Electron Beam Brightness and Undulator Radiation Brilliance for a Laser Plasma Acceleration Based Free Electron Laser
Abstract
:1. Introduction
2. Issues of LPA Based FEL
2.1. Electron Beam Divergence Handling
2.2. Energy Spread Handling
3. LPA Based Undulator Radiation
3.1. Institute fur Optik und Quantenelektronik
3.2. Max-Planck-Institut fur Quantenoptik
3.3. Laboratoire d’Optique Appliquée
3.4. SUPA, Department of Physics, University of Strathclyde
3.5. COXINEL Experiment
3.6. LUX at CFEL
4. Electron Beam Characteristics in the COXINEL Line
4.1. Transport
4.2. Baseline Reference Case
4.3. Electron Beam Brightness
5. Undulator Radiation Characteristics
5.1. Homogeneous Broadening
5.2. Inhomogeneous Broadening
5.3. Photon Beam Flux and Brilliance
6. FEL Evaluation
= 0.45 = 2 = 0.95 = 1140 | = 0.57 = 0.35 = 3 = 2.2 | = 0.55 = 2.9 = 5.4 = 2.9 | = 1.6 = 2.4 = 0.7 = 3.2 | = 3 = 51 = 1.9 |
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elder, F.; Gurewitsch, A.; Langmuir, R.; Pollock, H. Radiation from electrons in a synchrotron. Phys. Rev. 1947, 71, 829. [Google Scholar] [CrossRef]
- Madey, J.M. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 1971, 42, 1906–1913. [Google Scholar] [CrossRef]
- Colson, W. Theory of a free electron laser. Phys. Lett. A 1976, 59, 187–190. [Google Scholar] [CrossRef]
- Maine, P.; Strickland, D.; Bado, P.; Pessot, M.; Mourou, G. Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J. Quantum Electron. 1988, 24, 398–403. [Google Scholar] [CrossRef]
- Tajima, T.; Dawson, J.M. Laser electron accelerator. Phys. Rev. Lett. 1979, 43, 267. [Google Scholar] [CrossRef] [Green Version]
- Malka, V.; Fritzler, S.; Lefebvre, E.; Aleonard, M.M.; Burgy, F.; Chambaret, J.P.; Chemin, J.F.; Krushelnick, K.; Malka, G.; Mangles, S.P.D.; et al. Electron Acceleration by a Wake Field Forced by an Intense Ultrashort Laser Pulse. Science 2002, 298, 1596–1600. [Google Scholar] [CrossRef]
- Esarey, E.; Schroeder, C.B.; Leemans, W.P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009, 81, 1229–1285. [Google Scholar] [CrossRef]
- Malka, V. Laser plasma accelerators. Phys. Plasmas 2012, 19, 055501. [Google Scholar] [CrossRef] [Green Version]
- Schlenvoigt, H.P.; Haupt, K.; Debus, A.; Budde, F.; Jäckel, O.; Pfotenhauer, S.; Schwoerer, H.; Rohwer, E.; Gallacher, J.; Brunetti, E.; et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 2008, 4, 130. [Google Scholar] [CrossRef]
- Fuchs, M.; Weingartner, R.; Popp, A.; Major, Z.; Becker, S.; Osterhoff, J.; Cortrie, I.; Zeitler, B.; Hörlein, R.; Tsakiris, G.D.; et al. Laser-driven soft-X-ray undulator source. Nat. Phys. 2009, 5, 826. [Google Scholar] [CrossRef] [Green Version]
- Lambert, G.; Corde, S.; Phuoc, K.T.; Malka, V.; Ismail, A.B.; Benveniste, E.; Specka, A.; Labat, M.; Loulergue, A.; Briquez, F.; et al. Progress on the generation of undulator radiation in the UV from a plasma-based electron beam. In Proceedings of the 34th International Free-Electron Laser Conference, Nara, Japan, 26–31 August 2012. [Google Scholar]
- Anania, M.P.; Brunetti, E.; Wiggins, S.; Grant, D.W.; Welsh, G.H.; Issac, R.; Cipiccia, S.; Shanks, R.; Manahan, G.; Aniculaesei, C.; et al. An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator. Appl. Phys. Lett. 2014, 104, 264102. [Google Scholar] [CrossRef]
