Two Prism Critical Angle Refractometry with Attenuating Media
Abstract
:1. Introduction
2. Background Theory
3. Method’s Description
4. Uncertainty Assessment
5. Limitations and Further Insights
6. Conclusions
- 1.
- A pair of angles () is all that the method needs as input. To the benefit of precision, reflectance values are not required in the computational process.
- 2.
- The routine is general, since it applies with s and p polarised light, facilitating the characterisation of optically isotropic and anisotropic samples.
- 3.
- Uncertainty in the determination of the output quantities () decreases as attenuation grows from zero, which is ideally suited for analysing media that attenuate light as much as, for example, most forms of biological matter.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bond, W.L. Measurement of the Refractive Indices of Several Crystals. J. Appl. Phys. 1965, 36, 1674–1677. [Google Scholar] [CrossRef]
- Shukla, R.; Srivastava, A.; Srivastava, A.; Srivastava, M.; Dixit, S.; Misra, D. Design of an optoelectronic refractometer having an adjustable range of refractive index measurement. Opt. Laser Technol. 2008, 40, 692–696. [Google Scholar] [CrossRef]
- Onodera, H.; Awai, I.; Ikenoue, J.I. Refractive-index measurement of bulk materials: Prism coupling method. Appl. Opt. 1983, 22, 1194. [Google Scholar] [CrossRef] [PubMed]
- Russo, N.; Tonso, A.; Sicre, E. Liquid refractometry: An approach for a continuous measurement. Opt. Laser Technol. 1993, 25, 109–112. [Google Scholar] [CrossRef]
- Sun, T.Q.; Ye, Q.; Wang, X.W.; Wang, J.; Deng, Z.C.; Mei, J.C.; Zhou, W.Y.; Zhang, C.P.; Tian, J.G. Scanning focused refractive-index microscopy. Sci. Rep. 2014, 4, 5647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshazly-Zaghloul, M.; Azzam, R.M.A. Brewster and pseudo-Brewster angles of uniaxial crystal surfaces and their use for determination of optical properties. J. Opt. Soc. Am. 1982, 72, 657. [Google Scholar] [CrossRef] [Green Version]
- Luna-Moreno, D.; De la Rosa-Cruz, E.; Cuevas, F.; Regalado, L.; Salas, P.; Rodríguez, R.; Castaño, V. Refractive index measurement of pure and Er3+–doped ZrO2–SiO2 sol–gel film by using the Brewster angle technique. Opt. Mater. 2002, 19, 275–281. [Google Scholar] [CrossRef]
- Pabitha, G.; Dhanasekaran, R. Investigation on the linear and nonlinear optical properties of a metal organic complex—Bis thiourea zinc acetate single crystal. Opt. Laser Technol. 2013, 50, 150–154. [Google Scholar] [CrossRef]
- D’silva, E.; Podagatlapalli, G.K.; Rao, S.V.; Dharmaprakash, S. Structural, optical and electrical characteristics of a new NLO crystal. Opt. Laser Technol. 2012, 44, 1689–1697. [Google Scholar] [CrossRef]
- Koutsoumpos, S.; Giannios, P.; Stavrakas, I.; Moutzouris, K. The derivative method of critical-angle refractometry for attenuating media. J. Opt. 2020, 22, 075601. [Google Scholar] [CrossRef]
- Matiatou, M.; Giannios, P.; Koutsoumpos, S.; Toutouzas, K.G.; Zografos, G.C.; Moutzouris, K. Data on the refractive index of freshly-excised human tissues in the visible and near-infrared spectral range. Results Phys. 2021, 22, 103833. [Google Scholar] [CrossRef]
- Humphreys-Owen, S.P.F. Comparison of Reflection Methods for Measuring Optical Constants without Polarimetric Analysis, and Proposal for New Methods based on the Brewster Angle. Proc. Phys. Soc. 1961, 77, 949–957. [Google Scholar] [CrossRef]
- Azzam, R.M.A.; Ugbo, E.E. Contours of constant pseudo-Brewster angle in the complex ϵ plane and an analytical method for the determination of optical constants. Appl. Opt. 1989, 28, 5222. [Google Scholar] [CrossRef] [PubMed]
- Tioua, B.; Soltani, M.T.; Khechekhouche, A.; Wondraczek, L. Physical properties and luminescence of highly stable erbium-doped antimony glasses for NIR broadband amplification. Opt. Laser Technol. 2022, 152, 108152. [Google Scholar] [CrossRef]
- Neethish, M.; Kumar, V.R.K.; Nalam, S.A.; Harsha, S.S.; Kiran, P.P. Effect of chirp on supercontinuum generation from Barium Zinc Borate glasses. Opt. Laser Technol. 2022, 149, 107890. [Google Scholar] [CrossRef]
- Mahadevan, M.; Sankar, P.; Vinitha, G.; Arivanandhan, M.; Ramachandran, K.; Anandan, P. Non linear optical studies on semiorganic single crystal: L-arginine 4-nitrophenalate 4-nitrophenol dihydrate (LAPP). Opt. Laser Technol. 2017, 92, 168–172. [Google Scholar] [CrossRef]
- Zheng, J.; Jiang, J.; Chen, H.; Zheng, R.; Shen, X.; Yu, K.; Wei, W. Optical nonlinearity and supercontinuum generation of tellurite glass at 1.064 μm. Opt. Laser Technol. 2021, 138, 106832. [Google Scholar] [CrossRef]
