The CALICE SiW ECAL Technological Prototype—Status and Outlook
Abstract
:1. Introduction
2. Silicon-Based Calorimeters—Overview and Use Cases
Particle Flow and Particle Separation
- 65% charged particles: Up to a momentum of around 100 GeV these are best measured in the tracking system, provided a sufficiently large magnetic field.
- 25% photons: The photons are measured in the electromagnetic calorimeter. The electromagnetic calorimeter has to provide a good photon–hadron separation and has to allow for the proper reconstruction for close-by photons from pion decay. Both become more and more involved with increasing center-of-mass energy.
- 10% neutral hadrons: Here, naturally, the hadron calorimeter is the most relevant device. However, around 50% of the hadrons interact already in the electromagnetic calorimeter.
3. Highly Granular Silicon Tungsten Electromagnetic Calorimeter for Higgs Factory Detectors
- A sandwich calorimeter with around 30 layers and a depth of around 24 X0 equivalent to 1 λI. The sensitive material is silicon and the absorber material is tungsten. With a ratio of interaction length to radiation length of around nine, tungsten is well suited for an excellent photon–hadron separation, which is an essential ingredient for particle flow detectors. Furthermore, calorimeters have to fit inside the magnetic coil. Therefore, typically, only around 20 cm in depth are available for the calorimeter volume, and tungsten ideally supports a compact design.
- A pixel size of 5 × 5 mm2 as the result of an optimization study carried out in [20].
- A signal-to-noise ratio (SNR) of at least 10. The SNR is defined as the most-probable value of the energy deposited by a minimal ionising particle (MIP) divided by the noise width.
- An electromagnetic energy resolution of around 15–20%/, for the photon measurement.
3.1. Key Elements of an ASU
- Online Hit Maps and shower profiles that allow for real-time beam and detector tuning, e.g., adaptation of beam rates or thresholds;
- Pedestal measurement and subtraction;
- Charge measurement and histogramming;
- MIP gain correction.
3.2. Technological Prototype for 2021/22 Beam Tests
3.3. Next Steps
3.3.1. Development of a Power Pulsing System of the Detector
3.3.2. Timing for Highly Granular Calorimeters at Higgs Factories
3.3.3. R&D on Power Economic Solutions
3.3.4. R&D on Silicon Sensors
4. Summary and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brient, J.C.; Videau, H. The Calorimetry at the future e+ e− linear collider. eConf 2001, C010630, E3047. [Google Scholar]
- Morgunov, V.L. Calorimetry design with energy-flow concept (imaging detector for high-energy physics). In Calorimetry in Particle Physics, Proceedings of the 10th International Conference, CALOR 2002, Pasadena, CA, USA, 25–29 March 2002; World Scientific: Singapore, 2022; pp. 70–84. [Google Scholar]
- Thomson, M. Particle Flow Calorimetry and the PandoraPFA Algorithm. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2009, 611, 25–40. [Google Scholar] [CrossRef] [Green Version]
- CALICE Collaboration. Available online: https://twiki.cern.ch/twiki/bin/view/CALICE/WebHome (accessed on 8 November 2022).
- Aryshev, A.; Behnke, T.; Berggren, M.; Brau, J.; Craig, N.; Freitas, A.; Gaede, F.; Gessner, S.; Gori, S.; Grojean, C.; et al. The International Linear Collider: Report to Snowmass 2021. arXiv 2022, arXiv:2203.07622. [Google Scholar]
- Adloff, C.; Lam, C.B.; Gorbunov, N.; Arfaoui, S.; Marin, J.; Fleury, J.; Epifantsev, A.; Lutz, B.; Berenguer Antequera, J.; Calvo Alamillo, E.; et al. Calorimetry for Lepton Collider Experiments—CALICE results and activities. arXiv 2012, arXiv:1212.5127. [Google Scholar]
- Abbiendi, G.; Kellogg, R.G.; Strom, D.M. Performance of the OPAL Si-W luminometer at LEP I–LEP II. In Calorimetry in Particle Physics, Proceedings of the 10th International Conference, CALOR 2002, Pasadena, CA, USA, 25–29 March 2002; World Scientific: Singapore, 2002; pp. 287–295. [Google Scholar]
- Berridge, S.C.; Brau, J.E.; Bugg, W.M.; Frey, R.; Furuno, K.; Gioumousis, A.; Haller, G.; Huber, J.; Hwang, H.; Kroeger, R.S.; et al. First results from the SLD silicon calorimeters. IEEE Trans. Nucl. Sci. 1992, 39, 1242–1248. [Google Scholar] [CrossRef]
- Buskulic, D.; Casper, D.; De Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.P.; Minard, M.N.; Odier, P.; Pietrzyk, B.; et al. Performance of the ALEPH detector at LEP. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1995, A360, 481–506. [Google Scholar] [CrossRef] [Green Version]
- Repond, J.; Yu, J.; Hawkes, C.M.; Mikami, Y.; Miller, O.; Watson, N.K.; Wilson, J.A.; Mavromanolakis, G.; Thomson, M.A.; Ward, D.R.; et al. Design and Electronics Commissioning of the Physics Prototype of a Si-W Electromagnetic Calorimeter for the International Linear Collider. J. Instrum. 2008, 3, P08001. [Google Scholar] [CrossRef]
- The Phase-2 Upgrade of the CMS Endcap Calorimeter; Technical Report; CERN: Geneva, Switzerland, 2017. [CrossRef]
- Gesce, Z.; Strobbe, N.; Portales, L. The Overall Electronics Chain (Powering and Readout) of the CMS HGCAL. Presentation at CALOR 2022. Available online: https://indico.cern.ch/event/847884/contributions/4833234/ (accessed on 8 November 2022).
