Designing of Cost-Effective and Low-Carbon Multi-Energy Nanogrids for Residential Applications
Abstract
:1. Introduction
1.1. Motivation
- -
- effectively integrate RES at local level;
- -
- demonstrate the economic benefits of hybrid multi-energy systems implementation at local level;
- -
- reduce primary energy consumption by giving priority to green energy sources and low-carbon solution technologies;
- -
- increase management efficiency by dynamically matching local electricity and thermal generation and consumption;
- -
- stimulate the development of a leading-edge market for energy-efficient technologies with new business models.
1.2. Literature Review
1.3. Aims and Contribution
2. System Description
3. Optimal Design Model
3.1. Objective Functions
3.2. Decision Variables
3.3. Constraints
3.3.1. Design Constraints for Energy Technologies in the Multi-Energy Nanogrid
3.3.2. Operation Constraints for Energy Technologies in the Multi-Energy Nanogrid
Operation Constraints for Generation Technologies
Operation Constraints for Conversion Technologies
Operation Constraints for Storage Technologies
3.3.3. Energy Balances Constraints
3.4. Multi-Objective Optimization Method
4. Italian Case Study
4.1. Energy Demand
4.2. Solar Irradiance Profiles
4.3. Techno-Economic Information of Energy Technologies
4.4. Other Input Data
5. Results
- Scenario 1: MEN operating in grid-connected mode;
- Scenario 2: MEN operating in islanded mode in terms of electricity supply.
5.1. Scenario 1: Multi-Energy Nanogrid Operating in Grid-Connected Mode
5.1.1. Optimized System Configurations on the Pareto Frontier in Scenario 1
5.1.2. Operation Strategies of the Multi-Energy Nanogrid in Scenario 1
5.2. Scenario 2: Multi-Energy Nanogrid Operating in Islanded Mode
5.2.1. Optimized System Configurations on the Pareto Frontier in Scenario 2
5.2.2. Operation Strategies of the Multi-Energy Nanogrid in Scenario 2
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Decision variables | |
A | PV installed area (m2) |
C | cost function (€) |
Cd,hr | cooling rate (kW) |
Ed,hr | power (kW) |
Fobj | objective function |
gd,hr | generation level of technology (kW) |
Gd,hr | natural gas volumetric flow rate (Nm3/h) |
Hd,hr | heating rate (kW) |
PE | primary energy input function (kWh) |
S | designed size of technology (kW)–(kWh) |
SOC | battery state-of-charge |
x | binary decision variable |
Parameters | |
Amax | available area for PV installation (m2) |
c | constant in Equation (26) (kWh/€) |
Cc | specific capital cost of technology (€/kW)–(€/kWh)–(€/m2) |
COP | coefficient of performance |
CRF | capital recovery factor of technology |
Dt | length of the time interval (h) |
Id,hr | total solar irradiance (kW/m2) |
LHVgas | lower heat value of natural gas (kWh/Nm3) |
N | lifetime of technology (years) |
OM | specific O&M cost of technology (€/kWh) |
Pe,hr | electricity price (€/kWh) |
Pgas | natural gas price (€/Nm3) |
r | interest rate |
Smax | maximum size of the technology available in the market (kW) |
Smin | minimum size of the technology available in the market (kW) |
H | efficiency of technology |
Φ | storage loss fraction |
ω | weight in Equation (26) |
Superscript/Subscripts | |
AB | auxiliary boiler |
AChil | absorption chiller |
Bat | battery |
Ch | charging |
µCHP | micro-CHP |
D | day |
dem | demand |
Disch | discharging |
HM | heating mode |
Hr | hour |
i | index of energy technology |
In | input |
INV | investment |
max | maximum |
min | minimum |
O&M | operation and maintenance |
Out | output |
PG | power grid |
PV | photovoltaic |
ref | reference |
SC | space cooling |
Sto | stored |
TES | thermal energy storage |
Th | thermal |
Acronyms | |
µCHP | micro combined heat and power |
MILP | mixed-integer linear programming |
MEN | multi energy nanogrid |
O&M | operation and maintenance |
References
- Kari, A.; Arto, S. Distributed energy generation and sustainable development. Renew. Sustain. Energy Rev. 2006, 10, 539–558. [Google Scholar]
- Akorede, M.F.; Hizam, H.; Poresmaeil, E. Distributed energy resources and benefits to the environment. Renew. Sustain. Energy Rev. 2010, 14, 724–734. [Google Scholar] [CrossRef]
- Roberto, R.; De Iulio, R.; Di Somma, M.; Graditi, G.; Guidi, G.; Noussan, M. A multi-objective optimization analysis to assess the potential economic and environmental benefits of distributed storage in district heating networks: A case study. Int. J. Sustain. Energy Plan. Manag. 2019, 20. [Google Scholar] [CrossRef]
