
Citation: Koutsoumpos, S.; Giannios,

P; Moutzouris, K. Two Prism Critical

Angle Refractometry with

Attenuating Media. Instruments 2022,

6, 21. https://doi.org/10.3390/

instruments6030021

Academic Editor: Christos Riziotis

Received: 22 June 2022

Accepted: 15 July 2022

Published: 18 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

instruments

Article

Two Prism Critical Angle Refractometry with
Attenuating Media
Spyridon Koutsoumpos, Panagiotis Giannios and Konstantinos Moutzouris *

Laboratory of Electronic Devices and Materials, Department of Electrical & Electronic Engineering, University of
West Attica, 12244 Egaleo, Greece; skoutsoumpos@uniwa.gr (S.K.); panagiotis.giannios@irbbarcelona.org (P.G.)
* Correspondence: moutzouris@uniwa.gr

Abstract: We present a concept that enables the determination of the complex refractive index of
attenuating media from two critical angles, measured sequentially at two interfaces between a single
sample and two different prisms. The proposed method is general in that it applies with s and p
polarisation states, thus it is suited for the characterisation of isotropic as well as anisotropic media.
Uncertainty analysis indicates that relative error in the determination of the real (imaginary) index
can be less than 10−4 (in the order of 10%), respectively.
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1. Introduction

The refractive index of a medium derives from the reflectance profile at an inter-
face between the sample and a front reference medium, which is typically a transparent
prism [1,2]. When the sample is transparent, the refractive index is a real number that can
be determined from just one out of several features of the reflectance profile, such as the
critical angle of total internal reflection (θc) [3–5] or the Brewster angle (θB) [6–9]. When the
sample attenuates light, the refractive index becomes a complex quantity, the imaginary
part of which incorporates light extinction properties (absorption and/or scattering). Then,
a pair of input values is needed to recover the real and imaginary component. This pair
may comprise, for example, the critical angle of attenuated total reflection along with
the reflectance at that point (θc, Rc) [10,11], the pseudo-Brewster angle together with the
reflectance at that point (θB, RB) [12], or the the pseudo-Brewster angle and the reflectance
at normal incidence (θB, R⊥) [13].

Typical prism-coupling refractometers [14–17] are equipped with high resolution ro-
tary tables (see Figure 1a). Hence, the angular features of the reflectance profile (e.g., θc)
can be resolved with high accuracy [18]. On the contrary, accuracy in the measurement
of reflectance (e.g., Rc) is seriously compromised by unavoidable laser power fluctua-
tions [18,19]. In that respect, it is advantageous to devise methods whereby the complex
refractive index results from an input pair that contains two angles.

Here, we demonstrate how to retrieve the complex optical constant nr + i · ni of an
attenuating medium from the critical angle pair (θc, θ′c) measured at two interfaces between
the same sample and two different prisms. The real indices of the prisms are np and n′p,
such that np/n′p = Λ. To obtain a first insight, Figure 1b depicts corresponding reflectance
profiles. Calculations are based on the Fresnel equation for the exemplary case of s polarised
light, while parameters

n =
nr

np
, k =

ni
np

, n′ =
nr

n′p
= nΛ, k′ =

ni
n′p

= kΛ (1)

assume the values that are indicated in the figure’s caption. Located at the maximum of the
respective reflectance derivative dR/dθ, which is also plotted in Figure 1b, critical angles θc
and θ′c are separated by ∆ = θc − θ′c. Reflectances Rc and R′c are also tracked in Figure 1b.
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Figure 1. (a) A typical prism-coupling refractometer. The sample is attached to the base of a
transparent reference prism, which sits on a rotary table. Incoming through the prism’s front facet,
a collimated linearly polarized laser beam hits the interface at a variable incidence angle θ. The
reflected light exits the prism through its rear facet, heading towards a photodiode (PD), where the
reflectance profile R(θ) is monitored. (b) Fresnel reflectance profiles R(θ) at two interfaces between a
sample and two different prisms. Bell-like curves are corresponding derivatives dR/dθ, peaking at θc

and θ′c. Calculations assume s polarisation and n = 0.75, k = 5 · 10−3, Λ = 1.2.