- Letter of Intent: A Forward Calorimeter (FoCal) in the ALICE Experiment. 2020. Available online: https://cds.cern.ch/record/2719928?ln=en (accessed on 8 November 2022).
- Bearden, I.G.; Bellwied, R.; Borshchov, V.; Faivre, J.; Furget, C.; Garcia-Solis, E.; Ducati, M.B.; Conesa-Balbastre, G.; Guernane, R.; Loizides, C.; et al. Snowmass 2021/22 Letter of Interest: A Forward Calorimeter at the LHC. arXiv 2022, arXiv:2208.13541. [Google Scholar]
- Brient, J.C.; Rusack, R.; Sefkow, F. Silicon Calorimeters. Ann. Rev. Nucl. Part. Sci. 2018, 68, 271–290. [Google Scholar] [CrossRef]
- Abramowicz, H.; Jovin, T.A.; Alonso, O.; Amjad, M.S.; An, F.; Andricek, L.; Anduze, M.; Anguiano, J.; Antonov, E.; Aoki, Y.; et al. International Large Detector: Interim Design Report. arXiv 2020, arXiv:2003.01116. [Google Scholar]
- Yu, D.; Ruan, M.; Boudry, V.; Videau, H.; Brient, J.C. Higgs to ττ analysis in the future e+e− Higgs factories. arXiv 2019, arXiv:1903.12327. [Google Scholar]
- Jeans, D.; Wilson, G.W. Measuring the CP state of tau lepton pairs from Higgs decay at the ILC. Phys. Rev. D 2018, 98, 013007. [Google Scholar] [CrossRef] [Green Version]
- Jeans, D.; Yumino, K. ILD benchmark: A study of e−e+ → τ−τ+ at 500 GeV. arXiv 2019, arXiv:1912.08403. [Google Scholar]
- Abe, T.; Schuwalow, S.; Yamauchi, M.; Schaffran, J.; Ikeda, H.; Qian, W.; Waltenberger, W.; Liang, Z.; Brogna, A.; Merk, M.; et al. The International Large Detector: Letter of Intent. arXiv 2010, arXiv:1006.3396. [Google Scholar]
- Grondin, D.; Giraud, J.; Hostachy, J.Y. CALICE Si/W ECAL: Endcap structures and cooling system. In Proceedings of the International Workshop on Future Linear Colliders 2016 (LCWS2016), Morioka Iwate, Japan, 5–9 December 2016. [Google Scholar]
- Cornat, R. Design of a Si-W electromagnetic calorimeter for the International Linear Collider and study of crosstalk in silicon sensors. In Proceedings of the 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference and 16th International Workshop on Room-Temperature Semiconductor X-ray and Gamma-Ray Detectors, Dresden, Germany, 18–25 October 2008; pp. 2701–2708. [Google Scholar] [CrossRef]
- Takada, S.; Hirai, H.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Suehara, T.; Sumida, H.; Tomita, T.; Ueno, H.; Yoshioka, T. Characteristic study of silicon sensor for ILD ECAL. In Proceedings of the International Workshop on Future Linear Colliders, Belgrade, Serbia, 6–10 October 2014. [Google Scholar]
- Callier, S.; Dulucq, F.; de La Taille, C.; Martin-Chassard, G.; Seguin-Moreau, N. SKIROC2, front end chip designed to readout the Electromagnetic CALorimeter at the ILC. J. Instrum. 2011, 6, C12040. [Google Scholar] [CrossRef]
- Kawagoe, K.; Miura, Y.; Sekiya, I.; Suehara, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Gallas, A.; Irles, A.; et al. Beam test performance of the highly granular SiW-ECAL technological prototype for the ILC. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2020, 950, 162969. [Google Scholar] [CrossRef]
- Breton, D.; Irles, A.; Jeglot, J.; Maalmi, J.; Pöschl, R.; Zerwas, D. CALICE SiW ECAL—Development and performance of a highly compact digital readout system. J. Imstrum. 2020, 15, C05074. [Google Scholar] [CrossRef]
