Google Scholar]
- Jose, N.M.; Mathai, A. A Study on Lateral Deformation of Monopile of Offshore Wind Turbine due to Environmental Loads. Procedia Technol. 2016, 24, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Koulin, G.; Sewell, I.; Shaw, B.A. Faceted monopile design suitable for mass production and upscaling. Procedia Eng. 2015, 114, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Zaaijer, M.B. Comparison of monopile, tripod, suction bucket and gravity base design for a 6 MW turbine. In Proceedings of the Offshore Wind Energy in Mediterranean and Other European Seas: Resources, Technology, Applications: OWEMES 2003, Naples - Campania, Italy, 10–12 April 2003; pp. 1–15. Available online: https://pdfs.semanticscholar.org/58ef/771f0c2c6665a4189226ba55ead09a8aaa18.pdf (accessed on 20 December 2019).
- Achmus, M.; Akdag, C.T.; Thieken, K. Load-bearing behavior of suction bucket foundations in sand. Appl. Ocean Res. 2013, 43, 157–165. [Google Scholar] [CrossRef]
- Urban, S.; Strauss, A.; Reiterer, M.; Wagner, R. Experimental modeling of fatigue processes to detect the real degree of deterioration. In Proceedings of the Life-Cycle and Sustainability of Civil Infrastructure Systems—3rd International Symposium on Life-Cycle Civil Engineering, Vienna, Austria, 3–6 October 2012; pp. 1438–1446. [Google Scholar]
- Safinus, S.; Sedlacek, G.; Hartwig, U. Analysis of gravity base foundation for offshore wind turbine under cyclic loads. In Proceedings of the Twenty-First International Offshore and Polar Engineering Conference, Maui, HI, USA, 19–24 June 2011. [Google Scholar]
- Wang, H.F.; Fan, Y.H.; Moreno, I. Analysis of a preliminary configuration for a floating wind turbine. Struct. Eng. Mech. 2016, 59, 559–577. [Google Scholar] [CrossRef]
- Lamas-Pardo, M.; Iglesias, G.; Carral, L. A review of Very Large Floating Structures (VLFS) for coastal and offshore uses. Ocean Eng. 2015, 109, 677–690. [Google Scholar] [CrossRef]
- Kandasamy, R.; Cui, F.; Townsend, N.; Foo, C.C.; Guo, J.; Shenoi, A.; Xiong, Y. A review of vibration control methods for marine offshore structures. Ocean Eng. 2016, 127, 279–297. [Google Scholar] [CrossRef]
- Rodrigues, S.; Restrepo, C.; Kontos, E.; Pinto, R.T.; Bauer, P. Trends of offshore wind projects. Renew. Sustain. Energ. Rev. 2015, 49, 1114–1135. [Google Scholar] [CrossRef]
- Mohamed, A.; Ibrahim, Z.Z.; Silong, A.D.; Abdullah, R. Distributed Leadership in a Low-Carbon City Agenda. Sustainability 2016, 8, 715. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Lim, H.C. Study of Floating Wind Turbine with Modified Tension Leg Platform Placed in Regular Waves. Energies 2019, 12, 703. [Google Scholar] [CrossRef] [Green Version]
- Salic, T.; Charpentier, J.F.; Benbouzid, M.; Le Boulluec, M. Control Strategies for Floating Offshore Wind Turbine: Challenges and Trends. Electronics 2019, 8, 1185. [Google Scholar] [CrossRef] [Green Version]
- Koh, J.H.; Ng, E.Y.K. Downwind offshore wind turbines: Opportunities, trends and technical challenges. Renew. Sustain. Energ. Rev. 2016, 54, 797–808. [Google Scholar] [CrossRef]
- Rodrigues, S.F.; Pinto, R.T.; Soleimanzadeh, M.; Bosman, P.A.; Bauer, P. Wake losses optimization of offshore wind farms with moveable floating wind turbines. Energy Conv. Manag. 2015, 89, 933–941. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; Zhao, Y.; He, Y.; Liu, Y. Design, analysis and test of a model turbine blade for a wave basin test of floating wind turbines. Renew. Energy 2016, 97, 414–421. [Google Scholar] [CrossRef]
- Bauer, D. Design, Fabrication and Installation Implications for Offshore Wind Turbine Support Structures; Royal Aeronautical Society: London, UK, 1988; pp. 6.1–6.25. [Google Scholar]
- Roddier, D.; Cermelli, C.; Aubault, A.; Weinstein, A. WindFloat: A floating foundation for offshore wind turbines. J. Renew. Sustain. Energy 2010, 2, 033104. [Google Scholar] [CrossRef]
- Sebastian, T.; Lackner, M.A. Development of a free vortex wake method code for offshore floating wind turbines. Renew. Energy 2012, 46, 269–275. [Google Scholar] [CrossRef]