The sample’s complex refractive index derives from the input pair (θc, θ′c) as the
unique numerical solution of a well-posed equation system that is fully described next. The
proposed method is general in the sense that it applies with s and p polarised light, hence
it is suited for isotropic as well as anisotropic media. Uncertainty analysis indicates that
within an extinction range, say, 0.001 < k < 0.01, which includes several material families
of interest, the real (or the imaginary) index can be determined with relative error less than
∼10−4 (or ∼10%), respectively.

The proposed method resembles the two prism, two angle approach introduced
by Azzam several decades ago [20], utilizing the pseudo-Brewster angle pair (θB, θ′B) as
input. Despite the conceptual similarity, Azzam’s routine was found to be inaccurate (or
even unusable) when ni/nr � 1, a condition that automatically excludes most non-metal
samples (The review of literature within the space limits of this letter is not exhaustive.
For example, the interested reader should be referred to Hirschfeld’s two prism method,
which is based on the measurement of two reflectances (R, R′) at preset angles [21]. Another
report on single prism two angle method [22] was also published recently, lacking however
generality, since it applies only to isotropic media. Finally, we acknowledge a conceptually
different route to determine the complex optical constants of attenuating samples, which
depends on fitting experimental data R(θ) to Fresnel equations [23–28]. This approach is
not a “point” method and has been proven sensitive to the choice of fit range [29,30]. An
indepth comparison of the proposed method to Fresnel fitting is beyond our current scopes).
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2. Background Theory

We start by recalling the mathematical framework that is derived from Fresnel equa-
tions in Ref. [10]. The involved formulas are compactly expressed in terms of the real
dielectric constant of the prism εp = n2

p and the complex dielectric constant of the sample
εr + i · εi = (nr + i · ni)

2. Shorthands t and ρ, which relate to θc and Rc via

t = tan θc and ρ =
1 + Rc

1− Rc
(2)

are also convenient. Then, it is

εr

εp
=

α + t2

1 + t2 and
εi
εp

=

√
γ2 − α2

1 + t2 . (3)

Parameters α and γ depend on polarisation. Analytic solutions exist for s polarisation.
These are

γ =
2t

(3ρ2 − 2ρ− 2)t + ρ
√
(9ρ2 − 12ρ− 8)t2 − 4

, (4)

α =
(1 + γ)2

2ρ2 − γ. (5)

The situation is slightly more complicated for p polarization, in which case α and γ can
be numerically obtained as solutions of two algebraic equations. Originally reported in [10]
and reduced to an equivalent but more appealing notation in [22], these equations are:

2
√

2 t2√α + γ = ρ(1 + t2)(t2 + γ) −
√

ρ2(1 + t2)2(t2 + γ)2 − 4t2(1 + γ)(t4 + γ), (6)

(1 + t2)(1 + ρ)(t2 + γ)
√

α + γ =
√

2t2γ× (1− 2α + γ2)
[
t2(γ− 2α)− γ2 + t4(t2 + γ)

]2
×[

t6
(

2αγ(2γ− 1) + γ2(2γ2 + 9γ + 5)− 4α2
)
+ t4γ

(
6αγ + γ2(5γ + 3)− 12α2

)
+

t2γ3(5γ− 8α) + t10
(

2α + 2γ2 + γ
)
+ t8γ(6α + γ(4γ + 5))− γ5

]−1
. (7)

Equations (4) and (5) for s polarisation and Equations (6) and (7) for p polarisation
enable the calculation of εr and εi (equivalently, nr and ni) at either polarisation state, from
experimental input values (θc, Rc). This procedure is fully described in Ref. [10]. In what
follows, we show how to eliminate reflectance Rc from the input, via its replacement by
an additional critical angle θ′c, which may be accurately measured at an interface with a
second prism.