- Grüner, F.; Becker, S.; Schramm, U.; Eichner, T.; Fuchs, M.; Weingartner, R.; Habs, D.; Meyer-ter Vehn, J.; Geissler, M.; Ferrario, M.; et al. Design considerations for table-top, laser-based VUV and X-ray free electron lasers. Appl. Phys. B 2007, 86, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, C. Free electron lasers: Development and applications. Part. Accel. 1990, 33, 159–170. [Google Scholar]
- Floettmann, K.; Paramonov, V.V. Beam dynamics in transverse deflecting rf structures. Phys. Rev. Spec. Top.-Accel. Beams 2014, 17, 024001. [Google Scholar] [CrossRef]
- Floettmann, K. Some basic features of the beam emittance. Phys. Rev. Spec. Top.-Accel. Beams 2003, 6, 034202. [Google Scholar] [CrossRef] [Green Version]
- Antici, P.; Bacci, A.; Benedetti, C.; Chiadroni, E.; Ferrario, M.; Rossi, A.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; et al. Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems. J. Appl. Phys. 2012, 112, 044902. [Google Scholar] [CrossRef]
- Oumbarek Espinos, D.; Ghaith, A.; André, T.; Kitégi, C.; Sebdaoui, M.; Loulergue, A.; Marteau, F.; Blache, F.; Valléau, M.; Labat, M.; et al. Skew Quadrupole Effect of Laser Plasma Electron Beam Transport. Appl. Sci. 2019, 9, 2447. [Google Scholar] [CrossRef] [Green Version]
- Migliorati, M.; Bacci, A.; Benedetti, C.; Chiadroni, E.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Rossi, A.; Serafini, L.; Antici, P. Intrinsic normalized emittance growth in laser-driven electron accelerators. Phys. Rev. Spec. Top.-Accel. Beams 2013, 16, 011302. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Kim, K.J. Three-dimensional analysis of harmonic generation in high-gain free-electron lasers. Phys. Rev. E 2000, 62, 7295. [Google Scholar] [CrossRef]
- Leemans, W.; Volfbeyn, P.; Guo, K.; Chattopadhyay, S.; Schroeder, C.; Shadwick, B.; Lee, P.; Wurtele, J.; Esarey, E. Laser-driven plasma-based accelerators: Wakefield excitation, channel guiding, and laser triggered particle injection. Phys. Plasmas 1998, 5, 1615–1623. [Google Scholar] [CrossRef]
- Lin, C.; van Tilborg, J.; Nakamura, K.; Gonsalves, A.J.; Matlis, N.H.; Sokollik, T.; Shiraishi, S.; Osterhoff, J.; Benedetti, C.; Schroeder, C.B.; et al. Long-range persistence of femtosecond modulations on laser-plasma-accelerated electron beams. Phys. Rev. Lett. 2012, 108, 094801. [Google Scholar] [CrossRef] [Green Version]
- Ghaith, A.; Oumbarek, D.; Kitégi, C.; Valléau, M.; Marteau, F.; Couprie, M.E. Permanent Magnet-Based Quadrupoles for Plasma Acceleration Sources. Instruments 2019, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Bennett, W.H. Magnetically self-focussing streams. Phys. Rev. 1934, 45, 890. [Google Scholar] [CrossRef]
- Rosenzweig, J.; Breizman, B.; Katsouleas, T.; Su, J. Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields. Phys. Rev. A 1991, 44, R6189. [Google Scholar] [CrossRef]
- Chen, P. Grand disruption: A possible final focusing mechanism for linear colliders. Part. Accel. 1986, 20, 171–182. [Google Scholar]
- Lehe, R.; Thaury, C.; Guillaume, E.; Lifschitz, A.; Malka, V. Laser-plasma lens for laser-wakefield accelerators. Phys. Rev. Spec. Top.-Accel. Beams 2014, 17, 121301. [Google Scholar] [CrossRef]
- Thaury, C.; Guillaume, E.; Döpp, A.; Lehe, R.; Lifschitz, A.; Phuoc, K.T.; Gautier, J.; Goddet, J.P.; Tafzi, A.; Flacco, A.; et al. Demonstration of relativistic electron beam focusing by a laser-plasma lens. Nat. Commun. 2015, 6, 6860. [Google Scholar] [CrossRef]
- Panofsky, W.K.H.; Baker, W.R. A focusing device for the external 350-MeV proton beam of the 184-inch cyclotron at Berkeley. Rev. Sci. Instrum. 1950, 21, 445–447. [Google Scholar] [CrossRef]
