Dipole Magnets above 20 Tesla: Research Needs for a Path via High-Temperature Superconducting REBCO Conductors
Abstract
:1. Introduction
2. Overarching Goal
3. Driving Questions and Research Needs to Reach 20 T Dipole Fields
3.1. How to Make High-Field Accelerator Magnets Using Multi-Tape REBCO Conductor?
3.2. What Is the Maximum Field a REBCO Dipole Magnet Can Achieve?
- How does the measured stress/strain limit on various conductor architectures translate to the maximum achievable dipole fields? Similarly, how does a specific field target translate into the required stress/strain limit on a REBCO conductor? Credible and comprehensive mechanical analyses are required to address both questions.
3.3. What Is the Long-Term Performance of REBCO Magnets under Lorentz Loads?
3.4. How Do REBCO Accelerator Magnets Transit from Superconducting to Normal State and How Can the Transition Be Detected?
3.5. What Is the Field Quality of REBCO Accelerator Magnets?
3.6. What Is the Required Performance for REBCO Conductors to Achieve the Desired Magnet Performance?
- Flexible to make magnets and robust/resilient to cycling electromagnetic and thermal loadsUnderstanding how strain develops in REBCO layer during the cabling and magnet winding processes will be critical [32,104,106,108,109,110,195,196]. The design tools based on the understanding of the conductor mechanics will help guide the development of more flexible round REBCO conductors and the optimized REBCO tapes with thinner substrates and narrower widths [34,38,160]. It is also important to systematically measure the impact of electromagnetic loads on conductors and to understand and mitigate potential conductor degradation.
- High transport current and current densityAn ultimate target for round REBCO conductors is 10–20 kA current-carrying capability at 20 T and a bending radius of 10 mm (Section 4). The current can be carried by a single or multiple REBCO conductors. Understanding the impact of tensile/compressive strain on tapes with thicker REBCO layer [71] will clarify its potential for multi-tape conductors. The current density in the stabilizer will determine the time budget to detect the superconducting-to-normal transition in multi-tape conductors [158]. The metal former that occupies a significant portion of round REBCO conductors should be leveraged to reduce the current density during the transition.
- Enhancing current sharing between tapes and suppressing inter-tape coupling currentsWe need to clarify the role of electrical contact resistances on both current sharing and inter-tape coupling and determine an optimal range for . It is important to measure and understand how current sharing between tapes affects the heat generation in multi-tape conductors during the transition. Implementing a controlled and reproducible on REBCO tapes can be a challenge. One option is to start with a minimum and evaluate its impact on the coupling losses and dynamic field errors.
3.7. How to Determine the Performance of a Long Multi-Tape REBCO Conductor for More Predictable Magnet Performance?
4. A Roadmap Towards a 20 T Dipole Magnet
- The 10–20 kA total transport current at 20 T, 4.2 K and the minimum bending radius, assuming a dipole transfer function of 1–2 T kA−1 at 20 T. Higher transfer functions will reduce the required total transport current. Multiple conductors can be grouped to reach the target current.
- No degradation at the transverse Lorentz load. Figure 4 shows only the Lorentz force per unit length of straight conductor based on with 100% margin.
5. Development of REBCO Magnet Technology at LBNL
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACT | Advanced Conductor Technologies, LLC |
ASC | Applied Superconductivity Center |
Bi-2212 | Bi2Sr2CaCu2O8+x |
BNL | Brookhaven National Laboratory |
CCT | canted |
CORC® | Conductor on round core |
CERN | European Organization for Nuclear Research |
CTE | Coefficient of thermal expansion |
EuCARD | Enhanced European Coordination for Accelerator Research and Development |
FNAL | Fermi National Accelerator Laboratory |
FSU | Florida State University |
HEP | High Energy Physics |
HTS | High-temperature superconducting |
Critical current | |
Engineering current density, transport current averaged over the entire cross sectional area of a conductor | |
LBNL | Lawrence Berkeley National Laboratory |
LHC | Large Hadron Collider |
LTS | Low-temperature superconducting |
NHMFL | National High Magnetic Field Laboratory |
Electrical contact resistance between superconducting strands | |
REBCO | REBa2Cu3O7−δ, RE = rare earth elements |
RRR | Residual resistivity ratio |
SPI | SuperPower Inc. |
STAR | Symmetric Tape Round REBCO wire |
TBD | To be determined |
USMDP | U.S. Magnet Development Program |
References
- Rossi, L.; Bottura, L. Superconducting Magnets for Particle Accelerators. Rev. Accel. Sci. Technol. 2012, 5, 51–89. [Google Scholar] [CrossRef]
- Bottura, L.; Gourlay, S.A.; Yamamoto, A.; Zlobin, A.V. Superconducting Magnets for Particle Accelerators. IEEE Trans. Nucl. Sci. 2016, 63, 751–776. [Google Scholar] [CrossRef]
- Apollinari, G.; Prestemon, S.; Zlobin, A.V. Progress with high-field superconducting magnets for high-energy colliders. Annu. Rev. Nucl. Part. Sci. 2015, 65, 355–377. [Google Scholar] [CrossRef]
- Gourlay, S.A. Superconducting accelerator magnet technology in the 21st century: A new paradigm on the horizon? Nucl. Instrum. Methods Phys. Res. A 2018, 893, 124–137. [Google Scholar] [CrossRef]
- Xu, X.; Sumption, M.; Peng, X.; Collings, E.W. Refinement of Nb3Sn grain size by the generation of ZrO2 precipitates in Nb3Sn wires. Appl. Phys. Lett. 2014, 104, 082602. [Google Scholar] [CrossRef]
- Balachandran, S.; Tarantini, C.; Lee, P.J.; Kametani, F.; Su, Y.F.; Walker, B.; Starch, W.L.; Larbalestier, D.C. Beneficial influence of Hf and Zr additions to Nb4at%Ta on the vortex pinning of Nb3Sn with and without an O source. Supercond. Sci. Technol. 2019, 32, 044006. [Google Scholar] [CrossRef]
- Sabbi, G.; Bottura, L.; Cheng, D.W.; Dietderich, D.R.; Ferracin, P.; Godeke, A.; Gourlay, S.A.; Marchevsky, M.; Todesco, E.; Wang, X. Performance Characteristics of Nb3Sn Block-Coil Dipoles for a 100 TeV Hadron Collider. IEEE Trans. Appl. Supercond. 2015, 25, 4001407. [Google Scholar] [CrossRef]
- Larbalestier, D.C.; Jiang, J.; Trociewitz, U.P.; Kametani, F.; Scheuerlein, C.; Dalban-Canassy, M.; Matras, M.; Chen, P.; Craig, N.C.; Lee, P.J.; et al. Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T. Nat. Mater. 2014, 13, 375–381. [Google Scholar] [CrossRef]
- Selvamanickam, V. High temperature superconductor (HTS) wires and tapes. In High Temperature Superconductors (HTS) for Energy Applications; Melhem, Z., Ed.; Woodhead Publishing Series in Energy; Woodhead Publishing: Cambridge, UK, 2012; pp. 34–68. [Google Scholar] [CrossRef]
- Iijima, Y.; Tanabe, N.; Ikeno, Y.; Kohno, O. Biaxially aligned YBa2Cu3O7−x thin film tapes. Phys. C Supercond. 1991, 185–189, 1959–1960. [Google Scholar] [CrossRef]
- Obradors, X.; Puig, T. Coated conductors for power applications: Materials challenges. Supercond. Sci. Technol. 2014, 27, 044003. [Google Scholar] [CrossRef]
- Schwartz, J.; Effio, T.; Liu, X.; Le, Q.V.; Mbaruku, A.L.; Schneider-Muntau, H.J.; Shen, T.; Song, H.; Trociewitz, U.P.; Wang, X.; et al. High field superconducting magnets via high temperature superconductors. IEEE Trans. Appl. Supercond. 2008, 18, 70–81. [Google Scholar] [CrossRef]
- Senatore, C.; Alessandrini, M.; Lucarelli, A.; Tediosi, R.; Uglietti, D.; Iwasa, Y. Progresses and challenges in the development of high-field solenoidal magnets based on RE123 coated conductors. Supercond. Sci. Technol. 2014, 27, 103001. [Google Scholar] [CrossRef]
- Maeda, H.; Yanagisawa, Y. Recent Developments in High-Temperature Superconducting Magnet Technology (Review). IEEE Trans. Appl. Supercond. 2014, 24, 4602412. [Google Scholar] [CrossRef]
