Design and Implementation of Elevator Push-Buttons with Integrated Ultraviolet-C Light-Emitting Diode Light Sources for Disinfection
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Disinfection Efficiency Test
3.2. UVC Leakage Test
3.3. Reliability Test of UVC LED Package
4. Conclusions
5. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karim, S.S.A.; Karim, Q.A. Omicron SARS-CoV-2 variant: A new chapter in the COVID-19 pandemic. Lancet 2021, 398, 2126–2128. [Google Scholar] [CrossRef] [PubMed]
- Giske, C.G.; Monnet, D.L.; Cars, O.; Carmeli, Y. Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob. Agents Chemother. 2008, 52, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Barber, L.M.; Schleier, J.J.; Peterson, R. Economic cost analysis of West Nile virus outbreak, Sacramento county, California, USA, 2005. Emerg. Infect. Dis. 2010, 16, 480. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, L.; Cervino, G.; Matarese, M.; Amico, C.; Surace, G.; Paduano, V.; Fiorillo, M.T.A.; Moschella, A.L.; Bruna, G.L.; Romano, R.; et al. COVID-19 surface persistence: A recent data summary and its importance for medical and dental settings. Int. J. Environ. Res. Public Health 2020, 17, 3132. [Google Scholar] [CrossRef] [PubMed]
- Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Johnson, D.L.; Mead, K.R.; Lynch, R.A.; Hirst, D.V.L. Lifting the lid on toilet plume aerosol: A literature review with suggestions for future research. Am. J. Infect. Control. 2013, 41, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zhao, Y.; Yadav, A.K.; Ji, B.; Kang, P.; Wei, T. Ozone based inactivation and disinfection in the pandemic time and beyond: Taking forward what has been learned and best practice. Sci. Total Environ. 2023, 862, 160711. [Google Scholar] [CrossRef]
- Epelle, E.; Macfarlane, A.; Cusack, M.; Burns, A.; Okolie, J.; Mackay, W.; Rateb, M.; Yaseen, M. Bacterial and fungal disinfection via ozonation in air. J. Microbiol. Methods 2022, 194, 106431. [Google Scholar] [CrossRef]
- Epelle, E.; Macfarlane, A.; Cusack, M.; Burns, A.; Thissera, B.; Mackay, W.; Rateb, M.; Yaseen, M. Ozone application in different industries: A review of recent developments. Chem. Eng. J. 2023, 454, 140188. [Google Scholar] [CrossRef]
- Bharti, B.; Li, H.; Ren, Z.; Zhu, R.; Zhu, Z. Recent advances in sterilization and disinfection technology: A review. Chemosphere 2022, 308, 136404. [Google Scholar] [CrossRef]
- Śmiech, K.M.; Kovács, T.; Wildschut, R.F.; Monleon, A.J.C.; de Vries-Onclin, B.; Bowen, J.G.; Agostinho, L.L.F. Thermal disinfection of hospital wastewater in a pilot-scale continuous-flow system. Appl. Water Sci. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Rauch, K.; Macisaac, S.; Reid, B.; Mullin, T.; Atikinson, A.; Pimentel, A.; Stoddart, A.; Linden, K.; Gagnon, G. A critical review of ultra-violet light emitting diodes as a one water disinfection technology. Water Res. X 2024, 25, 100271. [Google Scholar] [CrossRef] [PubMed]
- Messina, G.; Bosco, R.; Amodeo, D.; Nante, N.; De Palma, I.; Petri, C.; Cevenini, G. Safer school with near-UV technology: Novel applications for environmental hygiene. J. Environ. Health Sci. Eng. 2023, 21, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Bhardwaj, S.; Khatri, M.; Kim, K.; Bhardwaj, N. UVC radiation for food safety: An emerging technology for the microbial disinfection of food products. Chem. Eng. J. 2021, 417, 128084. [Google Scholar] [CrossRef]
- Available online: https://izakscientific.com/disinfect-buses-stations-and-other-public-transportation-systems-with-uv-light/ (accessed on 30 December 2024).