- Röckemann, J.H.; Schaper, L.; Barber, S.; Bobrova, N.; Boyle, G.; Bulanov, S.; Delbos, N.; Floettmann, K.; Kube, G.; Lauth, W.; et al. Direct measurement of focusing fields in active plasma lenses. Phys. Rev. Accel. Beams 2018, 21, 122801. [Google Scholar] [CrossRef] [Green Version]
- Tauschwitz, A.; Yu, S.; Eylon, S.; Bangerter, R.; Leemans, W.; Peters, C.; Rasmussen, J.; Reginato, L.; Barnard, J.; Sharp, W. Plasma lens focusing and plasma channel transport for heavy ion fusion. Fusion Eng. Des. 1996, 32, 493–502. [Google Scholar] [CrossRef]
- Nakanii, N.; Hosokai, T.; Iwasa, K.; Masuda, S.; Zhidkov, A.; Pathak, N.; Nakahara, H.; Mizuta, Y.; Takeguchi, N.; Kodama, R. Transient magnetized plasma as an optical element for high power laser pulses. Phys. Rev. Spec. Top.-Accel. Beams 2015, 18, 021303. [Google Scholar] [CrossRef] [Green Version]
- Van Tilborg, J.; Steinke, S.; Geddes, C.; Matlis, N.; Shaw, B.; Gonsalves, A.; Huijts, J.; Nakamura, K.; Daniels, J.; Schroeder, C.; et al. Active plasma lensing for relativistic laser-plasma-accelerated electron beams. Phys. Rev. Lett. 2015, 115, 184802. [Google Scholar] [CrossRef] [PubMed]
- Van Tilborg, J.; Barber, S.; Tsai, H.E.; Swanson, K.; Steinke, S.; Geddes, C.; Gonsalves, A.; Schroeder, C.; Esarey, E.; Bulanov, S.; et al. Nonuniform discharge currents in active plasma lenses. Phys. Rev. Accel. Beams 2017, 20, 032803. [Google Scholar] [CrossRef] [Green Version]
- Marocchino, A.; Anania, M.; Bellaveglia, M.; Biagioni, A.; Bini, S.; Bisesto, F.; Brentegani, E.; Chiadroni, E.; Cianchi, A.; Croia, M.; et al. Experimental characterization of the effects induced by passive plasma lens on high brightness electron bunches. Appl. Phys. Lett. 2017, 111, 184101. [Google Scholar] [CrossRef]
- Pompili, R.; Anania, M.; Bellaveglia, M.; Biagioni, A.; Bini, S.; Bisesto, F.; Brentegani, E.; Cardelli, F.; Castorina, G.; Chiadroni, E.; et al. Focusing of High-Brightness Electron Beams with Active-Plasma Lenses. Phys. Rev. Lett. 2018, 121, 174801. [Google Scholar] [CrossRef] [Green Version]
- Seggebrock, T.; Maier, A.; Dornmair, I.; Grüner, F. Bunch decompression for laser-plasma driven free-electron laser demonstration schemes. Phys. Rev. Spec. Top.-Accel. Beams 2013, 16, 070703. [Google Scholar] [CrossRef] [Green Version]
- Maier, A.; Meseck, A.; Reiche, S.; Schroeder, C.; Seggebrock, T.; Gruener, F. Demonstration scheme for a laser-plasma-driven free-electron laser. Phys. Rev. X 2012, 2, 031019. [Google Scholar] [CrossRef] [Green Version]
- Loulergue, A.; Labat, M.; Evain, C.; Benabderrahmane, C.; Malka, V.; Couprie, M. Beam manipulation for compact laser wakefield accelerator based free-electron lasers. New J. Phys. 2015, 17, 023028. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, T.; Wang, D.; Huang, Z. Compact beam transport system for free-electron lasers driven by a laser plasma accelerator. Phys. Rev. Accel. Beams 2017, 20, 020701. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Ding, Y.; Schroeder, C.B. Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. Phys. Rev. Lett. 2012, 109, 204801. [Google Scholar] [CrossRef]
- Couprie, M.E.; Labat, M.; Evain, C.; Marteau, F.; Briquez, F.; Khojoyan, M.; Benabderrahmane, C.; Chapuis, L.; Hubert, N.; Bourassin-Bouchet, C.; et al. An application of laser plasma acceleration: towards a free-electron laser amplification. Plasma Phys. Control. Fusion 2016, 58, 034020. [Google Scholar] [CrossRef]