- Trociewitz, U.P.; Dalban-Canassy, M.; Hannion, M.; Hilton, D.K.; Jaroszynski, J.; Noyes, P.; Viouchkov, Y.; Weijers, H.W.; Larbalestier, D.C. 35.4 T field generated using a layer-wound superconducting coil made of (RE)Ba2Cu3O7−x (RE = rare earth) coated conductor. Appl. Phys. Lett. 2011, 99, 202506. [Google Scholar] [CrossRef]
- Weijers, H.W.; Markiewicz, W.D.; Gavrilin, A.V.; Voran, A.J.; Viouchkov, Y.L.; Gundlach, S.R.; Noyes, P.D.; Abraimov, D.V.; Bai, H.; Hannahs, S.T.; et al. Progress in the Development and Construction of a 32-T Superconducting Magnet. IEEE Trans. Appl. Supercond. 2016, 26, 4300807. [Google Scholar] [CrossRef]
- Yoon, S.; Kim, J.; Cheon, K.; Lee, H.; Hahn, S.; Moon, S.H. 26 T 35 mm all-GdBa2Cu3O7−x multi-width no-insulation superconducting magnet. Supercond. Sci. Technol. 2016, 29, 04LT04. [Google Scholar] [CrossRef]
- Hahn, S.; Kim, K.; Kim, K.; Hu, X.; Painter, T.; Dixon, I.; Kim, S.; Bhattarai, K.R.; Noguchi, S.; Jaroszynski, J.; et al. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet. Nature 2019. [Google Scholar] [CrossRef]
- Uglietti, D. A review of commercial high temperature superconducting materials for large magnets: From wires and tapes to cables and conductors. Supercond. Sci. Technol. 2019, 32, 053001. [Google Scholar] [CrossRef]
- Susner, M.A.; Haugan, T.J. A Review of the State-of-the-Art Superconductor Technology for High Power Applications. In Proceedings of the 2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Cincinnati, OH, USA, 12–14 July 2018; pp. 1–17. [Google Scholar] [CrossRef]
- Parizh, M.; Lvovsky, Y.; Sumption, M. Conductors for commercial MRI magnets beyond NbTi: Requirements and challenges. Supercond. Sci. Technol. 2017, 30, 014007. [Google Scholar] [CrossRef]
- Badel, A.; Ballarino, A.; Barth, C.; Bottura, L.; Dhalle, M.M.J.; Fleiter, J.; Goldacker, W.; Himbele, J.; Kario, A.; Rossi, L.; et al. Advances in the Development of a 10-kA Class REBCO Cable for the EuCARD2 Demonstrator Magnet. IEEE Trans. Appl. Supercond. 2016, 26, 4803908. [Google Scholar] [CrossRef]
- Barth, C. High Temperature Superconductor Cable Concepts for Fusion Magnets; Karlsruher Schriftenreihe zur Supraleitung, KIT Scientific Publishing: Karlsruhe, Germany, 2013. [Google Scholar] [CrossRef]
- Bottura, L.; Godeke, A. Superconducting Materials and Conductors: Fabrication and Limiting Parameters. Rev. Accel. Sci. Technol. 2012, 5, 25–50. [Google Scholar] [CrossRef]
- Marken, K. Fundamental issues in high temperature superconductor (HTS) materials science and engineering. In High Temperature Superconductors (HTS) for Energy Applications; Melhem, Z., Ed.; Woodhead Publishing Series in Energy; Woodhead Publishing: Cambridge, UK, 2012; pp. 3–33. [Google Scholar] [CrossRef]
- Cooley, L.D.; Ghosh, A.K.; Scanlan, R.M. Costs of high-field superconducting strands for particle accelerator magnets. Supercond. Sci. Technol. 2005, 18, R51. [Google Scholar] [CrossRef]
- Cooley, L.D.; Ghosh, A.K.; Dietderich, D.R.; Pong, I. Conductor Specification and Validation for High-Luminosity LHC Quadrupole Magnets. IEEE Trans. Appl. Supercond. 2017, 27, 6000505. [Google Scholar] [CrossRef]
- Jiang, J.; Bradford, G.; Hossain, S.I.; Brown, M.D.; Cooper, J.; Miller, E.; Huang, Y.; Miao, H.; Parrell, J.A.; White, M.; et al. High-Performance Bi-2212 Round Wires Made With Recent Powders. IEEE Trans. Appl. Supercond. 2019, 29, 6400405. [Google Scholar] [CrossRef]
- Goldacker, W.; Grilli, F.; Pardo, E.; Kario, A.; Schlachter, S.I.; Vojenčiak, M. Roebel cables from REBCO coated conductors: A one-century-old concept for the superconductivity of the future. Supercond. Sci. Technol. 2014, 27, 093001. [Google Scholar] [CrossRef]
- Weiss, J.D.; Mulder, T.; ten Kate, H.J.; van der Laan, D.C. Introduction of CORC® wires: Highly flexible, round high-temperature superconducting wires for magnet and power transmission applications. Supercond. Sci. Technol. 2017, 30, 014002. [Google Scholar] [CrossRef]
- Kar, S.; Luo, W.; Ben Yahia, A.; Li, X.; Majkic, G.; Selvamanickam, V. Symmetric tape round REBCO wire with Je (4.2 K, 15 T) beyond 450 A mm−2 at 15 mm bend radius: A viable candidate for future compact accelerator magnet applications. Supercond. Sci. Technol. 2018, 31, 04LT01. [Google Scholar] [CrossRef]
- Takayasu, M.; Chiesa, L.; Bromberg, L.; Minervini, J.V. HTS twisted stacked-tape cable conductor. Supercond. Sci. Technol. 2012, 25, 014011. [Google Scholar] [CrossRef]
- Solovyov, V.; Farrell, P. Exfoliated YBCO filaments for second-generation superconducting cable. Supercond. Sci. Technol. 2016, 30, 014006. [Google Scholar] [CrossRef] [Green Version]
- Kar, S.; Sandra, J.S.; Luo, W.; Kochat, M.; Jaroszynski, J.; Abraimov, D.; Majkic, G.; Selvamanickam, V. Next-generation highly flexible round REBCO STAR wires with over 580 A mm−2 at 4.2 K, 20 T for future compact magnets. Supercond. Sci. Technol. 2019, 32, 10LT01. [Google Scholar] [CrossRef]
- Scanlan, R.M.; Malozemoff, A.P.; Larbalestier, D.C. Superconducting materials for large scale applications. Proc. IEEE 2004, 92, 1639–1654. [Google Scholar] [CrossRef]
- Nakagawa, H.; Miura, N.; Enomoto, Y. The upper critical field and the normal-state resistivity of thin films in megagauss fields. J. Phys. Condens. Matter 1999, 10, 11571. [Google Scholar] [CrossRef]
- Gao, P.; Wessel, W.A.J.; Dhallé, M.; Otten, S.; Kario, A.; Van Nugteren, J.; Kirby, G.; Bottura, L.; ten Kate, H.H.J. Effect of resin impregnation on the transverse pressure dependence of the critical current in ReBCO Roebel cables. Supercond. Sci. Technol. 2019, 32, 055006. [Google Scholar] [CrossRef]
- Van der Laan, D.C.; Weiss, J.D.; McRae, D.M. Status of CORC® cables and wires for use in high-field magnets and power systems a decade after their introduction. Supercond. Sci. Technol. 2019, 32, 033001. [Google Scholar] [CrossRef] [Green Version]
- Shen, T.; Bosque, E.; Davis, D.; Jiang, J.; White, M.; Zhang, K.; Higley, H.; Turqueti, M.; Huang, Y.; Miao, H.; et al. Stable, predictable and training-free operation of superconducting Bi-2212 Rutherford cable racetrack coils at the wire current density of 1000 A/mm2. Sci. Rep. 2019, 9, 10170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, L.; Ballarino, A.; Betz, U.; Bottura, L.; Senatore, C.; Usoskin, A. REBCO Coated Conductor Development in the ARIES Program for HTS Accelerator Magnets. Talk at Applied Superconductivity Conference 2018. 2018. Available online: https://snf.ieeecsc.org/sites/ieeecsc.org/files/documents/snf/abstracts/1MOr2A%E2%80%9401_Rossi_amended.pdf (accessed on 17 November 2019).
- Sabbi, G.; Ghini, J.B.; Gourlay, S.A.; Marchevsky, M.; Ravaioli, E.; ten Kate, H.; Verweij, A.; Wang, X. Design Study of a 16-T Block Dipole for FCC. IEEE Trans. Appl. Supercond. 2016, 26, 4004705. [Google Scholar] [CrossRef]
- Garcia Fajardo, L.; Brouwer, L.; Caspi, S.; Hafalia, A.; Hernikl, C.; Prestemon, S.; Shen, T.; Bosque, E.; English, C. Fabrication of Bi-2212 Canted-Cosine-Theta Dipole Prototypes. IEEE Trans. Appl. Supercond. 2019, 29, 4002005. [Google Scholar] [CrossRef] [Green Version]
- Otten, S.; Kario, A.; Kling, A.; Goldacker, W. Bending properties of different REBCO coated conductor tapes and Roebel cables at T = 77 K. Supercond. Sci. Technol. 2016, 29, 125003. [Google Scholar] [CrossRef]
- Myers, C.S.; Susner, M.A.; Miao, H.; Huang, Y.; Sumption, M.D.; Collings, E.W. Reduced Magnetization and Loss in Ag–Mg Sheathed Bi2212 Wires: Systematics With Sample Twist Pitch and Length. IEEE Trans. Appl. Supercond. 2015, 25, 8201604. [Google Scholar] [CrossRef]
- Le Naour, S.; Oberli, L.; Wolf, R.; Puzniak, R.; Szewczyk, A.; Wisniewski, A.; Fikis, H.; Foitl, M.; Kirchmayr, H. Magnetization measurements on LHC superconducting strands. IEEE Trans. Appl. Supercond. 1999, 9, 1763–1766. [Google Scholar] [CrossRef] [Green Version]
- Bordini, B.; Richter, D.; Alknes, P.; Ballarino, A.; Bottura, L.; Oberli, L. Magnetization Measurements of High-Jc Nb3Sn Strands. IEEE Trans. Appl. Supercond. 2013, 23, 7100806. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; (Applied Superconductivity Center, National High Magnetic field Laboratory, Florida State University, Tallahassee, FL, USA). Personal Communication, 2019.