- Dejohn, C.; Beiland, K.; Garcia, D. Methods of Aircraft Disinfection to Reduce Airborne Infectious Disease Transmission. Aerosp. Med. Hum. Perform. 2024, 95, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Ryu, B.H.; Cho, Y.; Cho, O.H.; Hong, S.I.; Kim, S.; Lee, S. Environmental contamination of SARS-CoV-2 during the COVID-19 outbreak in South Korea. Am. J. Infect. Control 2022, 48, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Dong, Z.; Fan, W.; Xu, K.; Tang, S.; Wang, Y.; Wu, F. A narrative review on the role of temperature and humidity in COVID-19: Transmission, persistence, and epidemiological evidence. Eco-Environ. Health 2022, 1, 73–85. [Google Scholar] [CrossRef]
- García de Abajo, F.J.; Herna, R.J.; Kaminer, I.; Meyerhans, A.; Rosell-Llompart, J.; Sanchez-Elsner, T. Back to normal: An old physics route to reduce SARS-CoV-2 transmission in indoor spaces. ACS Nano 2020, 14, 7704–7713. [Google Scholar] [CrossRef] [PubMed]
- Mallakpour, S.; Azadi, E.; Hussain, C.M. Protection, disinfection, and immunization for healthcare during the COVID-19 pandemic: Role of natural and synthetic macromolecules. Sci. Total Environ. 2021, 776, 145989. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Kapoor, D.; Dhanjal, D.S.; Bhatia, D.; Jan, S.; Singh, N.; Romero, R.; Ramamurthy, P.; Singh, J. Detection and disinfection of COVID-19 virus in wastewater. Environ. Chem. Lett. 2021, 19, 1917–1933. [Google Scholar] [CrossRef]
- Heilingloh, C.S.; Aufderhorst, U.W.; Schipper, L.; Dittmer, U.; Witzke, O.; Yang, D.; Zheng, X.; Sutter, K.; Trilling, M.; Alt, M.; et al. Susceptibility of SARS-CoV-2 to UV irradiation. Am. J. Infect. Control 2020, 48, 1273–1275. [Google Scholar] [CrossRef]
- Kowalski, W. UVGI disinfection theory. In Ultraviolet Germicidal Irradiation Handbook; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Kim, D.K.; Kang, D.H. UVC LED irradiation effectively inactivates aerosolized viruses, bacteria, and fungi in a chamber-type air disinfection system. Appl. Environ. Microbiol. 2018, 84, e00944-18. [Google Scholar] [CrossRef]
- Shimoda, H.; Matsuda, J.; Iwasaki, T.; Hayasaka, D. Efficacy of 265-nm ultraviolet light in inactivating infectious SARS-CoV-2. J. Photochem. Photobiol. 2021, 7, 100050. [Google Scholar] [CrossRef] [PubMed]
- Messina, G.; Burgassi, S.; Messina, D.; Montagnani, V.; Cevenini, G. A new UV-LED device for automatic disinfection of stethoscope membranes. Am. J. Infect. Control 2015, 43, 61–66. [Google Scholar] [CrossRef] [PubMed]
- McGinn, C.; Scott, R.; Ryan, C.; Donnelly, N.; Cullinan, M.F.; Beckett, M. Rapid disinfection of radiology treatment rooms using an autonomous ultraviolet germicidal irradiation robot. Am. J. Infect. Control 2022, 50, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, Y.; Yan, J.C.; Xie, H.Z.; Liu, L.; Chen, X.; Hou, M.J.; Qin, Z.X.; Wang, J.X.; Li, J.M. Light extraction enhancement of AlGaN-based ultraviolet light-emitting diodes by substrate sidewall roughening. Appl. Phys. Lett. 2017, 111, 11102. [Google Scholar] [CrossRef]
- Qiu, X.; Lo, J.C.C.; Lee, S.W.R. Packaging of UV LED with a stacked silicon reflector for converged UV emission. In Proceedings of the 2017 International Conference on Electronics Packaging, Yamagata, Japan, 19–22 April 2017. [Google Scholar]
- Qiu, X.; Lo, J.C.C.; Lee, S.W.R.; Tseng, Y.J.; Yi, H.K.; Chiu, P. UV LED assisted printing platform for fabrication of micro-scale polymer pillars. J. Microelectromech. Syst. 2020, 29, 1523–1530. [Google Scholar] [CrossRef]
- Qiu, X.; Lo, J.C.C.; Cheng, Y.J.; Xu, H.; Xu, Q.W.; Lee, S.W.R. Implementation and characterization of a sterilization module consisting of novel 265 nm UVC LED packages. HKIE Trans. 2021, 28, 213–220. [Google Scholar] [CrossRef]
- Available online: https://nb-uvtek.com/Products/elevatorbuttonsterilizationmodules.html (accessed on 30 December 2024).
- Technical Standard for Disinfection 2.1.5.4; Ministry of Health of the People’s Republic of China: Beijing, China, 2002.