- Atia, R.; Yamada, N. Sizing and analysis of renewable energy and battery systems in residential microgrids. IEEE Trans. Smart Grid 2016, 7, 1204–1213. [Google Scholar] [CrossRef]
- Majidi, M.; Nojavan, S.; Esfetanaj, N.N.; Najafi-Ghalelou, A.; Zare, K. A multi-objective model for optimal operation of a battery/PV/fuel cell/grid hybrid energy system using weighted sum technique and fuzzy satisfying approach considering responsible load management. Sol. Energy 2017, 144, 79–89. [Google Scholar] [CrossRef]
- Lokeshgupta, B.; Sivasubramani, S. Multi-objective home energy management with battery energy storage systems. Sustain. Cities Soc. 2019, 47, 101458. [Google Scholar] [CrossRef]
- Li, L.; Liu, P.; Li, Z.; Wang, X. A multi-objective optimization approach for selection of energy storage systems. Comput. Chem. Eng. 2018, 115, 213–225. [Google Scholar] [CrossRef]
- Yuan, Y.; Bayod-Rújula, A.A.; Chen, H.; Martínez-Gracia, A.; Wang, J.; Pinnarelli, A. An Advanced Multicarrier Residential Energy Hub System Based on Mixed Integer Linear Programming. Int. J. Photoenergy 2019. [Google Scholar] [CrossRef]
- Hosseinalizadeh, R.; Shakouri, H.; Amalnick, M.S.; Taghipour, P. Economic sizing of a hybrid (PV–WT–FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: Case study of Iran. Renew. Sustain. Energy Rev. 2016, 29, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Ogunjuyigbe, A.S.; Ayodele, T.R.; Akinola, O.A. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building. Appl. Energy 2016, 1, 153–171. [Google Scholar] [CrossRef]
- Paulitschke, M.; Bocklisch, T.; Böttiger, M. Sizing algorithm for a PV-battery-H 2-hybrid system employing particle swarm optimization. Energy Procedia 2015, 30, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Lan, H.; Wen, S.; Hong, Y.Y.; David, C.Y.; Zhang, L. Optimal sizing of hybrid PV/diesel/battery in ship power system. Appl. Energy 2015, 15, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, S.; Abdi, S. Application of the Hybrid Big Bang-Big Crunch algorithm for optimal sizing of a stand-alone hybrid PV/wind/battery system. Sol. Energy 2016, 30, 366–374. [Google Scholar] [CrossRef]
- Brandoni, C.; Renzi, M. Optimal sizing of hybrid solar micro-CHP systems for the household sector. Appl. Therm. Eng. 2015, 75, 896–907. [Google Scholar] [CrossRef]
- Ramlia, M.A.M.; Bouchekarab, H.R.E.H.; Alghamdia, A.S. Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm. Renew. Energy 2018, 121, 400–411. [Google Scholar] [CrossRef]
- Di Somma, M.; Yan, B.; Bianco, N.; Graditi, G.; Luh, P.B.; Mongibello, L.; Naso, V. Design optimization of a distributed energy system through cost and exergy assessments. Energy Procedia 2017, 105, 2451–2459. [Google Scholar] [CrossRef]
- Al-Falahi, M.D.A.; Nimma, K.S.; Jayasinghe, S.D.G.; Enshaei, H. Sizing and modeling of a standalone hybrid renewable energy system. In Proceedings of the IEEE 2nd Annual Southern Power Electronics Conference (SPEC), Auckland, New Zealand, 5–8 December 2016. [Google Scholar] [CrossRef]
- Okoye, C.O.; Solyalı, O. Optimal sizing of stand-alone photovoltaic systems in residential buildings. Energy 2017, 126, 573–584. [Google Scholar] [CrossRef]
- Al-Falahi, M.D.; Jayasinghe, S.D.G.; Enshaei, H. A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system. Energy Convers. Manag. 2017, 143, 252–274. [Google Scholar] [CrossRef]
- Jamshidi, M.; Askarzadeh, A. Techno-economic analysis and size optimization of an off-grid hybrid photovoltaic, fuel cell and diesel generator system. Sustain. Cities Soc. 2019, 44, 310–320. [Google Scholar] [CrossRef]
- Vieira, F.M.; Moura, P.S.; de Almeida, A.T. Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings. Renew. Energy 2017, 103, 308–320. [Google Scholar] [CrossRef]
- Aichhorn, A.; Greenleaf, M.; Li, H.; Zheng, J. A cost effective battery sizing strategy based on a detailed battery lifetime model and an economic energy management strategy. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8. [Google Scholar]
- Tezer, T.; Yaman, R.; Yaman, G. Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2017, 73, 840–853. [Google Scholar] [CrossRef]
- Burmester, D.; Rayudu, R.; Seah, W.; Akinyele, D. A review of nanogrid topologies and technologies. Renew. Sustain. Energy Rev. 2017, 67, 760–775. [Google Scholar] [CrossRef]
- Italian Decree n. 311/06. Available online: www.artechint.com/attestato-energetico.pdf (accessed on 15 October 2019). (In Italian).