- Kovacs, C.; Majoros, M.; Sumption, M.D.; Collings, E.W. Magnetization Measurements of CORC and Roebel Type YBCO Cables for Accelerators Using a ±3-T Dipole Magnetometer. IEEE Trans. Appl. Supercond. 2019, 29, 8200905. [Google Scholar] [CrossRef]
- Myers, C.S.; Sumption, M.D.; Collings, E.W. Magnetization and Creep in YBCO Tape and CORC Cables for Particle Accelerators: Value and Modification Via Preinjection Cycle. IEEE Trans. Appl. Supercond. 2019, 29, 8201405. [Google Scholar] [CrossRef]
- Zhang, K.; Higley, H.; Ye, L.; Gourlay, S.; Prestemon, S.; Shen, T.; Bosque, E.; English, C.; Jiang, J.; Kim, Y.; et al. Tripled critical current in racetrack coils made of Bi-2212 Rutherford cables with overpressure processing and leakage control. Supercond. Sci. Technol. 2018, 31, 105009. [Google Scholar] [CrossRef] [Green Version]
- Ekin, J. Relationships between critical current and stress IN NbTi. IEEE Trans. Magn. 1987, 23, 1634–1637. [Google Scholar] [CrossRef]
- Cheggour, N.; Stauffer, T.C.; Starch, W.; Lee, P.J.; Splett, J.D.; Goodrich, L.F.; Ghosh, A.K. Precipitous change of the irreversible strain limit with heat-treatment temperature in Nb3Sn wires made by the restacked-rod process. Sci. Rep. 2018, 8, 13048. [Google Scholar] [CrossRef]
- Cheggour, N.; Lu, X.F.; Holesinger, T.G.; Stauffer, T.C.; Jiang, J.; Goodrich, L.F. Reversible effect of strain on transport critical current in Bi2Sr2CaCu2O8+x superconducting wires: A modified descriptive strain model. Supercond. Sci. Technol. 2011, 25, 015001. [Google Scholar] [CrossRef] [Green Version]
- Godeke, A.; Hartman, M.H.C.; Mentink, M.G.T.; Jiang, J.; Matras, M.; Hellstrom, E.E.; Larbalestier, D.C. Critical current of dense Bi-2212 round wires as a function of axial strain. Supercond. Sci. Technol. 2015, 28, 032001. [Google Scholar] [CrossRef]
- Bumby, C.W.; Badcock, R.A.; Long, N.J. Critical current behavior of HTS Roebel cable under tensile stress. IEEE Trans. Appl. Supercond. 2013, 23, 4801805. [Google Scholar] [CrossRef]
- Van der Laan, D.C.; McRae, D.M.; Weiss, J.D. Effect of monotonic and cyclic axial tensile stress on the performance of superconducting CORC® wires. Supercond. Sci. Technol. 2019, 32, 054004. [Google Scholar] [CrossRef] [Green Version]
- Ebermann, P.; Bernardi, J.; Fleiter, J.; Lackner, F.; Meuter, F.; Pieler, M.; Scheuerlein, C.; Schoerling, D.; Wolf, F.; Ballarino, A.; et al. Irreversible degradation of Nb3Sn Rutherford cables due to transverse compressive stress at room temperature. Supercond. Sci. Technol. 2018, 31, 065009. [Google Scholar] [CrossRef]
- Felice, H.; Bajko, M.; Bingham, B.; Bordini, B.; Bottura, L.; Caspi, S.; De Rijk, G.; Dietderich, D.; Ferracin, P.; Giloux, C.; et al. Performance of a Nb3Sn Quadrupole Under High Stress. IEEE Trans. Appl. Supercond. 2011, 21, 1849–1853. [Google Scholar] [CrossRef]
- Dietderich, D.R.; Scanlan, R.M.; Hasegawa, T.; Aoki, Y.; Sokolowski, R.S.; Motowidlo, L.R. Critical current variation as a function of transverse stress of Bi-2212 Rutherford cables. IEEE Trans. Appl. Supercond. 2001, 11, 3577–3579. [Google Scholar] [CrossRef]
- van der Laan, D.C.; McRae, D.M.; Weiss, J.D. Effect of transverse compressive monotonic and cyclic loading on the performance of superconducting CORC® cables and wires. Supercond. Sci. Technol. 2018, 32, 015002. [Google Scholar] [CrossRef] [Green Version]
- Bonura, M.; Avitabile, F.; Barth, C.; Jiang, J.; Larbalestier, D.; Fête, A.; Leo, A.; Bottura, L.; Senatore, C. Very-high thermal and electrical conductivity in overpressure-processed Bi2Sr2CaCu2O8+x wires. Mater. Res. Express 2018, 5, 056001. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Ye, L.; Jiang, J.; Shen, T. RRR and thermal conductivity of Ag and Ag-0.2 wt.%Mg alloy in Ag/Bi-2212 wires. IOP Conf. Ser. Mater. Sci. Eng. 2015, 102, 012027. [Google Scholar] [CrossRef] [Green Version]
- Bonura, M.; Senatore, C. High-field thermal transport properties of REBCO coated conductors. Supercond. Sci. Technol. 2014, 28, 025001. [Google Scholar] [CrossRef] [Green Version]
- Fleiter, J.; Ballarino, A. In-Field Electrical Resistance at 4.2 K of REBCO Splices. IEEE Trans. Appl. Supercond. 2017, 27, 6603305. [Google Scholar] [CrossRef]
- Heck, S.; Scheuerlein, C.; Fleiter, J.; Ballarino, A.; Bottura, L. The Electrical Resistance of Rutherford-Type Superconducting Cable Splices. IEEE Trans. Appl. Supercond. 2015, 25, 4800404. [Google Scholar] [CrossRef] [Green Version]
- Murtomäki, J.S.; Kirby, G.; van Nugteren, J.; Contat, P.; Sacristan-de Frutos, O.; Fleiter, J.; Pincot, F.; de Rijk, G.; Rossi, L.; Ruuskanen, J.; et al. 10 kA Joints for HTS Roebel Cables. IEEE Trans. Appl. Supercond. 2018, 28, 4801406. [Google Scholar] [CrossRef]
- Van Nugteren, J.; Kirby, G.; Murtomäki, J.; DeRijk, G.; Rossi, L.; Stenvall, A. Toward REBCO 20 T+ Dipoles for Accelerators. IEEE Trans. Appl. Supercond. 2018, 28, 4008509. [Google Scholar] [CrossRef]
- Mulder, T.; Fleiter, J.; Willering, G.; Dudarev, A.; Mentink, M.; Dhallé, M.; Kate, H.T. Demonstration of the ReBCO CORC 47kA@10T/4.2K Cable-In-Conduit-Conductor and its Joint Terminals at 4.5 and 77 K. IEEE Trans. Appl. Supercond. 2017, 27, 4801004. [Google Scholar] [CrossRef]
- Dietderich, D.; Godeke, A. Nb3Sn research and development in the USA—Wires and cables. Cryogenics 2008, 48, 331–340. [Google Scholar] [CrossRef]
- Jiang, J.; Francis, A.; Alicea, R.; Matras, M.; Kametani, F.; Trociewitz, U.P.; Hellstrom, E.E.; Larbalestier, D.C. Effects of filament size on critical current density in overpressure processed Bi-2212 round wire. IEEE Trans. Appl. Supercond. 2017, 27, 6400104. [Google Scholar] [CrossRef]
- Majkic, G.; Pratap, R.; Xu, A.; Galstyan, E.; Higley, H.; Prestemon, S.; Wang, X.; Abraimov, D.; Jaroszynski, J.; Selvamanickam, V. Engineering current density over 5 kA mm−2 at 4.2 K, 14 T in thick film REBCO tapes. Supercond. Sci. Technol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Boutboul, T.; Le Naour, S.; Leroy, D.; Oberli, L.; Previtali, V. Critical Current Density in Superconducting Nb-Ti Strands in the 100 mT to 11 T Applied Field Range. IEEE Trans. Appl. Supercond. 2006, 16, 1184–1187. [Google Scholar] [CrossRef]
- Rossi, L.; Badel, A.; Bajko, M.; Ballarino, A.; Bottura, L.; Dhallé, M.; Durante, M.; Fazilleau, P.; Fleiter, J.; Goldacker, W.; et al. The EuCARD-2 Future Magnets European Collaboration for Accelerator-Quality HTS Magnets. IEEE Trans. Appl. Supercond. 2015, 25, 4001007. [Google Scholar] [CrossRef]
- Rossi, L.; Badel, A.; Bajas, H.; Bajko, M.; Ballarino, A.; Barth, C.; Betz, U.; Bottura, L.; Broggi, F.; Chiuchiolo, A.; et al. The EuCARD2 Future Magnets Program for Particle Accelerator High-Field Dipoles: Review of Results and Next Steps. IEEE Trans. Appl. Supercond. 2018, 28, 4001810. [Google Scholar] [CrossRef]