- Bhatta, D.R.; Hamal, D.; Shrestha, R.; Subramanya, S.H.; Baral, N.; Singh, R.K.; Nayak, N.; Gokhale, S. Bacterial contamination of frequently touched objects in a tertiary care hospital of Pokhara, Nepal: How safe are our hands? Antimicrob. Resist. Infect. Control 2018, 7, 97. [Google Scholar] [CrossRef]
- Kitagawa, H.; Nomura, T.; Nazmul, T.; Omori, K.; Shigemoto, N.; Sakaguchi, T.; Ohge, H. Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination. Am. J. Infect. Control 2021, 49, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Skobowiat, C.; Brożyna, A.A.; Zorica, J.; Jeayeng, S.; Oak, A.S.; Kim, T.K.; Panich, U.; Reiter, R.J.; Slominski, A.T. Melatonin and its derivatives counteract the ultraviolet B radiation-induced damage in human and porcine skin ex vivo. J. Pineal Res. 2018, 65, e12501. [Google Scholar] [CrossRef] [PubMed]
- Duchaine, C. Assessing microbial decontamination of indoor air with particular focus on human pathogenic viruses. Am. J. Infect. Control 2016, 44, 121–126. [Google Scholar] [CrossRef]
- International Commission on Non-Ionizing Radiation Protection. Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Phys. 2004, 87, 171–186. [Google Scholar] [CrossRef]
- Tsai, M.; Tang, C.; Wang, C.H.; Tsai, Y.Y.; Chen, C. Investigation on some parameters affecting optical degradation of LED packages during high-temperature aging. IEEE Trans. Device Mater. Reliab. 2015, 15, 335–341. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, L.; Qi, P. Progress of reliability and failure mechanisms for GaN-based light-emitting diodes. Phys. Status Solidi (A) 2022, 219, 2100425. [Google Scholar] [CrossRef]
- Hsu, T.; Teng, Y.; Yeh, Y.; Fan, X.; Chu, K.; Lin, S.; Yeh, K.; Lee, P.T.; Lin, Y.; Chen, Z.; et al. Perspectives on UVC LED: Its progress and application. Photonics 2021, 8, 196. [Google Scholar] [CrossRef]
- Chang, M.H.; Das, D.; Varde, P.V.; Pecht, M. Light emitting diodes reliability review. Microelectron. Reliab. 2012, 52, 762–782. [Google Scholar] [CrossRef]
Item | Amount | Cost (HKD) | |
---|---|---|---|
Material | UVC LED chip | 4 | 60 |
Ceramic substrate | 4 | 24 | |
Silicon reflector | 4 | 24 | |
Mirror | 4 | 48 | |
Button jacket | 1 | 15 | |
Holding plate | 1 | 10 | |
Manufacture | Chip bonding | 4 | 4 |
Silicon reflector bonding | 4 | 4 | |
Assembling | 1 | 5 | |
Total cost (HKD): 194 |
Disinfection Time (s) | Average Disinfection Efficiency (%) | |
---|---|---|
E. coli | S. aureus | |
3 | 53.6 | 63.2 |
10 | 91.5 | 92.1 |
30 | 97.1 | 99.1 |
60 | >99.9 | >99.9 |
120 | >99.9 | >99.9 |
180 | >99.9 | >99.9 |
90 Degree | ||
D (mm) | Irradiance (μW/cm2) | Standard Deviation (μW/cm2) |
15 | 3 | 0.3 |
40 | 30 | 3.8 |
60 | 75 | 8.7 |
90 | 3 | 0.3 |
120 | 0 (out of detection limit) | 0 |
45 degree | ||
D (mm) | Irradiance (μW/cm2) | Standard deviation (μW/cm2) |
30 | 9 | 0.8 |
50 | 3 | 0.3 |
80 | 0 (out of detection limit) | 0 |
100 | 0 (out of detection limit) | 0 |
130 | 0 (out of detection limit) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, X.; Lo, J.C.C.; Cheng, Y.; Lee, S.W.R. Design and Implementation of Elevator Push-Buttons with Integrated Ultraviolet-C Light-Emitting Diode Light Sources for Disinfection. Inventions 2025, 10, 4. https://doi.org/10.3390/inventions10010004
Qiu X, Lo JCC, Cheng Y, Lee SWR. Design and Implementation of Elevator Push-Buttons with Integrated Ultraviolet-C Light-Emitting Diode Light Sources for Disinfection. Inventions. 2025; 10(1):4. https://doi.org/10.3390/inventions10010004
Chicago/Turabian StyleQiu, Xing, Jeffery C. C. Lo, Yuanjie Cheng, and S. W. Ricky Lee. 2025. "Design and Implementation of Elevator Push-Buttons with Integrated Ultraviolet-C Light-Emitting Diode Light Sources for Disinfection" Inventions 10, no. 1: 4. https://doi.org/10.3390/inventions10010004
APA StyleQiu, X., Lo, J. C. C., Cheng, Y., & Lee, S. W. R. (2025). Design and Implementation of Elevator Push-Buttons with Integrated Ultraviolet-C Light-Emitting Diode Light Sources for Disinfection. Inventions, 10(1), 4. https://doi.org/10.3390/inventions10010004