- Sethuraman, L.; Venugopal, V. Hydrodynamic response of a stepped-spar floating wind turbine: Numerical modelling and tank testing. Renew. Energy 2013, 52, 160–174. [Google Scholar] [CrossRef]
- Jeon, S.H.; Cho, Y.U.; Seo, M.W.; Cho, J.R.; Jeong, W.B. Dynamic response of floating substructure of spar-type offshore wind turbine with catenary mooring cables. Ocean Eng. 2013, 72, 356–364. [Google Scholar] [CrossRef]
- Namik, H.; Stol, K. Individual blade pitch control of floating offshore wind turbines. Wind Energy 2010, 13, 74–85. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Yi, Q.; Chen, D. Developments in semi-submersible floating foundations supporting wind turbines: A comprehensive review. Renew. Sustain. Energ. Rev. 2016, 60, 433–449. [Google Scholar] [CrossRef]
- Wang, K.; Moan, T.; Hansen, M.O. Stochastic dynamic response analysis of a floating vertical-axis wind turbine with a semi-submersible floater. Wind Energy 2016, 19(10), 1853–1870. [Google Scholar] [CrossRef]
- Antonutti, R.; Peyrard, C.; Johanning, L.; Incecik, A.; Ingram, D. The effects of wind-induced inclination on the dynamics of semi-submersible floating wind turbines in the time domain. Renew. Energy 2016, 88, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Karimirad, M.; Michailides, C. V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology. Renew. Energy 2015, 83, 126–143. [Google Scholar] [CrossRef] [Green Version]
- Roddier, D.; Cermelli, C.; Weinstein, A. WindFloat: A floating foundation for offshore wind turbines—Part I: Design basis and qualification process. In Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, HI, USA, 31 May–5 June 2009; pp. 845–853. [Google Scholar]
- Valverde, P. The WindFloat Project–WindFloat 2 MW floating offshore wind. In Proceedings of the 10th Deep Sea Offshore Wind R&D Conference, Trondheim, Norway, 24–25 January 2013. [Google Scholar]
- Hall, M.; Goupee, A. Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data. Ocean Eng. 2015, 104, 590–603. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Madsen, H.A.; Gao, Z.; Moan, T. Effect of the number of blades on the dynamics of floating straight-bladed vertical axis wind turbines. Renewable Energy 2017, 101, 1285–1298. [Google Scholar] [CrossRef]
- Bayati, I.; Jonkman, J.; Robertson, A.; Platt, A. The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine. J. Phys. Conf. Ser. 2014, 524, 012094. [Google Scholar] [CrossRef] [Green Version]
- Muliawan, M.J.; Karimirad, M.; Moan, T. Dynamic response and power performance of a combined spar-type floating wind turbine and coaxial floating wave energy converter. Renew. Energy 2013, 50, 47–57. [Google Scholar] [CrossRef]
- Karimirad, M.; Moan, T. Wave-and wind-induced dynamic response of a spar-type offshore wind turbine. J. Waterw. Port Coast. Ocean Eng. 2011, 138, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Karimirad, M.; Meissonnier, Q.; Gao, Z.; Moan, T. Hydroelastic code-to-code comparison for a tension leg spar-type floating wind turbine. Mar. Struct. 2011, 24, 412–435. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, K.; Gao, Z.; Moan, T. A comparative study on dynamic responses of spar-type floating horizontal and vertical axis wind turbines. Wind Energy 2017, 20, 305–323. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Romero, J.E.; García-Espinosa, J.; Serván-Camas, B.; Zamora-Parra, B. Non-linear dynamic analysis of the response of moored floating structures. Marine Structures 2016, 49, 116–137. [Google Scholar]
- Muliawan, M.J.; Karimirad, M.; Moan, T.; Gao, Z. STC (Spar-Torus Combination): A combined spar-type floating wind turbine and large point absorber floating wave energy converter—Promising and challenging. In Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, Brazil, 1–6 July 2012; pp. 667–676. [Google Scholar]
- Stiesdal, H. Hywind: The world’s first floating MW-scale wind turbine. Wind Dir. 2009, 31, 52–53. [Google Scholar]
- Karimirad, M.; Moan, T. Extreme dynamic structural response analysis of catenary moored spar wind turbine in harsh environmental conditions. J. Offshore Mech. Arct. Eng. 2011, 133, 041103. [Google Scholar] [CrossRef]