- Borgnolutti, F.; Durante, M.; Debray, F.; Rifflet, J.M.; Rijk, G.D.; Tixador, P.; Tudela, J.M. Status of the EuCARD 5.4-T REBCO Dipole Magnet. IEEE Trans. Appl. Supercond. 2016, 26, 4602605. [Google Scholar] [CrossRef]
- Durante, M.; Borgnolutti, F.; Bouziat, D.; Fazilleau, P.; Gheller, J.M.; Molinié, F.; Antoni, P.D. Realization and First Test Results of the EuCARD 5.4-T REBCO Dipole Magnet. IEEE Trans. Appl. Supercond. 2018, 28, 4203805. [Google Scholar] [CrossRef]
- Fleiter, J.; Ballarino, A.; Bottura, L.; Goldacker, W.; Kario, A. Characterization of Roebel Cables for Potential Use in High-Field Magnets. IEEE Trans. Appl. Supercond. 2015, 25, 4802404. [Google Scholar] [CrossRef]
- Kirby, G.A.; van Nugteren, J.; Bajas, H.; Benda, V.; Ballarino, A.; Bajko, M.; Bottura, L.; Broekens, K.; Canale, M.; Chiuchiolo, A.; et al. First Cold Powering Test of REBCO Roebel Wound Coil for the EuCARD2 Future Magnet Development Project. IEEE Trans. Appl. Supercond. 2017, 27, 4003307. [Google Scholar] [CrossRef] [Green Version]
- Van Nugteren, J.; Kirby, G.; Bajas, H.; Bajko, M.; Ballarino, A.; Bottura, L.; Chiuchiolo, A.; Contat, P.A.; Dhallé, M.; Durante, M.; et al. Powering of an HTS dipole insert-magnet operated standalone in helium gas between 5 and 85 K. Supercond. Sci. Technol. 2018, 31, 065002. [Google Scholar] [CrossRef] [Green Version]
- Todesco, E.; Bottura, L.; de Rijk, G.; Rossi, L. Dipoles for High-Energy LHC. IEEE Trans. Appl. Supercond. 2014, 24, 4004306. [Google Scholar] [CrossRef] [Green Version]
- Amemiya, N.; Zhang, Z.; Sano, T.; Sogabe, Y.; Ogitsu, T.; Koyanagi, K.; Kurusu, T.; Mori, Y.; Iwata, Y.; Noda, K.; et al. Progress of fundamental technology R&D toward accelerator magnets using coated conductors in S-Innovation program. IEEE Trans. Appl. Supercond. 2015, 25, 4003505. [Google Scholar] [CrossRef]
- Takayama, S.; Koyanagi, K.; Tosaka, T.; Tasaki, K.; Kurusu, T.; Ishii, Y.; Amemiya, N.; Ogitsu, T. Fabrication of three-dimensional HTS coils for accelerator magnets. IEEE Trans. Appl. Supercond. 2015, 25, 4602804. [Google Scholar] [CrossRef]
- Amemiya, N.; Otake, H.; Sano, T.; Nakamura, T.; Ogitsu, T.; Koyanagi, K.; Kurusu, T. Temporal behaviour of multipole components of the magnetic field in a small dipole magnet wound with coated conductors. Supercond. Sci. Technol. 2015, 28, 035003. [Google Scholar] [CrossRef] [Green Version]
- Sano, T.; Amemiya, N.; Nakamura, T.; Ogitsu, T.; Koyanagi, K.; Kurusu, T. Magnetic Field Harmonics Measurements of Conduction-Cooled Dipole Magnets Wound With Coated Conductors. IEEE Trans. Appl. Supercond. 2015, 25, 4001605. [Google Scholar] [CrossRef]
- Amemiya, N.; Sogabe, Y.; Sakashita, M.; Iwata, Y.; Noda, K.; Ogitsu, T.; Ishii, Y.; Kurusu, T. Magnetisation and field quality of a cosine-theta dipole magnet wound with coated conductors for rotating gantry for hadron cancer therapy. Supercond. Sci. Technol. 2015, 29, 024006. [Google Scholar] [CrossRef]
- Amemiya, N.; Tominaga, N.; Toyomoto, R.; Nishimoto, T.; Sogabe, Y.; Yamano, S.; Sakamoto, H. Coupling time constants of striated and copper-plated coated conductors and the potential of striation to reduce shielding-current-induced fields in pancake coils. Supercond. Sci. Technol. 2018, 31, 025007. [Google Scholar] [CrossRef]
- Gupta, R.; Anerella, M.; Cozzolino, J.; Escallier, J.; Ganetis, G.; Ghosh, A.; Harrison, M.; Jain, A.; Marone, A.; Muratore, J.; et al. R&D for accelerator magnets with react and wind high temperature superconductors. IEEE Trans. Appl. Supercond. 2002, 12, 75–80. [Google Scholar] [CrossRef]
- Gupta, R.; Anerella, M.; Ghosh, A.; Lalitha, S.; Sampson, W.; Schmalzle, J.; Kolonko, J.; Scanlan, R.; Weggel, R.; Willen, E.; et al. Hybrid High-Field Cosine-Theta Accelerator Magnet R&D With Second-Generation HTS. IEEE Trans. Appl. Supercond. 2015, 25, 4003704. [Google Scholar] [CrossRef]
- Gupta, R.; Anerella, M.; Cozzolino, J.; Joshi, P.; Sampson, W.; Wanderer, P.; Zeller, A. HTS Quadrupole for FRIB–Design, Construction and Test Results. IEEE Trans. Appl. Supercond. 2015, 25, 4603306. [Google Scholar] [CrossRef]
- Gourlay, S.A.; Prestemon, S.O.; Zlobin, A.V.; Cooley, L.; Larbalestier, D. The U.S. Magnet Development Program Plan. 2016. Available online: https://escholarship.org/uc/item/5178744r (accessed on 17 November 2019).
- Van Sciver, S.W.; Marken, K.R. Superconducting magnets above 20 Tesla. Phys. Today 2002, 37. [Google Scholar] [CrossRef]
- Iwasa, Y.; Hahn, S. First-cut design of an all-superconducting 100-T direct current magnet. Appl. Phys. Lett. 2013, 103, 253507. [Google Scholar] [CrossRef] [Green Version]
- McIntyre, P.M.; Damborsky, K.; Holik, E.F.; Lu, F.; McInturff, A.D.; Pogue, N.; Sattarov, A.; Sooby, E. 20 T dipoles and Bi-2212: The path to LHC energy upgrade. In Proceedings of EuCARD-AccNet-EuroLumi Workshop: The High-Energy Large Hadron Collider (HE-LHC10); Todesco, E., Ed.; CERN: Villa Bighi, Malta, 2011; pp. 70–74. [Google Scholar] [CrossRef]
- Nakao, K.; Miura, N.; Tatsuhara, K.; Uchida, S.I.; Takagi, H.; Wada, T.; Tanaka, S. Superconductivity in YBa2Cu3O7−x in a 100 tesla magnetic field. Nature 1988, 332, 816–818. [Google Scholar] [CrossRef]
- Flux Pinning Force Levels of Thin Film Superconductor Tapes Made by Institutions World-Wide. Available online: http://selva.me.uh.edu/research/superconductors/ (accessed on 17 November 2019).
- Matias, V.; Hammond, R.H. YBCO Superconductor Wire based on IBAD-Textured Templates and RCE of YBCO: Process Economics. Phys. Procedia 2012, 36, 1440–1444. [Google Scholar] [CrossRef] [Green Version]
- Amemiya, N.; Takahashi, K.; Otake, H.; Nakamura, T.; Mori, Y.; Ogitsu, T.; Koyanagi, K.; Osanai, A.; Yoshiyuki, T.; Noda, K.; et al. Research and development of fundamental technologies for accelerator magnets using high Tc superconductors. Physica C 2012, 482, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Zangenberg, N.; Nielsen, G.; Hauge, N.; Nielsen, B.; Baurichter, A.; Pedersen, C.; Brauner, L.; Ulsoe, B.; Moller, S. Conduction Cooled High Temperature Superconducting Dipole Magnet for Accelerator Applications. IEEE Trans. Appl. Supercond. 2012, 22, 4004004. [Google Scholar] [CrossRef]
- Bogdanov, I.V.; Kozub, S.S.; Sytnik, V.V.; Terskiy, I.S.; Tkachenko, L.M.; Trusov, O.V.; Shirshov, L.S.; Smirnov, V.M.; Shuvalov, V.I.; Shcherbakov, P.A.; et al. Design, fabrication and testing of a dipole magnet made with 2G HTS wire. Supercond. Sci. Technol. 2016, 29, 105012. [Google Scholar] [CrossRef]
- Colyer, B. The Geometry of Constant Perimeter Dipole Windings. Technical Report RL-73-143. Rutherford Laboratory, 1973. Available online: https://epubs.stfc.ac.uk/work/21123 (accessed on 17 November 2019).