3. Method’s Description

Collecting two reflectance profiles by use of two different prisms introduces additional
conditions to the problem. These conditions are already stated in Equation (1) (n′ = nΛ
and k′ = kΛ). By use of Equation (3), they can be written in the alternative form

F1 =
α′ + (t′)2

1 + (t′)2 −
α + t2

1 + t2 ·Λ
2 = 0, (8)

F2 =

√
(γ′)2 − (α′)2

1 + (t′)2 −
√

γ2 − α2

1 + t2 ·Λ2 = 0. (9)

Throughout, accent marks denote parameters that relate to the second prism.
Parameters α, α′, γ and γ′ in Equations (8) and (9) are essentially functions of ρ, ρ′, t

and t′ (equivalently, θc, θ′c, Rc and R′c). These functions are given explicitly by Equations (4)
and (5) for s polarisation, or implicitly by Equations (6) and (7) for p polarisation. In that
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sense, Equations (8) and (9) define a system of two equations on four independent variables.
Two of them are the measured input quantities (θc, θ′). The other two are the unknowns to
be determined (Rc, R′c). Solving numerically this system is the method’s first step. To that
end, we performed extensive numerical studies using Wolfram Mathematica’s noniterative
global solver NSolve, to conclude that the real roots are always unique, at least within the
physically meaningful range 0 < Rc, R′c < 1.

Then, in the method’s second step, the directly measured θc along with the numerically
retrieved Rc enable the calculation of the complex optical constants via Equation (3). Exactly
the same result is obtained by use of θ′c and R′c, instead.

Figure 2a depicts graphically the method’s operating principle. Therein, the iso-θc
curve is plotted in the (n, k) plane, representing the hypothetical measurement of a critical
angle θc = 48.5◦ with the first prism; the critical angle measured with the second prism θ′c
(or equivalently, the angular shift ∆) varies in steps of 0.001◦, an amount that simulates the
resolution of state-of-the-art rotary tables. Any given value of ∆ defines a single point in
the plot; its coordinates yield the sample’s optical constants.

Figure 2. (a) Iso-θc curves in the (n, k) plane (θc = 48.5◦) arrows mark the direction of increasing ∆
in steps of 0.001◦, starting from a base ∆ = 9.882◦ (9.845◦) for s (p) polarisation. (b) Iso-n and iso-k
curves in the (θc, ∆) plane. Parameter n assumes constant values 0.749, 0.7495, 0.75, 0.7505 and 0.751
for both polarisations. Parameter k assumes constant values 0, 0.0025, 0.005, 0.0075 and 0.001 for s
polarisation, as well as 0 and 0.01 for p polarisation. The common transparency line (k = 0) separates
the s polarisation grid on the left, from the p polarisation grid on the right.

A complementary picture is drawn in Figure 2b, where families of iso-n and iso-k
curves are plotted in the (θc, ∆) plane. Examining Figure 2 leads to several conclusions, the
most important of which are the following. (1) For constant θc, k increases monotonically
with increasing ∆; n does the same for low-k values, eventually reaching a characteristic
turning point past which, n decreases with increasing ∆. (2) At the transparency limit
(k = 0), curves for s and p polarisation converge into a single point (Figure 2a) or a single
line (Figure 2b); there, the polarisation independent condition of total internal reflection
holds true, that is n = sinθc and n′ = sinθ′c. (3) The density of points in Figure 2a is lower
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for p polarisation than it is for s polarisation. This observation is reflected in Figure 2b,
where the grid pattern for p polarisation is more squeezed than it is for s polarisation. These
facts are first indications that the method’s sensitivity is generally higher with s polarised
light, as we shall further discuss next.