- André, T.; Szwaj, C.; Valléau, M.; Briquez, F.; Loulergue, A.; Hubert, N.; El Ajjouri, M.; Evain, C.; Goddet, J.P.; Rommeluère, P.; et al. Electron transport on Coxinel beam line. In Proceedings of the 8th International Particle Accelerator Conference (IPAC 2017), Copenhagen, Denmark, 14–19 May 2017. [Google Scholar]
- Couprie, M.E.; Andre, T.; Andriyash, I. COXINEL: Towards free electron laser amplification to qualify laser plasma acceleration. Reza Kenkyu 2017, 45, 94–98. [Google Scholar]
- Marteau, F.; Ghaith, A.; N’Gotta, P.; Benabderrahmane, C.; Valléau, M.; Kitegi, C.; Loulergue, A.; Vétéran, J.; Sebdaoui, M.; André, T.; et al. Variable high gradient permanent magnet quadrupole (QUAPEVA). Appl. Phys. Lett. 2017, 111, 253503. [Google Scholar] [CrossRef]
- Ghaith, A.; Kitegi, C.; André, T.; Valléau, M.; Marteau, F.; Vétéran, J.; Blache, F.; Benabderrahmane, C.; Cosson, O.; Forest, F.; et al. Tunable high gradient quadrupoles for a laser plasma acceleration based FEL. Nucl. Instrum. Methods Phys. Res. Sec. A Accel. Spectrom. Detect. Assoc. Equip. 2018, 909, 290–293. [Google Scholar] [CrossRef]
- Emma, P.; Bane, K.; Cornacchia, M.; Huang, Z.; Schlarb, H.; Stupakov, G.; Walz, D. Femtosecond and Subfemtosecond X-Ray Pulses from a Self-Amplified Spontaneous-Emission-Based Free-Electron Laser. Phys. Rev. Lett. 2004, 92, 074801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scisciò, M.; Migliorati, M.; Palumbo, L.; Antici, P. Design and optimization of a compact laser-driven proton beamline. Sci. Rep. 2018, 8, 6299. [Google Scholar] [CrossRef]
- Zhu, X.; Broemmelsiek, D.R.; Shin, Y.M. Theoretical and numerical analyses of a slit-masked chicane for modulated bunch generation. J. Instrum. 2015, 10, P10042. [Google Scholar] [CrossRef] [Green Version]
- Benabderrahmane, C.; Valléau, M.; Ghaith, A.; Berteaud, P.; Chapuis, L.; Marteau, F.; Briquez, F.; Marcouillé, O.; Marlats, J.L.; Tavakoli, K.; et al. Development and operation of a Pr2Fe14B based cryogenic permanent magnet undulator for a high spatial resolution x-ray beam line. Phys. Rev. Accel. Beams 2017, 20, 033201. [Google Scholar] [CrossRef] [Green Version]
- Valléau, M.; Briquez, F.; Brunelle, P.; Kitegi, C.; Mary, A.; Rommeluère, P.; Béchu, N.; Somogyi, A.; Tilmont, M.; Idam, J.; et al. Construction and optimization of cryogenic undulators at SOLEIL. In Proceedings of the 60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources (FLS2018), Shanghai, China, 5–9 March 2018. [Google Scholar]
- Ghaith, A.; Somogyi, A.; Berteaud, P.; Couprie, M.E.; Valléau, M.; Sebdaoui, M.; Béchu, N.; Blache, F.; Briquez, F.; Tilmont, M.; et al. Progress of Pr2Fe14B based hybrid cryogenic undulators at SOLEIL. In Proceedings of the 8th International Particle Accelerator Conference (IPAC 2017), Copenhagen, Denmark, 14–19 May 2017. [Google Scholar]
- Ghaith, A. Tunable High Spatio-Spectral Purity Undulator Radiation from a Transported Laser Plasma Accelerated Electron Beam. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Delbos, N.; Werle, C.; Dornmair, I.; Eichner, T.; Hübner, L.; Jalas, S.; Jolly, S.; Kirchen, M.; Leroux, V.; Messner, P.; et al. Lux—A laser–plasma driven undulator beamline. Nucl. Instrum. Methods Phys. Res. Sec. A Accel. Spectrom. Detect. Assoc. Equip. 2018, 909, 318–322. [Google Scholar] [CrossRef]
- Payet, J. Beta Code. CEA, SACLAY. Available online: http://irfu.cea.fr/Sacm/logiciels/index6.php (accessed on 1 February 2017).