- Wilson, M.N.; Hopes, R.B.; Roberts, R.L. A Pressure Impregnated Superconducting Dipole. In Proceedings of the 5th International Conference on Magnet Technology (MT-5), Rome, Italy, 21–25 April 1975; pp. 511–518. [Google Scholar]
- Cook, J.M. Strain energy minimization in SSC magnet winding. IEEE Trans. Magn. 1991, 27, 1976–1980. [Google Scholar] [CrossRef]
- Russenschuck, S. Field Computation for Accelerator Magnets: Analytical and Numerical Methods for Electromagnetic Design and Optimization; John Wiley & Sons: Weinheim, Germany, 2010. [Google Scholar]
- Wang, X.; Arbelaez, D.; Caspi, S.; Prestemon, S.O.; Sabbi, G.; Shen, T. Strain Distribution in REBCO-Coated Conductors Bent With the Constant-Perimeter Geometry. IEEE Trans. Appl. Supercond. 2017, 27, 6604010. [Google Scholar] [CrossRef]
- Van der Laan, D.C. YBa2Cu3O7−δ coated conductor cabling for low ac-loss and high-field magnet applications. Supercond. Sci. Technol. 2009, 22, 065013. [Google Scholar] [CrossRef]
- Anvar, V.A.; Ilin, K.; Yagotintsev, K.A.; Monachan, B.; Ashok, K.B.; Kortman, B.A.; Pellen, B.; Haugan, T.J.; Weiss, J.D.; van der Laan, D.C.; et al. Bending of CORC® cables and wires: Finite element parametric study and experimental validation. Supercond. Sci. Technol. 2018, 31, 115006. [Google Scholar] [CrossRef] [Green Version]
- Kar, S.; Luo, W.; Selvamanickam, V. Ultra-small Diameter Round REBCO Wire with Robust Mechanical Properties. IEEE Trans. Appl. Supercond. 2017, 27, 6603204. [Google Scholar] [CrossRef]
- Ben Yahia, A.; Kar, S.; Majkic, G.; Selvamanickam, V. Modeling-driven optimization of mechanically robust REBCO tapes and wires. IEEE Trans. Appl. Supercond. 2019, 29, 8401605. [Google Scholar] [CrossRef]
- Wang, K.; Ta, W.; Gao, Y. The winding mechanical behavior of conductor on round core cables. Phys. C 2018, 553, 65–71. [Google Scholar] [CrossRef]
- Pierro, F.; Zhao, Z.; Owen, C.M.; Colcord, C.; Chiesa, L.; Higley, H.C.; Wang, X.; Prestemon, S.O. Finite-Element Analysis of the Strain Distribution Due to Bending in a REBCO Coated Conductor for Canted Cosine Theta Dipole Magnet Applications. IEEE Trans. Appl. Supercond. 2019, 29, 4600705. [Google Scholar] [CrossRef] [Green Version]
- Otten, S.; Dhallé, M.; Gao, P.; Wessel, W.; Kario, A.; Kling, A.; Goldacker, W. Enhancement of the transverse stress tolerance of REBCO Roebel cables by epoxy impregnation. Supercond. Sci. Technol. 2015, 28, 065014. [Google Scholar] [CrossRef]
- Talantsev, E.F.; Badcock, R.A.; Mataira, R.; Chong, S.V.; Bouloukakis, K.; Hamilton, K.; Long, N.J. Critical current retention of potted and unpotted REBCO Roebel cables under transverse pressure and thermal cycling. Supercond. Sci. Technol. 2017, 30, 045014. [Google Scholar] [CrossRef]
- Van der Laan, D.C.; Ekin, J.W.; Clickner, C.C.; Stauffer, T.C. Delamination strength of YBCO coated conductors under transverse tensile stress. Supercond. Sci. Technol. 2007, 20, 765–770. [Google Scholar] [CrossRef]
- Takematsu, T.; Hu, R.; Takao, T.; Yanagisawa, Y.; Nakagome, H.; Uglietti, D.; Kiyoshi, T.; Takahashi, M.; Maeda, H. Degradation of the performance of a YBCO-coated conductor double pancake coil due to epoxy impregnation. Physica C 2010, 470, 674–677. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wang, W.; Huang, Z.; Baghdadi, M.; Yuan, W.; Kvitkovic, J.; Pamidi, S.; Coombs, T.A. AC loss measurements for 2G HTS racetrack coils with heat-shrink tube insulation. IEEE Trans. Appl. Supercond. 2014, 24, 4700704. [Google Scholar] [CrossRef] [Green Version]
- Michael, P.C.; Haight, A.E.; Bromberg, L.; Kano, K. Insulation system for high temperature superconductor cables. IOP Conf. Ser. Mater. Sci. Eng. 2015, 102, 012019. [Google Scholar] [CrossRef] [Green Version]
- Kesgin, I.; Hasse, Q.; Ivanyushenkov, Y.; Welp, U. Degradation Free Vacuum Epoxy Impregnated short REBCO Undulator Magnets. IOP Conf. Ser. Mater. Sci. Eng. 2017, 279, 012009. [Google Scholar] [CrossRef] [Green Version]
- Barth, C.; Bagrets, N.; Weiss, K.P.; Bayer, C.M.; Bast, T. Degradation free epoxy impregnation of REBCO coils and cables. Supercond. Sci. Technol. 2013, 26, 055007. [Google Scholar] [CrossRef]
- Yanagisawa, Y.; Sato, K.; Piao, R.; Nakagome, H.; Takematsu, T.; Takao, T.; Kamibayashi, H.; Takahashi, M.; Maeda, H. Removal of degradation of the performance of an epoxy impregnated YBCO-coated conductor double pancake coil by using a polyimide-electrodeposited YBCO-coated conductor. Physica C 2012, 476, 19–22. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Jang, J.Y.; Song, S.; Kim, J.M.; Lee, S. Feasibility study of the impregnation of a no-insulation HTS coil using an electrically conductive epoxy. IEEE Trans. Appl. Supercond. 2017, 27, 4603405. [Google Scholar] [CrossRef]
- Miyazaki, H.; Iwai, S.; Uto, T.; Kusano, T.; Otani, Y.; Koyanagi, K.; Nomura, S. Over-current test of REBCO pancake coils impregnated with electrically conductive epoxy resin under conduction-cooled conditions. IEEE Trans. Appl. Supercond. 2019, 29, 4602805. [Google Scholar] [CrossRef]
- Mulder, T.; Dudarev, A.; Mentink, M.; Silva, H.; van der Laan, D.; Dhallé, M.; ten Kate, H. Design and manufacturing of a 45 kA at 10 T REBCO-CORC cable-in-conduit conductor for large-scale magnets. IEEE Trans. Appl. Supercond. 2016, 26, 4803605. [Google Scholar] [CrossRef]
- Li, Y.; Hu, D.; Zhang, J.; Wu, W.; Li, Z.; Ryu, K.; Hong, Z.; Jin, Z. Feasibility study of the impregnation of a no-insulation HTS coil using solder. IEEE Trans. Appl. Supercond. 2018, 28, 5200505. [Google Scholar] [CrossRef]
- Yu, D.; Sun, Y.; Zhang, H.; Meng, Y.; Liu, H. Experimental analysis of critical current and alternating current losses of high-temperature superconductor tape with resin and Gallium-Indium-Tin. Materials 2018, 11, 573. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Hur, J.; Kim, S.; Kim, S.; Ko, R.; Ha, D.; Kim, H.M.; Joo, J.; Jo, Y. Improvement in stability and operating characteristics of HTS coil using MIT material. IEEE Trans. Appl. Supercond. 2017, 27, 4601704. [Google Scholar] [CrossRef]
- Tsui, Y.; Surrey, E.; Hampshire, D. Soldered joints—An essential component of demountable high temperature superconducting fusion magnets. Supercond. Sci. Technol. 2016, 29, 075005. [Google Scholar] [CrossRef]
- Lu, J.; Han, K.; Sheppard, W.R.; Viouchkov, Y.L.; Pickard, K.W.; Markiewicz, W.D. Lap Joint Resistance of YBCO Coated Conductors. IEEE Trans. Appl. Supercond. 2011, 21, 3009–3012. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, C.H.; Pothavajhala, V.; Pamidi, S.V. Current sharing and redistribution in superconducting DC cable. IEEE Trans. Appl. Supercond. 2013, 23, 4801304. [Google Scholar] [CrossRef]
- Takayasu, M.; Chiesa, L.; Allen, N.C.; Minervini, J.V. Present status and recent developments of the twisted stacked-tape cable conductor. IEEE Trans. Appl. Supercond. 2016, 26, 6400210. [Google Scholar] [CrossRef] [Green Version]
- Willering, G.P.; van der Laan, D.C.; Weijers, H.W.; Noyes, P.D.; Miller, G.E.; Viouchkov, Y. Effect of variations in terminal contact resistances on the current distribution in high-temperature superconducting cables. Supercond. Sci. Technol. 2015, 28, 035001. [Google Scholar] [CrossRef]
- Caspi, S.; Ferracin, P. Limits of Nb3Sn accelerator magnets. Proceedings of 2005 Particle Accelerator Conference. 2005, pp. 107–111. Available online: https://escholarship.org/uc/item/00v1z0gv (accessed on 17 November 2019).
- Kirby, G.; Rossi, L.; Badel, A.; Bajko, M.; Ballarino, A.; Bottura, L.; Dhallé, M.; Durante, M.; Fazilleau, P.; Fleiter, J.; et al. Status of the demonstrator magnets for the EuCARD-2 future magnets project. IEEE Trans. Appl. Supercond. 2016, 26, 4003307. [Google Scholar] [CrossRef]
- Uglietti, D.; Bykovsky, N.; Sedlak, K.; Stepanov, B.; Wesche, R.; Bruzzone, P. Test of 60 kA coated conductor cable prototypes for fusion magnets. Supercond. Sci. Technol. 2015, 28, 124005. [Google Scholar] [CrossRef]
- Bykovsky, N.; Uglietti, D.; Sedlak, K.; Stepanov, B.; Wesche, R.; Bruzzone, P. Performance evolution of 60 kA HTS cable prototypes in the EDIPO test facility. Supercond. Sci. Technol. 2016, 29, 084002. [Google Scholar] [CrossRef]
- Brouwer, L.N. Canted-Cosine-Theta Superconducting Accelerator Magnets for High Energy Physics and Ion Beam Cancer Therapy. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2015. Available online: https://escholarship.org/uc/item/8jp4g75g (accessed on 17 November 2019).
- Bykovsky, N.; Uglietti, D.; Wesche, R.; Bruzzone, P. Cyclic load effect on round strands made by twisted stacks of HTS tapes. Fusion Eng. Des. 2017, 124, 6–9. [Google Scholar] [CrossRef]
- Mulder, T.; Weiss, J.; van der Laan, D.; Dhallé, M.; Kate, H.T. Development of ReBCO-CORC wires with current densities of 400–600 A/mm2 at 10 T and 4.2 K. IEEE Trans. Appl. Supercond. 2018, 28, 4800504. [Google Scholar] [CrossRef]
- Bruzzone, P. Cable Behavior and Specific Issues for HTS Tapes. The 5th Workshop on Accelerator Magnets in HTS. 2019. Available online: https://indico.cern.ch/event/775529/contributions/3308234/ (accessed on 17 November 2019).
