Seventh User Workshop on High-Power Lasers at the Linac Coherent Light Source
Abstract
:1. Introduction
2. The MEC Upgrade
3. MEC Status and Discussion
3.1. MEC Status Update
3.2. MEC Users Discussion
3.2.1. Current Laser Systems and Needs
3.2.2. Priorities for Standard Configurations
3.2.3. Diagnostics
3.2.4. Future FEL Capabilities
3.2.5. Long-Term Upgrade Plans
- Physical layout and radiation shielding for the two experimental areas that would allow experiment qualification in a laser-only chamber, as described in the pre-concept.
- Two chambers (one smaller and more specialized) to be installed in the target area situated on the LCLS beam path to facilitate rapid switching between experimental configurations, similar to the HED capability at European XFEL (Section 5.1).
- Options for X-ray focusing using KB mirrors, which have less chromatic dependence than compound refractive lenses.
- An imaging throw from target that provides at least 10 m between the target area and the detector.
4. LCLS Trends
5. User Science at International XFEL HED Instruments
5.1. European XFEL
5.2. SACLA
6. Recent Experiments at LCLS-MEC
Funding
Acknowledgments
Conflicts of Interest
References
- Falcone, R.; Glenzer, S.; Hau-Riege, S. User Workshop on High-Power Lasers at the Linac Coherent Light Source. Synchrotron Radiat. News 2014, 27, 56–58. [Google Scholar] [CrossRef] [Green Version]
- Heimann, P.; Glenzer, S. Second User Workshop on High-Power Lasers at the Linac Coherent Light Source. Synchrotron Radiat. News 2015, 28, 54–56. [Google Scholar] [CrossRef]
- Bolme, C.; Glenzer, S.; Fry, A. Third User Workshop on High-Power Lasers at the Linac Coherent Light Source. Synchrotron Radiat. News 2016, 29, 14–17. [Google Scholar] [CrossRef]
- Bolme, C.; Mackinnon, A.; Glenzer, S. Fourth User Workshop on High-Power Lasers at the Linac Coherent Light Source. Synchrotron Radiat. News 2017, 30, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Bolme, C.; Galtier, E.; Glenzer, S. Fifth user workshop on high-power lasers at the linac coherent light source. Powder Diffr. 2018, 33, 259–263. [Google Scholar] [CrossRef]
- Bolme, C.; Dyer, G.; Glenzer, S. Sixth user workshop on high-power lasers at the linac coherent light source. Powder Diffr. 2019, 34, 79–84. [Google Scholar] [CrossRef]
- Brown, S.B.; Gleason, A.E.; Galtier, E.; Higginbotham, A.; Arnold, B.; Fry, A.; Granados, E.; Hashim, A.; Schroer, C.G.; Schropp, A.; et al. Direct imaging of ultrafast lattice dynamics. Sci. Adv. 2019, 5, eaau8044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, A.; Gorman, M.; Briggs, R.; McWilliams, R.; McGonegle, D.; Bolme, C.; Gleason, A.; Fratanduono, D.; Smith, R.; Galtier, E.; et al. Identification of Phase Transitions and Metastability in Dynamically Compressed Antimony Using Ultrafast X-Ray Diffraction. Phys. Rev. Lett. 2019, 122, 255704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorman, M.G.; Coleman, A.L.; Briggs, R.; McWilliams, R.S.; McGonegle, D.; Bolme, C.A.; Gleason, A.E.; Galtier, E.; Lee, H.J.; Granados, E.; et al. Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth. Sci. Rep. 2018, 8, 16927. [Google Scholar] [CrossRef] [PubMed]
- Gorman, M.G.; Coleman, A.L.; Briggs, R.; McWilliams, R.S.; Hermann, A.; McGonegle, D.; Bolme, C.A.; Gleason, A.E.; Galtier, E.; Lee, H.J.; et al. Recovery of metastable dense Bi synthesized by shock compression. Appl. Phys. Lett. 2019, 114, 120601. [Google Scholar] [CrossRef] [Green Version]
- Hartley, N.J.; Vorberger, J.; Döppner, T.; Cowan, T.E.; Falcone, R.W.; Fletcher, L.B.; Frydrych, S.; Galtier, E.; Gamboa, E.J.; Gericke, D.O.; et al. Liquid Structure of Shock-Compressed Hydrocarbons at Megabar Pressures. Phys. Rev. Lett. 2018, 121, 793–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helfrich, J.; Vorberger, J.; Frydrych, S.; Schaumann, G.; Ravasio, A.; Gauthier, M.; Fletcher, L.B.; Nagler, B.; Barbrel, B.; Bachmann, B.; et al. Investigation of the temperature in dense carbon near the solid-liquid phase transition between 100 GPa and 200 GPa with spectrally resolved X-ray scattering. High Energy Density Phys. 2019, 32, 56–62. [Google Scholar] [CrossRef]