4. Uncertainty Assessment

The distinctive advantage of the proposed method is that in its first step, reflectance
Rc can be numerically computed from experimental input data (θc, θ′c) with higher accuracy
than it can be directly measured. Uncertainty uRc in this computation can be expressed in
terms of the input (P) and output (S) sensitivity matrices [31]

P =


∂F1

∂θc

∂F1

∂θ′c
∂F2

∂θc

∂F2

∂θ′c

, S =


∂F1

∂Rc

∂F1

∂R′c
∂F2

∂Rc

∂F2

∂R′c

, (10)

where functions F1 and F2 are defined in Equations (8) and (9), respectively. The former
definitions assume independence between the input variables θc and θ′c, which is reasonable,
since these measurands are obtained via separate experimental runs. Then, it is

uRc =
√

K2
11 · u2

θc
+ K2

12 · u2
θ′c

(11)

where uθc , uθ′c are the experimental uncertainties in the measurement of the respective
critical angles, while K11, K12 are the first row elements in the overall sensitivity matrix [31]

K = −S−1P (12)

Since the same experimental setup is to be used with both prisms, it is reasonable to
assume that uθ′c ≈ uθc . We may thus define the normalised (with respect to uθc ) uncertainty

URc =
uRc

uθc

=
√

K2
11 + K2

12 (13)

The preceding expressions can be used to evaluate under what circumstances errors
in the numerical determination of Rc are (as we claim) smaller than corresponding errors
in its direct measurement (the latter should be typically > 1%). We shall skip this exercise
to proceed right away with the investigation of a more interesting problem: the calculation
of uncertainties in the determination of the complex optical constants from the directly
measured θc and the indirectly retrieved Rc, during the method’s second step. Based on
standard error propagation rules and assuming zero covariance between θc and Rc, we
may write for the relative uncertainties of nr (or n) and ni (or k)

unr

nr
=

un

n
=

1
n
·

√(
∂n
∂θc

uθ

)2

+

(
∂n

∂Rc
uRc

)2

, (14a)

uni

ni
=

uk
k

=
1
k
·

√(
∂k
∂θc

uθ

)2

+

(
∂k

∂Rc
uRc

)2

. (14b)

It is now more convenient to define the normalised (with respect to uθc ) relative uncer-
tainties of the real (Ureal) and the imaginary (Uim) index which, by use of Equation (13), read:

Ureal =
unr /nr

uθc

=
1
n
·

√( ∂n
∂θc

)2
+
( ∂n

∂Rc
·URc

)2, (15a)
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Uim =
uni /ni

uθc

=
1
k
·

√( ∂k
∂θc

)2
+
( ∂k

∂Rc
·URc

)2. (15b)

For any given sample and prism pair, that is for fixed n, k and Λ, normalised relative
uncertainties Ureal and Uim can be calculated via Equation (15). Figure 3 depicts such
calculations for indicative values n = 0.75, Λ = 1.2 and variable k. In agreement with
the interpretation of Figure 2, we observe that the proposed method is generally more
accurate for s, than it is for p polarisation. Another striking observation is that, within
the k range we account for, the method’s accuracy generally improves with increasing
attenuation (that is, with increasing k). This seems to be a unique feature of our technique,
since other approaches are typically expected to behave in the opposite way. Exceptionally,
uncertainty Ureal for p polarisation decreases with increasing k only up to a characteristic
local minimum, thereafter increasing as attenuation grows. The local minimum may be
interpreted as the equivalent of the turning point observed in Figure 2a. S polarisation
exhibits the same behaviour at k values beyond the scale of the horizontal axis in Figure 3.

Figure 3. Normalized relative error Ureal (a) and Uim (b) as a function of k, for both polarisation states.
Throughout, we assume constant values for n = 0.75 and Λ = 1.2.

Modern refractometers equipped with high resolution rotary tables measure critical
angles with an uncertainty uθc between 0.001◦ and 0.005◦ (that is, between 20 µrad and
100 µrad). This uncertainty range is commonly assumed to be reasonable in the bibliogra-
phy [22,32], suggesting that uθc is primarily limited by the minimal incremental motion of
the rotary table and remains practically insensitive to other factors, such as the divergence
of the input laser beam or random noise (e.g., due to laser power fluctuations and the
electronic detection system). It is also assumed that systematic errors in the measurement of
critical angles, such as those resulting from the off-axis placement of the prism on the rotary
table, have been properly removed (to that end, we remark that it is possible to calibrate
the experimental setup with the use of a refractive index certified reference material).