- Bykovsky, N.; Uglietti, D.; Wesche, R.; Bruzzone, P. Damage investigations in the HTS cable prototype after the cycling test in EDIPO. IEEE Trans. Appl. Supercond. 2018, 28, 4801705. [Google Scholar] [CrossRef]
- Kajita, K.; Iguchi, S.; Xu, Y.; Nawa, M.; Hamada, M.; Takao, T.; Nakagome, H.; Matsumoto, S.; Nishijima, G.; Suematsu, H.; et al. Degradation of a REBCO coil due to cleavage and peeling originating from an electromagnetic force. IEEE Trans. Appl. Supercond. 2016, 26, 4301106. [Google Scholar] [CrossRef]
- Matsuda, T.; Okamura, T.; Hamada, M.; Matsumoto, S.; Ueno, T.; Piao, R.; Yanagisawa, Y.; Maeda, H. Degradation of the performance of an epoxy-impregnated REBCO solenoid due to electromagnetic forces. Cryogenics 2018, 90, 47–51. [Google Scholar] [CrossRef]
- Bruzzone, P.; Fietz, W.H.; Minervini, J.V.; Novikov, M.; Yanagi, N.; Zhai, Y.; Zheng, J. High temperature superconductors for fusion magnets. Nuclear Fusion 2018, 58, 103001. [Google Scholar] [CrossRef]
- Yanagisawa, Y.; Nakagome, H.; Takematsu, T.; Takao, T.; Sato, N.; Takahashi, M.; Maeda, H. Remarkable weakness against cleavage stress for YBCO-coated conductors and its effect on the YBCO coil performance. Physica C 2011, 471, 480–485. [Google Scholar] [CrossRef] [Green Version]
- Higashikawa, K.; Katahira, K.; Okumura, K.; Shiohara, K.; Inoue, M.; Kiss, T.; Shingai, Y.; Konishi, M.; Ohmatsu, K.; Yoshizumi, M.; et al. Lateral distribution of critical current density in coated conductors slit by different cutting methods. IEEE Trans. Appl. Supercond. 2013, 23, 6602704. [Google Scholar] [CrossRef]
- Luo, W.; Kar, S.; Xu, A.; Li, X.; Yahia, A.B.; Selvamanickam, V. Fabrication and electromagnetic characterization of ultrasmall diameter REBCO wires. IEEE Trans. Appl. Supercond. 2017, 27, 6602705. [Google Scholar] [CrossRef]
- Bykovsky, N.; Uglietti, D.; Wesche, R.; Bruzzone, P. Design optimization of round strands made by twisted stacks of HTS tapes. IEEE Trans. Appl. Supercond. 2016, 26, 4201207. [Google Scholar] [CrossRef] [Green Version]
- Majoros, M.; Sumption, M.D.; Collings, E.W.; van der Laan, D. Stability and normal zone propagation in YBCO CORC cables. Supercond. Sci. Technol. 2016, 29, 044006. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zheng, J.; Zhu, Z.; Zhang, M.; Yuan, W. Quench behavior of high-temperature superconductor (RE)Ba2Cu3Ox CORC cable. J. Phys. D Appl. Phys. 2019, 52, 345303. [Google Scholar] [CrossRef]
- Cavallucci, L.; Breschi, M.; Ribani, P.L.; Yang, Y. Electrothermal modeling of quench in REBCO Roebel cables. IEEE Trans. Appl. Supercond. 2018, 28, 4703405. [Google Scholar] [CrossRef]
- Willering, G. Stability of Superconducting Rutherford Cables for Accelerator Magnets. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2009. [Google Scholar] [CrossRef] [Green Version]
- Kang, R.; Uglietti, D.; Wesche, R.; Sedlak, K.; Bruzzone, P.; Song, Y. Quench simulation of REBCO cable-in-conduit conductor with twisted stacked-tape cable. IEEE Trans. Appl. Supercond. 2020, 30, 5700107. [Google Scholar] [CrossRef]
- Lu, J.; Goddard, R.; Han, K.; Hahn, S. Contact resistance between two REBCO tapes under load and load cycles. Supercond. Sci. Technol. 2017, 30, 045005. [Google Scholar] [CrossRef] [Green Version]
- Hahn, S.; Radcliff, K.; Kim, K.; Kim, S.; Hu, X.; Kim, K.; Abraimov, D.V.; Jaroszynski, J. ‘Defect-irrelevant’ behavior of a no-insulation pancake coil wound with REBCO tapes containing multiple defects. Supercond. Sci. Technol. 2016, 29, 105017. [Google Scholar] [CrossRef] [Green Version]
- Imbasciati, L.; Bauer, P.; Ambrosio, G.; Lamm, M.J.; Miller, J.R.; Miller, G.E.; Zlobin, A.V. Effect of thermo-mechanical stress during quench on Nb3Sn cable performance. IEEE Trans. Appl. Supercond. 2003, 13, 1718–1721. [Google Scholar] [CrossRef]
- Imbasciati, L.; Bauer, P.; Ambrosio, G.; Lamm, M.; Caspi, S.; Chiesa, L.; Dietderich, D.; Ferracin, P.; Lietzke, A.; Gourlay, S. Study of the effects of high temperatures during quenches on the performance of a small Nb3Sn racetrack magnet. Supercond. Sci. Technol. 2004, 17, S389–S393. [Google Scholar] [CrossRef] [Green Version]
- Ishiyama, A.; Tanaka, Y.; Ueda, H.; Shiohara, Y.; Machi, T.; Iijima, Y.; Saitoh, T.; Kashima, N.; Mori, M.; Watanabe, T.; et al. Degradation of YBCO Coated Conductors Due to Over-Current Pulse. IEEE Trans. Appl. Supercond. 2007, 17, 3509–3512. [Google Scholar] [CrossRef]
- Wang, X.; Trociewitz, U.P.; Schwartz, J. Critical current degradation of short YBa2Cu3O7−δ coated conductor due to an unprotected quench. Supercond. Sci. Technol. 2011, 24, 035006. [Google Scholar] [CrossRef]
- Wilson, M.N. Superconducting Magnets; Oxford University Press: New York, NY, USA, 1983; Chapter 9. [Google Scholar]
- Iwasa, Y. Case Studies in Superconducting Magnets: Design and Operational Issues; Springer: Berlin, Germany, 2009; Chapter 8. [Google Scholar]
- Kar, S.; Luo, W.; sai Sandra, J.; Majkic, G.; Selvamanickam, V. Optimum copper stabilizer thickness for symmetric tape round (STAR) REBCO wires with superior mechanical properties for accelerator magnet applications. IEEE Trans. Appl. Supercond. 2019, 29, 6602605. [Google Scholar] [CrossRef]
- Van Oort, J.M.; Scanlan, R.M.; ten Kate, H.H. A fiber-optic strain measurement and quench localization system for use in superconducting accelerator dipole magnet. IEEE Trans. Appl. Supercond. 1995, 5, 882–885. [Google Scholar] [CrossRef] [Green Version]
- Mahar, S.; Geng, J.; Schultz, J.; Minervini, J.; Jiang, S.; Titus, P.; Takayasu, M.; Gung, C.Y.; Tian, W.; Chavez-Pirson, A. Real-time simultaneous temperature and strain measurements at cryogenic temperatures in an optical fiber. Remote Sens. 2008. [Google Scholar] [CrossRef]
- Chiuchiolo, A.; Bajko, M.; Perez, J.C.; Bajas, H.; Consales, M.; Giordano, M.; Breglio, G.; Cusano, A. Fiber Bragg grating cryosensors for superconducting accelerator magnets. IEEE Photonics J. 2014, 6, 0600310. [Google Scholar] [CrossRef]
- Scurti, F.; Ishmael, S.; Flanagan, G.; Schwartz, J. Quench detection for high temperature superconductor magnets: A novel technique based on Rayleigh-backscattering interrogated optical fibers. Supercond. Sci. Technol. 2016, 29, 03LT01. [Google Scholar] [CrossRef]
- Jiang, J.; Zhao, Y.; Hong, Z.; Zhang, J.; Li, Z.; Hu, D.; Qiu, D.; Zhao, A.; Ryu, K.; Jin, Z. Experimental Study on Quench Detection of a No-Insulation HTS Coil Based on Raman-Scattering Technology in Optical Fiber. IEEE Trans. Appl. Supercond. 2018, 28, 4702105. [Google Scholar] [CrossRef]
- Marchevsky, M.; Gourlay, S.A. Acoustic thermometry for detecting quenches in superconducting coils and conductor stacks. Appl. Phys. Lett. 2017, 110, 012601. [Google Scholar] [CrossRef] [Green Version]
- Takayasu, M. An Acoustic Quench Detection Method for CICC Conductor Operating in Gas or Liquid. IEEE Trans. Appl. Supercond. 2019, 29, 4702305. [Google Scholar] [CrossRef]
- Ishmael, S.; Luo, H.; White, M.; Hunte, F.; Liu, X.T.; Mandzy, N.; Muth, J.F.; Naderi, G.; Ye, L.; Hunt, A.T.; et al. Enhanced Quench Propagation in Bi2Sr2CaCu2Ox and YBa2Cu3O7−x Coils via a Nanoscale Doped-Titania-Based Thermally Conducting Electrical Insulator. IEEE Trans. Appl. Supercond. 2013, 23, 7201311. [Google Scholar] [CrossRef]
- Lacroix, C.; Lapierre, Y.; Coulombe, J.; Sirois, F. High normal zone propagation velocity in second generation high-temperature superconductor coated conductors with a current flow diverter architecture. Supercond. Sci. Technol. 2014, 27, 055013. [Google Scholar] [CrossRef]
- Jain, A.K. Basic theory of magnets. In Proceedings of the CERN Accelerator School on Measurement and Alighnment of Accelerator and Detector Magnets, Anacapri, Italy, 11–17 April 1997. [Google Scholar] [CrossRef]
- Mess, K.H.; Schmüser, P.; Wolff, S. Superconducting Accelerator Magnets; World Scientific: Munich, Germany, 1996. [Google Scholar]
- Sammut, N.; Bottura, L.; Micallef, J. Mathematical formulation to predict the harmonics of the superconducting Large Hadron Collider magnets. Phys. Rev. Spec. Top. Accel. Beams 2006, 9, 012402. [Google Scholar] [CrossRef] [Green Version]
- Kesgin, I.; Levin, G.A.; Haugan, T.J.; Selvamanickam, V. Multifilament, copper-stabilized superconductor tapes with low alternating current loss. Appl. Phys. Lett. 2013, 103, 252603. [Google Scholar] [CrossRef]
- Petrone, C.; van Nugteren, J.; Bajas, H.; Bottura, L.; Kirby, G.; Rossi, L.; Russenschuck, S. Measurement and analysis of the dynamic effects in an HTS dipole magnet. IEEE Trans. Appl. Supercond. 2018, 28, 4604404. [Google Scholar] [CrossRef]
- Myers, C.S.; Sumption, M.D.; Collings, E.W. Magnetization and flux penetration of YBCO CORC cable segments at the injection fields of accelerator magnets. IEEE Trans. Appl. Supercond. 2019, 29, 4701105. [Google Scholar] [CrossRef] [Green Version]
- Collings, E.W.; Sumption, M.D.; Myers, C.S.; Wang, X.; Dietderich, D.R.; Yagotyntsev, K.; Nijhuis, A. Persistent-current magnetizations of Nb3Sn Rutherford cables and extracted strands. IOP Conf. Ser. Mater. Sci. Eng. 2017, 279, 012037. [Google Scholar] [CrossRef]
- Vojenčiak, M.; Kario, A.; Ringsdorf, B.; Nast, R.; van der Laan, D.C.; Scheiter, J.; Jung, A.; Runtsch, B.; Gömöry, F.; Goldacker, W. Magnetization ac loss reduction in HTS CORC® cables made of striated coated conductors. Supercond. Sci. Technol. 2015, 28, 104006. [Google Scholar] [CrossRef] [Green Version]
- Grilli, F.; Kario, A. How filaments can reduce AC losses in HTS coated conductors: A review. Supercond. Sci. Technol. 2016, 29, 083002. [Google Scholar] [CrossRef]
- Völlinger, C.; Aleksa, M.; Russenschuck, S. Calculation of persistent currents in superconducting magnets. Phys. Rev. Spec. Top. Accel. Beams 2000, 3, 122402. [Google Scholar] [CrossRef] [Green Version]
- Kashikhin, V.; Barzi, E.; Chichili, D.; DiMarco, J.; Lamm, M.; Schlabach, P.; Zlobin, A. Passive correction of the persistent current effect in Nb3Sn accelerator magnets. IEEE Trans. Appl. Supercond. 2003, 13, 1270–1273. [Google Scholar] [CrossRef]
- Verweij, A.P. Electrodynamics of Superconducting Cables in Accelerator Magnets. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 1995. Available online: http://inspirehep.net/record/888466 (accessed on 17 November 2019).