- Kluge, T.; Rödel, M.; Metzkes-Ng, J.; Pelka, A.; Garcia, A.L.; Prencipe, I.; Rehwald, M.; Nakatsutsumi, M.; McBride, E.E.; Schönherr, T.; et al. Observation of Ultrafast Solid-Density Plasma Dynamics Using Femtosecond X-Ray Pulses from a Free-Electron Laser. Phys. Rev. X 2018, 8, 031068. [Google Scholar] [CrossRef] [Green Version]
- Kraus, D.; Bachmann, B.; Barbrel, B.; Falcone, R.W.; Fletcher, L.B.; Frydrych, S.; Gamboa, E.J.; Gauthier, M.; Gericke, D.O.; Glenzer, S.H.; et al. Characterizing the ionization potential depression in dense carbon plasmas with high-precision spectrally resolved x-ray scattering. Plasma Phys. Control. Fusion 2018, 61, 014015–014017. [Google Scholar] [CrossRef]
- McBride, E.E.; Krygier, A.; Ehnes, A.; Galtier, E.; Harmand, M.; Konopkova, Z.; Lee, H.J.; Liermann, H.P.; Nagler, B.; Pelka, A.; et al. Phase transition lowering in dynamically compressed silicon. Nat. Phys. 2018, 27, 291. [Google Scholar] [CrossRef]
- Preston, T.R.; Appel, K.; Brambrink, E.; Chen, B.; Fletcher, L.B.; Fortmann-Grote, C.; Glenzer, S.H.; Granados, E.; Göde, S.; Konopkova, Z.; et al. Measurements of the momentum-dependence of plasmonic excitations in matter around 1 Mbar using an X-ray free electron laser. Appl. Phys. Lett. 2019, 114, 014101–014106. [Google Scholar] [CrossRef]
- Tracy, S.J.; Smith, R.F.; Wicks, J.K.; Fratanduono, D.E.; Gleason, A.E.; Bolme, C.A.; Prakapenka, V.B.; Speziale, S.; Appel, K.; Fernandez-Pañella, A.; et al. In situ observation of a phase transition in silicon carbide under shock compression using pulsed x-ray diffraction. Phys. Rev. B 2019, 99, 214106. [Google Scholar] [CrossRef]
- Witte, B.; Röpke, G.; Neumayer, P.; French, M.; Sperling, P.; Recoules, V.; Glenzer, S.; Redmer, R. Comment on “Isochoric, isobaric, and ultrafast conductivities of aluminum, lithium, and carbon in the warm dense matter regime”. Phys. Rev. E 2019, 99, 047201. [Google Scholar] [CrossRef] [Green Version]
- The LCLS-II: A High Power Upgrade to the LCLS Proc. 9th International Particle Accelerator Conference (IPAC’18), Vancouver, BC, Canada, April 29–May 4, 2018; JACoW Publishing: Geneva, Switzerland, 2018; Volume 9.
- Marcus, G.; Anton, J.W.J.; Assoufid, L.; Decker, F.J.; Gassner, G.L.; Goetze, K.; Halavanau, A.; Hastings, J.B.; Huang, Z.; Jansma, W.G.; et al. Cavity-Based Free-Electron Laser Research and Development: A Joint Argonne National Laboratory and SLAC National Laboratory Collaboration; Number 39 in Free Electron Laser Conference; JACoW Publishing: Geneva, Switzerland, 2019; pp. 282–287. [Google Scholar] [CrossRef]
- Dunne, M. LCLS Strategic Facility Development Plan; Report; SLAC National Accelerator Laboratory: Menlo Park, CA, USA, 2019. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light; National Academies Press: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Falcone, R.; Albert, F.; Beg, F.; Glenzer, S.; Ditmire, T.; Spinka, T.; Zuegel, J. Workshop Report: Brightest Light Initiative (March 27-29 2019, OSA Headquarters, Washington, D.C.). arXiv 2020, arXiv:2002.09712. [Google Scholar]
- Liang, T.T.; Bauer, J.M.; Liu, J.C.; Rokni, S.H. Radiation Protection Around High-intensity Laser Interactions with Solid Targets. Health Phys. 2018, 115, 687–697. [Google Scholar] [CrossRef]
- Boland, M.; Tanaka, H.; Button, D.; Dowd, R.; Schaa, V.R.; Tan, E. (Eds.) Four X-ray Pulses within 10 ns at LCLS; JACoW Publishing: Geneva, Switzerland; Melbourne, Australia, 2019. [Google Scholar]