Therefore, to estimate the magnitude of relative errors unr /nr and uni /ni we need
to multiply Ureal and Uim by a factor ranging from 2 · 10−5 to 10−4, respectively. As k
approaches 0.01 for s polarisation (or the local minimum at k ≈ 0.005 for p polarisation),
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it is Ureal ≈ 2, indicating that unr /nr can be as low as 4 · 10−5, or at least remain below
2 · 10−4. Similarly, as k approaches 0.01, it is Uim ≈ 103, suggesting that uni /ni should be in
the range of 2% to 10% for s polarisation (increased five-fold for p polarisation).

Up to now, our assessment assumed fixed n and Λ. There exists some space for
further error optimisation by proper choice of first and second prism, so as to tune n and Λ,
respectively. In general, higher n and higher Λ values reduce the real and imaginary index
error for s polarised light. For p polarisation, higher Λ values have the same effect; yet, a
smaller n shifts the observed local minimum of the real index error to a lower k, an effect
that might be desirable in several situations.

We shall not elaborate further on these dependencies, which however attest that the
proposed method can determine the complex optical constants with relative uncertainties
unr /nr ∼ 10−4 and uni /ni ∼ 10%, within a spectral range that extends from k < 0.001 to
k > 0.01. These specifications compare well to standard refractometry with transparent
samples (in terms of the real index), as well as ellipsometry (in terms of the imaginary index).

5. Limitations and Further Insights

The evident limitation in the practical use of our method relates to the confined
attenuation span for which it remains highly accurate. However, even the narrow window,
say, 0.001 < k < 0.01, contains several material families of great scientific interest, ranging
from food products and fuel oils to semiconductors, water and aqueous solutions (towards
infrared wavelengths), as well as nearly the entirety of biological matter.

A second limitation that should be accounted for relates to the validity of Fresnel
equations from which, the proposed mathematical framework originates. It is commonly
accepted that, if light attenuation comes from absorption, Fresnel equations apply uncon-
ditionally. On the contrary, as is further elaborated in the bibliography [33,34], if light
attenuation rises from scattering effects (that is, with inhomogeneus samples) Fresnel
equations are valid only when the size of the scatterers remains small compared to the
wavelength of light. Moreover, the applicability of the proposed method with inhomoge-
neous samples is further complicated by the fact that the same spot on the sample surface
should be irradiated with both prisms.

A final aspect worth commenting on is the time duration of measurement; at first
instance, one might assume that performing separate measurements on two different prisms
may cause unwelcome delays. In reality, however, the proposed method spares the need
for reflectance callibration, which is commonly required in prism coupling refractometry
of attenuating media and involves a follow-up measurement at the prism–air interface.
This simplification is due to the fact that critical angles θc and θ′c can be determined by
differentiating directly the uncalibrated reflectance profile, as is measured (in arbitrary
units) by the photodiode.

6. Conclusions

This letter introduces two prism critical angle refractometry as a novel method for
determining the complex optical constants of attenuating media, by means of a well-posed
nonlinear equation system that can be solved numerically. The proposed method exhibits
several appealing features, the most important of which are summarised below.

1. A pair of angles (θc, θ′c) is all that the method needs as input. To the benefit of precision,
reflectance values are not required in the computational process.

2. The routine is general, since it applies with s and p polarised light, facilitating the
characterisation of optically isotropic and anisotropic samples.

3. Uncertainty in the determination of the output quantities (nr, ni) decreases as attenua-
tion grows from zero, which is ideally suited for analysing media that attenuate light
as much as, for example, most forms of biological matter.

Uncertainty assessment indicated that the real (or the imaginary) index can be deter-
mined with a relative error ∼10−4 (or ∼10%), respectively. The method’s specifications
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meet the needs of several application in various fields, such as biomedical optics, analytical
chemistry and quality control.
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