- Gastaldi, F.; Cornat, R.; Magniette, F.; Boudry, V. A scalable gigabit data acquisition system for calorimeters for linear collider. PoS 2014, TIPP2014, 193. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Amjad, M.S.; Baesso, P.; Cussans, D.; Dreyling-Eschweiler, J.; Ete, R.; Gregor, I.; Huth, L.; Irles, A.; Jansen, H.; et al. EUDAQ2—A flexible data acquisition software framework for common test beams. J. Instrum. 2019, 14, P10033. [Google Scholar] [CrossRef]
- Frank, M.; Gaede, F.; Petric, M.; Sailer, A. AIDASoft/DD4hep. 2018. Available online: http://dd4hep.cern.ch/ (accessed on 8 November 2022). [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.J.N.I.; et al. Recent developments in Geant4. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Magniette, F.; Nanni, J.; Guillaumat, R.; Louzir, M.; Anduze, M.; Edy, E.; Korostyshevskyi, O.; Balagura, V.; Boudry, V.; Brient, J.C. ILD silicon tungsten electromagnetic calorimeter first full scale electronic prototype. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2020, 958, 162732. [Google Scholar] [CrossRef] [Green Version]
- Akchurin, N.; Cowden, C.; Damgov, J.; Hussain, A.; Kunori, S. Perspectives on the Calibration of CNN Energy Reconstruction in Highly Granular Calorimeters. arXiv 2021, arXiv:2108.10963. [Google Scholar]
- Hussain, A. Value of Timing in Calorimetry. Presentation at CALOR 2022. Available online: https://indico.cern.ch/event/847884/contributions/4833231/ (accessed on 8 November 2022).
- Faus-Golfe, A.; Hoffstaetter, G.H.; Qin, Q.; Zimmermann, F. Accelerators for Electroweak Physics and Higgs Boson Studies. arXiv 2022, arXiv:2209.05827. [Google Scholar]
- Abramowicz, H.; Acosta, U.; Altarelli, M.; Assmann, R.; Bai, Z.; Behnke, T.; Zhemchukov, A. Conceptual design report for the LUXE experiment. Eur. Phys. J. ST 2021, 230, 2445–2560. [Google Scholar] [CrossRef]
Project | Purpose of Prototype | Absorber | Sensitive Part | Status |
---|---|---|---|---|
AHCAL | Physics | Stainl.steel/Tungsten | Scintillator | Completed |
Technological | Stainl.steel | Scintillator | Ongoing | |
TCMT | Physics | Stainl.steel | Scintillator | Completed |
DHCAL | Physics and Technological | Stainl.steel/Tungsten | RPC Partially GEM | Completed |
SDHCAL | Physics and Technological | Stainl.steel | GRPC Partially μMegas | Ongoing |
SiW ECAL | Physics | Tungsten | Silicon | Completed |
Technological | Tungsten | Silicon | Ongoing | |
SiW ECAL | Physics | Tungsten | Scintillator | Completed |
Technological | Tungsten | Scintillator | Ongoing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pöschl, R., on behalf of the CALICE Collaboration. The CALICE SiW ECAL Technological Prototype—Status and Outlook. Instruments 2022, 6, 75. https://doi.org/10.3390/instruments6040075
Pöschl R on behalf of the CALICE Collaboration. The CALICE SiW ECAL Technological Prototype—Status and Outlook. Instruments. 2022; 6(4):75. https://doi.org/10.3390/instruments6040075
Chicago/Turabian StylePöschl, Roman on behalf of the CALICE Collaboration. 2022. "The CALICE SiW ECAL Technological Prototype—Status and Outlook" Instruments 6, no. 4: 75. https://doi.org/10.3390/instruments6040075
APA StylePöschl, R., on behalf of the CALICE Collaboration. (2022). The CALICE SiW ECAL Technological Prototype—Status and Outlook. Instruments, 6(4), 75. https://doi.org/10.3390/instruments6040075