- Standard ISO 7730:2005. Ergonomics of the Thermal Environment e Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- EN 12831:2003. Heating Systems in Buildings e Method for Calculation of the Design Heat Load; EUROPEAN COMMITTEE FOR STANDARDIZATION: Brussels, Belgium, 2003. [Google Scholar]
- Philips Lighting Ltd. Lighting Manual: A Handbook of Lighting Installation Design; Philips Lighting Ltd.: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Mongibello, L.; Bianco, N.; Caliano, M.; Graditi, G. Influence of heat dumping on the operation of residential micro-CHP systems. Appl. Energy 2015, 160, 206–220. [Google Scholar] [CrossRef]
- Barbieri, E.S.; Melino, F.; Morini, M. Influence of the thermal energy storage on the profitability of micro CHP systems for residential building applications. Appl. Energy 2012, 97, 714–722. [Google Scholar] [CrossRef]
- Bianchi, M.; De Pascale, A.; Spina, P.R. Guidelines for residential micro-CHP systems design. Appl. Energy 2012, 97, 673–685. [Google Scholar] [CrossRef]
- ASHRAE International Weather Files for Energy Calculations (IWEC Weather Files). Users Manual and CD-ROM; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2001. [Google Scholar]
- Darrow, K.; Tidball, R.; Wang, J.; Hampson, A. Catalog of CHP Technologies. 2015. Available online: https://www.epa.gov/sites/production/files/2015-07/documents/catalog_of_chp_technologies.pdf (accessed on 10 October 2019).
- Technology Data for Energy Plants. Energinet.dk. 2012. Available online: https://www.energinet.dk/SiteCollectionDocuments/Danske%20dokumenter/Forskning/Technology_data_for_energy_plants.pdf (accessed on 12 October 2019).
- National System for Environmental Protection (ISPRA). Report 280/2018 “Fattori di Emissione Atmosferica di Gas a Effetto Serra e Altri Gas nel Settore Elettrico”. 2018. Available online: http://www.isprambiente.gov.it/files2018/pubblicazioni/rapporti/R_280_18_Emissioni_Settore_Elettrico.pdf (accessed on 15 October 2019). (In Italian)
- Available online: https://www.arera.it/it/dati/condec.htm (accessed on 18 October 2019).