- Khojoyan, M.; Briquez, F.; Labat, M.; Loulergue, A.; Marcouillé, O.; Marteau, F.; Sharma, G.; Couprie, M. Transport studies of LPA electron beam towards the FEL amplification at COXINEL. Nucl. Instrum. Methods Phys. Res. Sec. A Accel. Spectrom. Detect. Assoc. Equip. 2016, 829, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.L. First-and Second-Order Matrix Theory for the Design of Beam Transport Systems and Charged Particle Spectrometers; Technical Report; Stanford Linear Accelerator Center: Menlo Park, CA, USA, 1971. [Google Scholar]
- Thomas, A. Transport et Manipulation D’éLectrons Produits par Interaction Laser Plasma sur la Ligne COXINEL. Ph.D. Thesis, Paris Saclay, Essonne, France, 2018. [Google Scholar]
- Oumbarek, D. COXINEL transport of laser plasma accelerated electrons. accepted.
- Ghaith, A. Towards Compact and Advanced Free Electron Laser. Ph.D. Thesis, Paris Saclay, Essonne, France, 2019. [Google Scholar]
- Clarke, J.A. The Science and Technology of Undulators and Wigglers; Oxford University Press: Oxford, UK, 2004; Volume 4. [Google Scholar]
- Chubar, O.; Elleaume, P.; Kuznetsov, S.; Snigirev, A.A. Physical optics computer code optimized for synchrotron radiation. Opt. Des. Anal. Softw. II Int. Soc. Opt. Photon. 2002, 4769, 145–152. [Google Scholar]
- Coisson, R.; Walker, R. Phase space distribution of brilliance of undulator sources. Insertion Devices for Synchrotron Sources. Int. Soc. Opt. Photonics 1986, 582, 24–31. [Google Scholar]
- Kim, K.-J. Brightness and Coherence of Radiation from Undulators and High-Gain Free Electron Lasers. Nucl. Instrum. Methods Phys. Res. Sec. A Accel. Spectrom. Detect. Assoc. Equip. 1987, 261, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.P. Insertion Devices: Undulators and Wigglers. In Proceedings of the CERN Accelerator School: Course on Synchrotron Radiation and Free-electron Lasers, Grenoble, France, 22–27 April 1996; pp. 129–190. [Google Scholar]
- André, T.; Andriyash, I.; Loulergue, A.; Labat, M.; Roussel, E.; Ghaith, A.; Khojoyan, M.; Thaury, C.; Valléau, M.; Briquez, F.; et al. Control of laser plasma accelerated electrons for light sources. Nat. Commun. 2018, 9, 1334. [Google Scholar] [CrossRef]
- Xie, M. Design optimization for an X-ray free electron laser driven by SLAC linac. In Proceedings of the Particle Accelerator Conference, Dallas, TX, USA, 1–5 May 1995; Volume 1, pp. 183–185. [Google Scholar]
LPA System | Undulator | Radiation | |||||||
---|---|---|---|---|---|---|---|---|---|
Parameter | |||||||||
Unit | W·cm | nm | MeV | mm | nm | % | ph/s/mm/mrad/0.1%bw | ||
[9] | 5 × 10 | 740 | 65 | 20 | 50 | 0.6 | 740 | 7.4 | 6.5 × 10 |
[10] | - | - | 210 | 5 | 60 | 0.55 | 18 | 30 | 1.3 × 10 |
[11] | - | 800 | 120 | 18 | 30 | 1 | 230-440 | 18 | - |
[12] | 2 × 10 | 800 | 105 | - | 100 | 0.38 | 160-220 | 16 | 1 × 10 |
Unit | Value | ||
---|---|---|---|
Permanent magnet quadrupoles | |||
Magnetic length | mm | 40.7; 44.7; 26 | |
Minimum gradient | T/m | 98; −100; 90 | |
Maximum gradient | T/m | 181; −184; 165 | |
Bore radius | mm | 4 | |