- Blaj, G.; Dragone, A.; Kenney, C.J.; Abu-Nimeh, F.; Caragiulo, P.; Doering, D.; Kwiatkowski, M.; Markovic, B.; Pines, J.; Weaver, M.; et al. Performance of ePix10K, a high dynamic range, gain auto-ranging pixel detector for FELs. AIP Conf. Proc. 2019, 2054, 060062. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, E.; Galtier, E.; Dyer, G.; Robinson, J.; Fry, A. Pulse contrast enhancement via non-collinear sum-frequency generation with the signal and idler of an optical parametric amplifier. Appl. Phys. Lett. 2019, 114, 221106. [Google Scholar] [CrossRef]
- Klisnick, A.; Menoni, C.S. (Eds.) Ultrafast Laser-Matter Interaction with Nanostructured Targets; SPIE: Bellingham, WA, USA, 2019. [Google Scholar]
- Nakatsutsumi, M.; Appel, K.; Priebe, G.; Thorpe, I.; Pelka, A.; Muller, B.; Tschentscher, T. Technical Design Report: Scientific Instrument High Energy Density Physics (HED); Technical Report XFEL.EU TR-2014-001; DESY: Hamburg, Germany, 2014. [Google Scholar] [CrossRef]
- McBride, E.E.; White, T.G.; Descamps, A.; Fletcher, L.B.; Appel, K.; Condamine, F.P.; Curry, C.B.; Dallari, F.; Funk, S.; Galtier, E.; et al. Setup for meV-resolution inelastic X-ray scattering measurements and X-ray diffraction at the Matter in Extreme Conditions endstation at the Linac Coherent Light Source. Rev. Sci. Instrum. 2018, 89, 10F104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krupin, O.; Trigo, M.; Schlotter, W.F.; Beye, M.; Sorgenfrei, F.; Turner, J.J.; Reis, D.A.; Gerken, N.; Lee, S.; Lee, W.S.; et al. Temporal cross-correlation of x-ray free electron and optical lasers using soft x-ray pulse induced transient reflectivity. Opt. Express 2012, 20, 11396–11406. [Google Scholar] [CrossRef] [PubMed]
- Yabuuchi, T.; Kon, A.; Inubushi, Y.; Togahi, T.; Sueda, K.; Itoga, T.; Nakajima, K.; Habara, H.; Kodama, R.; Tomizawa, H.; et al. An experimental platform using high-power, high-intensity optical lasers with the hard X-ray free-electron laser at SACLAThis article will form part of a virtual special issue on X-ray free-electron lasers. J. Synchrotron Radiat. 2019, 26, 585–594. [Google Scholar] [CrossRef]
- Kraus, D.; Vorberger, J.; Pak, A.; Hartley, N.J.; Fletcher, L.B.; Frydrych, S.; Galtier, E.; Gamboa, E.J.; Gericke, D.O.; Glenzer, S.H.; et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat. Astron. 2017, 1, 606–611. [Google Scholar] [CrossRef]
- Hartley, N.; Grenzer, J.; Lu, W.; Huang, L.; Inubushi, Y.; Kamimura, N.; Katagiri, K.; Kodama, R.; Kon, A.; Lipp, V.; et al. Ultrafast anisotropic disordering in graphite driven by intense hard X-ray pulses. High Energy Density Phys. 2019, 32, 63–69. [Google Scholar] [CrossRef]
- Orban, D.; Banesh, D.; Tauxe, C.; Biwer, C.; Biswas, A.; Saavedra, R.; Sweeney, C.; Sandberg, R.; Bolme, C.; Ahrens, J.; et al. Cinema:Bandit: A visualization application for beamline science demonstrated on XFEL shock physics experiments. J. Synchrotron Radiat. 2020, 27, 1–10. [Google Scholar] [CrossRef]
- Hart, P.A.; Carpenter, A.; Claus, L.; Damiani, D.; Dayton, M.; Decker, F.J.; Gleason, A.; Heimann, P.; Hurd, E.; McBride, E.; et al. First x-ray test of the Icarus nanosecond-gated camera. In X-Ray Free-Electron Lasers: Advances in Source Development and Instrumentation V; Tschentscher, T., Patthey, L., Tiedtke, K., Zangrando, M., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2019; Volume 11038, pp. 31–39. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dyer, G.; Bolme, C.; Glenzer, S. Seventh User Workshop on High-Power Lasers at the Linac Coherent Light Source. Instruments 2020, 4, 13. https://doi.org/10.3390/instruments4020013
Dyer G, Bolme C, Glenzer S. Seventh User Workshop on High-Power Lasers at the Linac Coherent Light Source. Instruments. 2020; 4(2):13. https://doi.org/10.3390/instruments4020013
Chicago/Turabian StyleDyer, Gilliss, Cindy Bolme, and Siegfried Glenzer. 2020. "Seventh User Workshop on High-Power Lasers at the Linac Coherent Light Source" Instruments 4, no. 2: 13. https://doi.org/10.3390/instruments4020013
APA StyleDyer, G., Bolme, C., & Glenzer, S. (2020). Seventh User Workshop on High-Power Lasers at the Linac Coherent Light Source. Instruments, 4(2), 13. https://doi.org/10.3390/instruments4020013