Energy Technology | Minimum Size (kW) | Specific Capital Cost | O&M Costs (€/kWh) | Efficiency | Lifetime | |
---|---|---|---|---|---|---|
El | Th | |||||
µCHP (ICE as prime mover) | 1.0 | 1500 €/kW | 0.0024 | 0.28 | 0.65 | 20 |
Auxiliary boiler | 10 | 100 €/kW | 0.015 | 0.8 | 15 | |
PV | - | 2000 Eur/kWp | 0.005 | 0.14 | 30 | |
Reversible heat pump | 5.0 | 460 €/kW | 0.0025 | COPHM = 3.5 COPCM = 3.0 | 20 | |
Absorption chiller | 1.0 | 510 €/kW | 0.001 | 0.8 | 20 | |
Battery | - | 400 €/kWh | 0.005 | ηCh = 0.75 ηDisch = 0.75 | 5 | |
TES | - | 20 €/kWh | 0.0014 | φTES = 0.05 | 20 |
ω Value | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 |
---|---|---|---|---|---|---|---|---|---|---|---|
Optimized Sizes of Energy Technologies in the MEN | |||||||||||
µCHP (kWe) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Auxiliary boiler (kWth) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
PV (m2) | 100 | 100 | 100 | 100 | 71 | 46 | 43 | 43 | 41 | 34 | 20 |
Reversible heat pump (kWth) | 9.5 | 9.5 | 9.4 | 8.3 | 7.8 | 7.4 | 7.2 | 7.3 | 7.3 | 6.6 | 6.6 |
Absorption chiller (kWth) | 1.8 | 1.8 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0 | 0 | 0 | 0 |
Battery (kWhe) | 27.0 | 27.0 | 27.0 | 26.7 | 18.1 | 10.8 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
TES (Heat) (kWhth) | 27.4 | 27.4 | 19.6 | 17.7 | 23.5 | 20.4 | 17.2 | 17.8 | 17.3 | 17.9 | 15.5 |
TES (Cooling) (kWhth) | 45.4 | 45.4 | 54.1 | 47.7 | 39.5 | 32.4 | 33.8 | 34.7 | 31.5 | 25.8 | 11.4 |
ω Value | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 |
---|---|---|---|---|---|---|---|---|---|---|---|
Optimized Sizes of Energy Technologies in the MEN | |||||||||||
µCHP (kWe) | 1.7 | 1.7 | 1.7 | 1.7 | 1.6 | 1.9 | 2.0 | 2.0 | 1.9 | 2.1 | 2.1 |
Auxiliary boiler (kWth) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
PV (m2) | 97 | 97 | 97 | 97 | 94 | 56 | 44 | 39 | 40 | 37 | 22 |
Reversible heat pump (kWth) | 11.0 | 11.0 | 11.0 | 11.0 | 9.1 | 7.9 | 7.2 | 6.5 | 6.1 | 6.1 | 4.4 |
Absorption chiller (kWth) | 2.8 | 2.8 | 2.8 | 2.8 | 2.0 | 2.5 | 3.2 | 3.4 | 2.8 | 1.9 | 2.7 |
Battery (kWhe) | 27.8 | 27.8 | 27.8 | 27.8 | 27 | 13.8 | 10.3 | 10.0 | 10.0 | 10.0 | 10.0 |
TES (Heat) (kWhth) | 25.7 | 25.7 | 25.7 | 25.7 | 19.4 | 25.5 | 14.2 | 23.3 | 25.6 | 12.2 | 20.9 |
TES (Cooling) (kWhth) | 53.5 | 53.5 | 53.5 | 53.5 | 48.5 | 38.2 | 38.1 | 31.5 | 34.5 | 31.0 | 22.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Somma, M.; Caliano, M.; Graditi, G.; Pinnarelli, A.; Menniti, D.; Sorrentino, N.; Barone, G. Designing of Cost-Effective and Low-Carbon Multi-Energy Nanogrids for Residential Applications. Inventions 2020, 5, 7. https://doi.org/10.3390/inventions5010007
Di Somma M, Caliano M, Graditi G, Pinnarelli A, Menniti D, Sorrentino N, Barone G. Designing of Cost-Effective and Low-Carbon Multi-Energy Nanogrids for Residential Applications. Inventions. 2020; 5(1):7. https://doi.org/10.3390/inventions5010007
Chicago/Turabian StyleDi Somma, Marialaura, Martina Caliano, Giorgio Graditi, Anna Pinnarelli, Daniele Menniti, Nicola Sorrentino, and Giuseppe Barone. 2020. "Designing of Cost-Effective and Low-Carbon Multi-Energy Nanogrids for Residential Applications" Inventions 5, no. 1: 7. https://doi.org/10.3390/inventions5010007
APA StyleDi Somma, M., Caliano, M., Graditi, G., Pinnarelli, A., Menniti, D., Sorrentino, N., & Barone, G. (2020). Designing of Cost-Effective and Low-Carbon Multi-Energy Nanogrids for Residential Applications. Inventions, 5(1), 7. https://doi.org/10.3390/inventions5010007