Chicane dipoles | |||
Magnetic length | mm | 208.33 | |
Integrated field | T·mm | 130 | |
Maximum | mm | 32 | |
Maximum field | T | 0.53 | |
Electro magnet quadrupoles | |||
Magnetic length | mm | 213.3 | |
Maximum gradient | T/m | 20 | |
Bore radius | mm | 12 | |
Steerers | |||
Maximum integrated field | G.m | 38 | |
Undulator | |||
Period | mm | 18.16 | |
Number of periods | - | 107 | |
Minimum gap | mm | 4.5 | |
Maximum field | T | 1.2 |
Parameters | Symbol | Source | Undulator | Unit | |
---|---|---|---|---|---|
Total | Slice | ||||
Energy | E | 200 | 200 | 200 | MeV |
Normalized emittance | 1 | 2 | 1.13 | mm·mrad | |
Effective emittance | 2.6 | 5 | 2.8 | nm | |
Divergence (rms) | 1 | 0.1 | 0.1 | mrad | |
Beam size (rms) | 2.6 | 50 | 30 | m | |
Bunch length (rms) | 1 | 4.3 | - | m | |
Energy spread (rms) | 1 | 1 | 0.24 | % | |
Total charge | Q | 34 | 34 | - | pC |
Current | 4.3 | 1 | 1 | kA |
Input | Beam Parameters | FEL Perfomance | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
mm | m | % | m | rad | kA | m | MW | m | MW | ||
5 | −9.1 | 0.4 | 4.3 | 0.24 | 25.6 | 200 | 1 | 0.14 | 3 | 2.8 | 978 |
10 | −4.5 | 0.4 | 4.3 | 0.24 | 28.2 | 100 | 1 | 0.12 | 17 | 2.5 | 1350 |
15 | −3 | 0.4 | 4.3 | 0.24 | 39.7 | 66.7 | 1 | 0.14 | 1 | 3.1 | 1188 |
20 | −2.3 | 0.4 | 4.3 | 0.24 | 52.3 | 50 | 1 | 0.17 | 0 | 3.7 | 1011 |
30 | −1.5 | 0.4 | 4.3 | 0.24 | 78.1 | 33.3 | 1 | 0.23 | 0 | 5 | 737 |
10 | 0 | 0 | 1.6 | 1 | 26 | 100 | 2.8 | 0.17 | 0.2 | 3.5 | 1198 |
10 | −1.1 | 0.1 | 1.9 | 0.71 | 27.2 | 100 | 2.3 | 0.13 | 8 | 2.7 | 1938 |
10 | −2.3 | 0.2 | 2.5 | 0.45 | 27.9 | 100 | 1.7 | 0.11 | 70 | 2.4 | 2136 |
10 | −9.1 | 0.8 | 8.2 | 0.12 | 28.3 | 100 | 0.5 | 0.15 | 0.5 | 3 | 583 |
10 | −11.4 | 1 | 10.1 | 0.1 | 28.3 | 100 | 0.4 | 0.16 | 0.1 | 3.3 | 427 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghaith, A.; Loulergue, A.; Oumbarek, D.; Marcouillé, O.; Valléau, M.; Labat, M.; Corde, S.; Couprie, M.-E. Electron Beam Brightness and Undulator Radiation Brilliance for a Laser Plasma Acceleration Based Free Electron Laser. Instruments 2020, 4, 1. https://doi.org/10.3390/instruments4010001
Ghaith A, Loulergue A, Oumbarek D, Marcouillé O, Valléau M, Labat M, Corde S, Couprie M-E. Electron Beam Brightness and Undulator Radiation Brilliance for a Laser Plasma Acceleration Based Free Electron Laser. Instruments. 2020; 4(1):1. https://doi.org/10.3390/instruments4010001
Chicago/Turabian StyleGhaith, Amin, Alexandre Loulergue, Driss Oumbarek, Olivier Marcouillé, Mathieu Valléau, Marie Labat, Sebastien Corde, and Marie-Emmanuelle Couprie. 2020. "Electron Beam Brightness and Undulator Radiation Brilliance for a Laser Plasma Acceleration Based Free Electron Laser" Instruments 4, no. 1: 1. https://doi.org/10.3390/instruments4010001
APA StyleGhaith, A., Loulergue, A., Oumbarek, D., Marcouillé, O., Valléau, M., Labat, M., Corde, S., & Couprie, M.-E. (2020). Electron Beam Brightness and Undulator Radiation Brilliance for a Laser Plasma Acceleration Based Free Electron Laser. Instruments, 4(1), 1. https://doi.org/10.3390/instruments4010001