- Xing, Y.; Karimirad, M.; Moan, T. Modelling and analysis of floating spar-type wind turbine drivetrain. Wind Energy 2014, 17, 565–587. [Google Scholar] [CrossRef] [Green Version]
- Arias, R.R.; Ruiz, Á.R.; De Lena Alonso, V.G. Mooring and Anchoring. In Floating Offshore Wind Farms; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 89–119. [Google Scholar]
- Lin, Y.H.; Kao, S.H.; Yang, C.H. Investigation of Hydrodynamic Forces for Floating Offshore Wind Turbines on Spar Buoys and Tension Leg Platforms with the Mooring Systems in Waves. Appl. Sci. 2019, 9, 608. [Google Scholar] [CrossRef] [Green Version]
- Moon, W.L., III; Nordstrom, C.J. Tension leg platform turbine: A unique integration of mature technologies. In Proceedings of the 16th Offshore Symposium, Texas Section of the Society of Naval Architects and Marine Engineers, Houston, TX, USA, 9 February 2010; pp. A25–A34. [Google Scholar]
- Jonkman, J.M.; Matha, D. Dynamics of offshore floating wind turbines—Analysis of three concepts. Wind Energy 2011, 14, 557–569. [Google Scholar] [CrossRef]
- Ren, N.; Li, Y.; Ou, J. The effect of additional mooring chains on the motion performance of a floating wind turbine with a tension leg platform. Energies 2012, 5, 1135–1149. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Hu, Z.; Liu, G. Dynamic response and viscous effect analysis of a TLP-type floating wind turbine using a coupled aero-hydro-mooring dynamic code. Renew. Energy 2016, 99, 800–812. [Google Scholar] [CrossRef] [Green Version]
- Vita, L.; Ramachandran, G.K.V.; Krieger, A.; Kvittem, M.I.; Merino, D.; Cross-Whiter, J.; Ackers, B.B. Comparison of Numerical Models and Verification Against Experimental Data, Using Pelastar TLP Concept. In Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, St. John’s, NL, Canada, 31 May–5 June 2015; p. V009T09A047. [Google Scholar]
- Bouzounierakis, N.; Katsigiannis, Y.; Fiorentzis, K.; Karapidakis, E. Effect of Hybrid Power Station Installation in the Operation of Insular Power Systems. Inventions 2019, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Nandigam, M.; Dhali, S.K. Optimal design of an offshore wind farm layout. In Proceedings of the Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, 11–13 June 2008; pp. 1470–1474. [Google Scholar]
- Bresesti, P.; Kling, W.L.; Hendriks, R.L.; Vailati, R. HVDC connection of offshore wind farms to the transmission system. IEEE Trans. Energy Convers. 2007, 22, 37–43. [Google Scholar] [CrossRef]
- Negra, N.B.; Todorovic, J.; Ackermann, T. Loss evaluation of HVAC and HVDC transmission solutions for large offshore wind farms. Electr. Power Syst. Res. 2006, 76, 916–927. [Google Scholar] [CrossRef]
- Grady, S.A.; Hussaini, M.Y.; Abdullah, M.M. Placement of wind turbines using genetic algorithms. Renew. Energy 2005, 30, 259–270. [Google Scholar] [CrossRef]
- Banos, R.; Manzano-Agugliaro, F.; Montoya, F.G.; Gil, C.; Alcayde, A.; Gómez, J. Optimization methods applied to renewable and sustainable energy: A review. Renew. Sustain. Energ. Rev. 2011, 15, 1753–1766. [Google Scholar] [CrossRef]
- Mosetti, G.P.C.D.B.; Poloni, C.; Diviacco, B. Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. J. Wind Eng. Ind. Aerodyn. 1994, 51, 105–116. [Google Scholar] [CrossRef]
- Ackermann, T. Transmission systems for offshore wind farms. In Wind Power in Power Systems; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; pp. 479–504. [Google Scholar]
- Li, D.D.; He, C.; Fu, Y. Optimization of internal electric connection system of large offshore wind farm with hybrid genetic and immune algorithm. In Proceedings of the Electric Utility Deregulation and Restructuring and Power Technologies, Nanjing, China, 6–9 April 2008; pp. 2476–2481. [Google Scholar]
- Ministerio de Industria, Turismo y Comercio—Ministerio de Medio Ambiente y Medio Rural y Marino. Available online: http://www.minetur.gob.es/es-es/gabineteprensa/notasprensa/documents/np%20mapa%20e%C3%B3lico%20marino%2020%2004%2009.pdf (accessed on 10 December 2019).