- Koutsoumpos, S.; Giannios, P.; Moutzouris, K. Extended derivative method of critical-angle refractometry for attenuating media: Error analysis. Meas. Sci. Technol. 2021, 32, 105007. [Google Scholar] [CrossRef]
- Koutsoumpos, S.; Giannios, P.; Moutzouris, K. Critical Angle Refractometry for Lossy Media with a Priori Known Extinction Coefficient. Physics 2021, 3, 569–578. [Google Scholar] [CrossRef]
- Azzam, R.M.A. Analytical determination of the complex dielectric function of an absorbing medium from two angles of incidence of minimum parallel reflectance. J. Opt. Soc. Am. A 1989, 6, 1213. [Google Scholar] [CrossRef] [Green Version]
- Hirschfeld, T. Accuracy and Optimization of the Two Prism Technique for Calculating the Optical Constants from ATR Data. Appl. Spectrosc. 1970, 24, 277–282. [Google Scholar] [CrossRef]
- Koutsoumpos, S.; Giannios, P.; Moutzouris, K. Critical angle refractometry with optically isotropic attenuating media. Appl. Phys. B 2022, 128, 91. [Google Scholar] [CrossRef]
- Giannios, P.; Toutouzas, K.G.; Matiatou, M.; Stasinos, K.; Konstadoulakis, M.M.; Zografos, G.C.; Moutzouris, K. Visible to near-infrared refractive properties of freshly-excised human-liver tissues: Marking hepatic malignancies. Sci. Rep. 2016, 6, 27910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannios, P.; Koutsoumpos, S.; Toutouzas, K.G.; Matiatou, M.; Zografos, G.C.; Moutzouris, K. Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared. J. Biophotonics 2016, 10, 303–310. [Google Scholar] [CrossRef]
- Niskanen, I.; Räty, J.; Peiponen, K.E. Complex refractive index of turbid liquids. Opt. Lett. 2007, 32, 862. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, J.; Liu, Y.; Ye, Q.; Zeng, H.; Zhou, W.; Mei, J.; Zhang, C.; Tian, J. Effect of the gradient of complex refractive index at boundary of turbid media on total internal reflection. Opt. Express 2015, 23, 7320. [Google Scholar] [CrossRef] [PubMed]
- Räty, J.; Pääkkönen, P.; Peiponen, K.E. Assessment of wavelength dependent complex refractive index of strongly light absorbing liquids. Opt. Express 2012, 20, 2835. [Google Scholar] [CrossRef]
- Calhoun, W.R.; Maeta, H.; Combs, A.; Bali, L.M.; Bali, S. Measurement of the refractive index of highly turbid media. Opt. Lett. 2010, 35, 1224. [Google Scholar] [CrossRef]
- Goyal, K.G.; Dong, M.L.; Nguemaha, V.M.; Worth, B.W.; Judge, P.T.; Calhoun, W.R.; Bali, L.M.; Bali, S. Empirical model of total internal reflection from highly turbid media. Opt. Lett. 2013, 38, 4888. [Google Scholar] [CrossRef]
- Guo, W.; Xia, M.; Li, W.; Dai, J.; Zhang, X.; Yang, K. A local curve-fitting method for the complex refractive index measurement of turbid media. Meas. Sci. Technol. 2012, 23, 047001. [Google Scholar] [CrossRef]
- Beck, B.T.; Peterman, R.J.; Wu, C.H.J. The Uncertainty in Solutions to Implicit Equation Systems. J. Fluids Eng. 2019, 142, 014502. [Google Scholar] [CrossRef]
- Garcia-Valenzuela, A.; Pena-Gomar, M.; Fajardo-Lira, C. Measuring and sensing a complex refractive index by laser reflection near the critical angle. Opt. Eng. 2002, 41, 1704–1716. [Google Scholar] [CrossRef]
- García-Valenzuela, A.; Barrera, R.G.; Sánchez-Pérez, C.; Reyes-Coronado, A.; Méndez, E.R. Coherent reflection of light from a turbid suspension of particles in an internal-reflection configuration: Theory versus experiment. Opt. Express 2005, 13, 6723. [Google Scholar] [CrossRef] [PubMed]
- Morales-Luna, G.; Contreras-Tello, H.; García-Valenzuela, A.; Barrera, R.G. Experimental Test of Reflectivity Formulas for Turbid Colloids: Beyond the Fresnel Reflection Amplitudes. J. Phys. Chem. B 2016, 120, 583–595. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koutsoumpos, S.; Giannios, P.; Moutzouris, K. Two Prism Critical Angle Refractometry with Attenuating Media. Instruments 2022, 6, 21. https://doi.org/10.3390/instruments6030021
Koutsoumpos S, Giannios P, Moutzouris K. Two Prism Critical Angle Refractometry with Attenuating Media. Instruments. 2022; 6(3):21. https://doi.org/10.3390/instruments6030021
Chicago/Turabian StyleKoutsoumpos, Spyridon, Panagiotis Giannios, and Konstantinos Moutzouris. 2022. "Two Prism Critical Angle Refractometry with Attenuating Media" Instruments 6, no. 3: 21. https://doi.org/10.3390/instruments6030021
APA StyleKoutsoumpos, S., Giannios, P., & Moutzouris, K. (2022). Two Prism Critical Angle Refractometry with Attenuating Media. Instruments, 6(3), 21. https://doi.org/10.3390/instruments6030021