- Ogitsu, T.; Kovachev, V.; Devred, A. Influence of Inter-strand Coupling Current on Field Quality of superconducting Accelerator Magnets. Part. Accel. 1997, 57, 215–235. Available online: http://inspirehep.net/record/463305 (accessed on 17 November 2019).
- Wolf, R.; Leroy, D.; Richter, D.; Verweij, A.; Walckiers, L. Determination of interstrand contact resistance from loss and field measurements in LHC dipole prototypes and correlation with measurements on cable samples. IEEE Trans. Appl. Supercond. 1997, 7, 797–800. [Google Scholar] [CrossRef]
- Andreev, N.; Apollinari, G.; Auchmann, B.; Barzi, E.; Bossert, R.; Chlachidze, G.; DiMarco, J.; Karppinen, M.; Nobrega, F.; Novitski, I.; et al. Field quality measurements in a single-aperture 11 T demonstrator dipole for LHC upgrades. IEEE Trans. Appl. Supercond. 2013, 23, 4001804. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ambrosio, G.; Borgnolutti, F.; Buehler, M.; Chlachidze, G.; Dietderich, D.; DiMarco, J.; Felice, H.; Ferracin, P.; Ghosh, A.; et al. Multipoles Induced by Inter-Strand Coupling Currents in LARP Nb3Sn Quadrupoles. IEEE Trans. Appl. Supercond. 2014, 24, 4002607. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, D.W.; Dietderich, D.R.; DiMarco, J.; Felice, H.; Ferracin, P.; Marchevsky, M.; Prestemon, S.O.; Sabbi, G. Field Quality of HD3—A Nb3Sn Dipole Magnet Based on Block Design. IEEE Trans. Appl. Supercond. 2019, 29, 4002507. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Dietderich, D.R.; DiMarco, J.; Ghiorso, W.B.; Gourlay, S.A.; Higley, H.C.; Lin, A.; Prestemon, S.O.; van der Laan, D.; Weiss, J.D. A 1.2 T canted cosϑ dipole magnet using high-temperature superconducting CORC® wires. Supercond. Sci. Technol. 2019, 32, 075002. [Google Scholar] [CrossRef] [Green Version]
- Yagotintsev, K.; Gao, P.; Dhalle, M.; Haugan, T.; van der Laan, D.; Nijhuis, A. AC Loss and Inter-Tape Resistance in REBCO Cables. Presented at the Coated Conductors for Applications Workshop, Aspen, CO, USA, 11–14 September 2016; Available online: https://nationalmaglab.org/images/magnet_development/asc/searchable_docs/asc_resources/coated_conductors/2016/co_15_yagotintsev.pdf (accessed on 17 November 2019).
- Van Nugteren, J.; van Nugteren, B.; Gao, P.; Bottura, L.; Dhallé, M.; Goldacker, W.; Kario, A.; ten Kate, H.; Kirby, G.; Krooshoop, E.; et al. Measurement and numerical evaluation of AC losses in a ReBCO roebel cable at 4.5 K. IEEE Trans. Appl. Supercond. 2016, 26, 8201407. [Google Scholar] [CrossRef] [Green Version]
- Sammut, N.J.; Bottura, L.; Bauer, P.; Velev, G.; Pieloni, T.; Micallef, J. Mathematical formulation to predict the harmonics of the superconducting Large Hadron Collider magnets. II. Dynamic field changes and scaling laws. Phys. Rev. ST Accel. Beams 2007, 10, 082802. [Google Scholar] [CrossRef] [Green Version]
- Fischer, W.; Jain, A.; Tepikian, S. Beam-based measurements of persistent current decay in the Relativistic Heavy Ion Collider. Phys. Rev. ST Accel. Beams 2001, 4, 041002. [Google Scholar] [CrossRef] [Green Version]
- Velev, G.; Strauss, T.; Barzi, E.; Chlachidze, G.; DiMarco, J.; Nobrega, F.; Novitski, I.; Stoynev, S.; Turrioni, D.; Zlobin, A.V. Measurements of dynamic effects in FNAL 11-T Nb3Sn dipole models. IEEE Trans. Appl. Supercond. 2018, 28, 4005904. [Google Scholar] [CrossRef]
- Yeshurun, Y.; Malozemoff, A.P.; Shaulov, A. Magnetic relaxation in high-temperature superconductors. Rev. Mod. Phys. 1996, 68, 911–949. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.N. Superconductivity and accelerators: The good companions. IEEE Trans. Appl. Supercond. 1999, 9, 111–121. [Google Scholar] [CrossRef]
- Barth, C.; Weiss, K.P.; Vojenčiak, M.; Schlachter, S. Electro-mechanical analysis of Roebel cables with different geometries. Supercond. Sci. Technol. 2011, 25, 025007. [Google Scholar] [CrossRef]
- Allen, N.C.; Chiesa, L.; Takayasu, M. Structural modeling of HTS tapes and cables. Cryogenics 2016, 80, 405–418. [Google Scholar] [CrossRef]
- Coulter, J.Y.; Hanisch, J.; Willis, J.O.; Civale, L.; Pierce, W.K. Position and Magnetic Field Angle Dependent Ic for Long-Length Coated Conductors. IEEE Trans. Appl. Supercond. 2007, 17, 3394–3397. [Google Scholar] [CrossRef]
- Higashikawa, K.; Shiohara, K.; Komaki, Y.; Okumura, K.; Imamura, K.; Inoue, M.; Kiss, T.; Iijima, Y.; Saitoh, T.; Machi, T.; et al. High-speed scanning Hall-probe microscopy for two-dimensional characterization of local critical current density in long-length coated conductor. Physics Procedia 2012, 27, 228–231. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Li, X.; Luo, W.; Selvamanickam, V. Reel-to-reel scanning hall probe microscope measurement on REBCO tapes. IEEE Trans. Appl. Supercond. 2019, 29, 6601504. [Google Scholar] [CrossRef]
- Hu, X.; Rossi, L.; Stangl, A.; Sinclair, J.W.; Kametani, F.; Abraimov, D.; Polyanskii, A.; Coulter, J.Y.; Jaroszynski, J.; Larbalestier, D.C. An Experimental and Analytical Study of Periodic and Aperiodic Fluctuations in the Critical Current of Long Coated Conductors. IEEE Trans. Appl. Supercond. 2017, 27, 9000205. [Google Scholar] [CrossRef]
- Rossi, L.; Hu, X.; Kametani, F.; Abraimov, D.; Polyanskii, A.; Jaroszynski, J.; Larbalestier, D.C. Sample and length-dependent variability of 77 and 4.2 K properties in nominally identical RE123 coated conductors. Supercond. Sci. Technol. 2016, 29, 054006. [Google Scholar] [CrossRef]
- Higashikawa, K.; Guo, X.; Inoue, M.; Jiang, Z.; Badcock, R.; Long, N.; Kiss, T. Characterization of critical current distribution in Roebel cable strands based on reel-to-reel scanning hall-probe microscopy. IEEE Trans. Appl. Supercond. 2017, 27, 8001404. [Google Scholar] [CrossRef]
- Office of Fusion Energy Sciences. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, 8–12 June 2009; Technical Report; Department of Energy, Office of Science: Washington, DC, USA, 2009. [CrossRef] [Green Version]
- Maingi, R.; Lumsdaine, A.; Allain, J.P.; Chacon, L.; Gourlay, S.A.; Greenfield, C.M.; Hughes, J.W.; Humphreys, D.; Izzo, V.; McLean, H.; et al. Summary of the FESAC transformative enabling capabilities panel report. Fusion Sci. Technol. 2019, 75, 167–177. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research; The National Academies Press: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Sorbom, B.; Ball, J.; Palmer, T.; Mangiarotti, F.; Sierchio, J.; Bonoli, P.; Kasten, C.; Sutherland, D.; Barnard, H.; Haakonsen, C.; et al. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets. Fusion Eng. Des. 2015, 100, 378–405. [Google Scholar] [CrossRef] [Green Version]
- Whyte, D.G.; Minervini, J.; LaBombard, B.; Marmar, E.; Bromberg, L.; Greenwald, M. Smaller & sooner: Exploiting high magnetic fields from new superconductors for a more attractive fusion energy development path. J. Fusion Energy 2016, 35, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y.; Titus, P.; Kessel, C.; El-Guebaly, L. Conceptual magnet design study for fusion nuclear science facility. Fusion Eng. Des. 2018, 135, 324–336. [Google Scholar] [CrossRef]
- Menard, J.E. Compact steady-state tokamak performance dependence on magnet and core physics limits. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20170440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzzi, L.; De Marzi, G.; Di Zenobio, A.; della Corte, A. Cable-in-conduit conductors: Lessons from the recent past for future developments with low and high temperature superconductors. Supercond. Sci. Technol. 2015, 28, 053001. [Google Scholar] [CrossRef]
- Gupta, R.; Anerella, M.; Cozzolino, J.; Escallier, J.; Ganetis, G.; Ghosh, A.; Harrison, M.; Muratore, J.; Sampson, W.; Wanderer, P. React and Wind Nb3Sn Common Coil Dipole. IEEE Trans. Appl. Supercond. 2007, 17, 1130–1135. [Google Scholar] [CrossRef]
- Arbelaez, D. Status of CCT: Experience Gained and Next Steps. Presented at the USMDP Collaboration Meeting, FNAL, Batavia, IL, USA, 16 January 2019; Available online: https://indico.fnal.gov/event/18806/session/3/contribution/5/material/slides/0.pptx (accessed on 17 November 2019).