- De Alegría, I.M.; Andreu, J.; Martín, J.L.; Ibanez, P.; Villate, J.L.; Camblong, H. Connection requirements for wind farms: A survey on technical requierements and regulation. Renew. Sustain. Energ. Rev. 2007, 11, 1858–1872. [Google Scholar] [CrossRef]
- Yang, J.; Fletcher, J.E.; O’Reilly, J. Multiterminal DC wind farm collection grid internal fault analysis and protection design. IEEE Trans. Power Deliv. 2010, 25, 2308–2318. [Google Scholar] [CrossRef] [Green Version]
- Gomis-Bellmunt, O.; Liang, J.; Ekanayake, J.; King, R.; Jenkins, N. Topologies of multiterminal HVDC-VSC transmission for large offshore wind farms. Electr. Power Syst. Res. 2011, 81, 271–281. [Google Scholar] [CrossRef]
- Shin, J.S.; Kim, W.W.; Kim, J.O. Study on designing for inner grid of offshore wind farm. J. Clean Energy Technol. 2015, 3, 265–269. [Google Scholar] [CrossRef]
- De Alegría, I.M.; Martín, J.L.; Kortabarria, I.; Andreu, J.; Ereño, P.I. Transmission alternatives for offshore electrical power. Renew. Sustain. Energ. Rev. 2009, 13, 1027–1038. [Google Scholar]
- Flourentzou, N.; Agelidis, V.G.; Demetriades, G.D. VSC-based HVDC power transmission systems: An overview. IEEE Transactions on Power Electronics 2009, 24, 592–602. [Google Scholar] [CrossRef]
- Xiang, D.; Ran, L.; Bumby, J.R.; Tavner, P.J.; Yang, S. Coordinated control of an HVDC link and doubly fed induction generators in a large offshore wind farm. IEEE Trans. Power Deliv. 2006, 21, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Meyer, C.; Hoing, M.; Peterson, A.; De Doncker, R.W. Control and design of DC grids for offshore wind farms. IEEE Trans. Ind. Appl. 2007, 43, 1475–1482. [Google Scholar] [CrossRef]
- Bosch, J.; Staffell, I.; Hawkes, A.D. Global levelised cost of electricity from offshore wind. Energy 2019, 189, 116357. [Google Scholar] [CrossRef]
- Maalawi, K.Y.; Negm, H.M. Optimal frequency design of wind turbine blades. J. Wind Eng. Ind. Aerodyn. 2002, 90, 961–986. [Google Scholar] [CrossRef]
- Xudong, W.; Shen, W.Z.; Zhu, W.J.; Sørensen, J.N.; Jin, C. Shape optimization of wind turbine blades. Wind Energy 2009, 12, 781–803. [Google Scholar] [CrossRef]
- Li, H.; Chen, Z.; Polinder, H. Optimization of multibrid permanent-magnet wind generator systems. IEEE Trans. Energy Convers. 2009, 24, 82–92. [Google Scholar] [CrossRef]
- Park, J.; Kwon, S.-D.; Law, K. A Data-Driven, Cooperative Approach for Wind Farm Control: A Wind Tunnel Experimentation. Energies 2017, 10, 852. [Google Scholar] [CrossRef]
- Jallad, J.; Mekhilef, S.; Mokhlis, H. Frequency Regulation Strategies in Grid Integrated Offshore Wind Turbines via VSC-HVDC Technology: A Review. Energies 2017, 10, 1244. [Google Scholar] [CrossRef] [Green Version]
Foundation | Structure Type | Water Depth (m) | Ground Type | Expected Depth (m) | Current Use |
---|---|---|---|---|---|
Monopile | Fixed | <15 | Sandy-clayey | 50 (with guy wire) | the most used |
Gravity Base Structure (GBS) | Fixed | ≤30 | Requires the previous preparation of the terrain. | 30–50 | significant |
Jacket | Fixed | >30 (25–50) | Different types of soils (non-rocky) | <50 | significant |
Tripods | Fixed | ≈30 | Different types of soils (non-rocky) | >40 | not common |
Semisubmersible | Floating | >60 | - | >60 | not common |
Spar-buoy | Floating | >60 | - | >120 | not common |
Tension Leg Platform (TLP) | Floating | >60 | - | >100 | not common |
Voltage (kV) | Current (A) | Wire Section (mm2) | Weight Cu (T) | k€/kg (Cu) | Losses (MW) | Losses (€/year) |
---|---|---|---|---|---|---|
30 | 3849,00 | 3 × (4 × 800) | 4694 | 33,330 | 1,900 | 249,660 |
132 | 874,77 | 3 × 800 | 1174 | 8332 | 0,393 | 51,583 |
Keyword | Frequency |
---|---|
Wind Power | 2039 |
Wind Turbines | 1503 |
Asynchronous Generators | 827 |
Electric Generators | 777 |
Computer Simulation | 584 |
Electric Utilities | 582 |
Electric Power Transmission Networks | 444 |
Synchronous Generators | 444 |
Wind Turbine | 427 |
Electric Fault Currents | 395 |
Electric Power Generation | 336 |
Permanent Magnets | 331 |
Turbines | 303 |
Modeling | 302 |
Energy Conversion | 286 |
Mathematical Models | 275 |
Wind | 270 |
Wind Energy | 270 |
Wind Farm | 268 |
Renewable Energy Resources | 265 |
Permanent Magnet Synchronous Generator | 245 |
Turbogenerators | 234 |
Doubly Fed Induction Generators | 233 |
MATLAB | 231 |
Doubly Fed Induction Generator (DFIG) | 221 |
Electric Power Systems | 220 |
Power Converters | 216 |
Controllers | 203 |
Optimization | 203 |
Wind Speed | 196 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzano-Agugliaro, F.; Sánchez-Calero, M.; Alcayde, A.; San-Antonio-Gómez, C.; Perea-Moreno, A.-J.; Salmeron-Manzano, E. Wind Turbines Offshore Foundations and Connections to Grid. Inventions 2020, 5, 8. https://doi.org/10.3390/inventions5010008
Manzano-Agugliaro F, Sánchez-Calero M, Alcayde A, San-Antonio-Gómez C, Perea-Moreno A-J, Salmeron-Manzano E. Wind Turbines Offshore Foundations and Connections to Grid. Inventions. 2020; 5(1):8. https://doi.org/10.3390/inventions5010008
Chicago/Turabian StyleManzano-Agugliaro, Francisco, Miguel Sánchez-Calero, Alfredo Alcayde, Carlos San-Antonio-Gómez, Alberto-Jesús Perea-Moreno, and Esther Salmeron-Manzano. 2020. "Wind Turbines Offshore Foundations and Connections to Grid" Inventions 5, no. 1: 8. https://doi.org/10.3390/inventions5010008
APA StyleManzano-Agugliaro, F., Sánchez-Calero, M., Alcayde, A., San-Antonio-Gómez, C., Perea-Moreno, A. -J., & Salmeron-Manzano, E. (2020). Wind Turbines Offshore Foundations and Connections to Grid. Inventions, 5(1), 8. https://doi.org/10.3390/inventions5010008