- Prestemon, S. High Temperature Superconductor Cable Test Facility Specifications; Technical Report Draft I; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2018.
- Willering, G.; Arnestad, H.; Bajko, M.; Bajas, H.; Bortot, L.; Bottura, L.; Bourcey, N.; Duda, M.; Ferracin, P.; Feuvrier, J.; et al. Tests of the FRESCA2 100 mm bore Nb3Sn block-coil magnet to a record field of 14.6 T. IEEE Trans. Appl. Supercond. 2019, 29, 4004906. [Google Scholar] [CrossRef]
- Wang, X.; Caspi, S.; Dietderich, D.R.; Ghiorso, W.B.; Gourlay, S.A.; Higley, H.C.; Lin, A.; Prestemon, S.O.; van der Laan, D.; Weiss, J.D. A viable dipole magnet concept with REBCO CORC® wires and further development needs for high-field magnet applications. Supercond. Sci. Technol. 2018, 31, 045007. [Google Scholar] [CrossRef] [Green Version]
- Celentano, G.; De Marzi, G.; Fabbri, F.; Muzzi, L.; Tomassetti, G.; Anemona, A.; Chiarelli, S.; Seri, M.; Bragagni, A.; della Corte, A. Design of an industrially feasible twisted-stack HTS cable-in-conduit conductor for fusion application. IEEE Trans. Appl. Supercond. 2014, 24, 4601805. [Google Scholar] [CrossRef]
- Weiss, J.; van der Laan, D.C.; Trociewitz, U.; Abraimov, D.; Larbalestier, D.C.; Higley, H.; Prestemon, S.O.; Wang, X.; Mulder, T.; ten Kate, H.H.J. Current Progress of High-Temperature Superconducting CORC® Magnet Cable and Wire Development. Available online: https://indico.cern.ch/event/659554/contributions/2709426/attachments/1527211/2388338/3LO2-04_Jeremy_Weiss_Room_1.pdf (accessed on 1 September 2019).
- Weiss, J.; van der Laan, D.; Mulder, T.; Kate, H.T.; Godeke, A.; Kolb-Bond, D.; Larbalestier, D. Enhanced Flexibility of Round High-Temperature Superconducting CORC Wires for High-Field Magnet Applications. Presented at the 8thWorkshop on Mechanical and Electromagnetic Properties of Composite Superconductors (MEM16), Tallahassee, FL, USA, 21 March 2016; Available online: https://nationalmaglab.org/images/news_events/events/mem/talks/s2_weiss.pdf (accessed on 17 November 2019).
- Pierro, F.; Delgado, M.; Chiesa, L.; Wang, X.; Prestemon, S.O. Measurements of the strain dependence of critical current of commercial REBCO tapes at 15 T between 4.2 and 40 K for high field magnets. IEEE Trans. Appl. Supercond. 2019, 29, 8401305. [Google Scholar] [CrossRef] [Green Version]
- Marchevsky, M.; Hershkovitz, E.; Wang, X.; Gourlay, S.A.; Prestemon, S. Quench detection for high-temperature superconductor conductors using acoustic thermometry. IEEE Trans. Appl. Supercond. 2018, 28, 4703105. [Google Scholar] [CrossRef] [Green Version]
- Ravaioli, E.; Martchevskii, M.; Sabbi, G.; Shen, T.; Zhang, K. Quench detection utilizing stray capacitances. IEEE Trans. Appl. Supercond. 2018, 28, 4702805. [Google Scholar] [CrossRef]
- Ravaioli, E.; Davis, D.; Marchevsky, M.; Sabbi, G.; Shen, T.; Verweij, A.; Zhang, K. A new quench detection method for HTS magnets: Stray-capacitance change monitoring. Phys. Scr. 2019. [Google Scholar] [CrossRef]
- Scurti, F.; Ishmael, S.; Wang, X.; Weiss, J.; van der Laan, D.; Prestemon, S.; Schwartz, J. Quench Detection via Rayleigh Backscattering Interrogated Optical Fibers. Presented at the 26th International Conference on Magnet Technology, Vancouver, BC, Canada, 22–27 September 2019; Available online: https://indico.cern.ch/event/763185/contributions/3441674/ (accessed on 17 November 2019).
Property | Unit | Nb–Ti | Nb3Sn | Bi-2212 | REBCO | ||
---|---|---|---|---|---|---|---|
Cable form | - | Rutherford cable | Roebel [29] | CORC® [30] | STAR [34] | ||
Critical temperature | K | 9 | 18 | 90–95 | 93 | ||
Upper critical field at 4.2 K | T | 11 [35] | 26 [8] | 105 [8] | 110 [36] | ||
Upper critical field at 20 K | T | 0 | 0 | 9 [8] | 100 [36] | ||
Typical wire diameter | mm | 1.065 [24] | 0.85 [27] | 0.80 [28] | 12×1.5 [37] | 3.7 [38] | 1.3 [34] |
at 16 T, 4.2 K a | A mm−2 | 0 | 474 [39] | 1300 [28] | 964 b [40] | 310 c [38] | 695 d [34] |
at 20 T, 4.2 K | A mm−2 | 0 | 123 [39] | 1180 [28] | 821 b [40] | 267 c [38] | 586 d [34] |
Demonstrated bending radius | mm | 15 e | 13 e [41] | 10 e [42] | 4 e [43] | 30 [38] | 15 [34] |
Effective filament diameter f | μm | 7 [24] | 55 [27] | 130 [44] | 2–5500 g [22] | 2000 g [38] | 1400–2500 g [34] |
Magnetization at 4.2 K, 1 T h | mT | 10 i [45] | 270 [46] | 60 [47] | 716 j [48] | 502 [49] | TBD |
Strand transposition | - | Full | Full | Partial | |||
Peak heat treatment temperature | °C | N/A | 665 [27] | 892 [50] | N/A | ||
Irreversible tensile strain limit | - | >1% [51] | 0.4% [52] | 0.3% [53,54] | 0.36% [55] | 0.85% [56] | TBD |
Irreversible transverse stress limit | MPa | >200 [24] | 150–260 [57,58] | 60–TBD [59] | 370–440 [37] | 99 k [60] | TBD |
Stabilizer fraction | - | 62% [24] | 55% [27] | 78% [61] | 20% [37] | 57% l [38] | 17% l [34] |
Stabilizer RRR | - | 200 [24] | ≥150 [27] | 90–440 [61,62] | 13–69 m [63,64] | ||
Joint resistance at 4.2 K | nΩ | <1 [65] | 1 | 1 [50] | <19 [66,67] | 2–6 [68] | TBD |
Piece length (order of magnitude) | km | 1–10 [24] | 1–10 [27,69] | 1 [70] | 0.01–0.1 | ||
Price of single strand/tape [25] | $ m−1 | 1.2 | 6.5 | 12.4 | 40 |
Research Needs for High-Field REBCO Fusion Magnets and Conductors | Synergistic Driving Questions |
---|---|
Conductor design, fabrication and test | Section 3.1, Section 3.2, Section 3.3, Section 3.4, Section 3.5, Section 3.6 and Section 3.7 |
Magnet design, fabrication and test | Section 3.1, Section 3.2, Section 3.3, Section 3.4, Section 3.5, Section 3.6 and Section 3.7 |
Performance stability under Lorentz loads | Section 3.3, Section 3.4 and Section 3.6 |
Quench behavior and detection | Section 3.4 and Section 3.6 |
Demountable joints | Section 3.1 |
Radiation hardness | Not addressed |
AC losses | Section 3.5 and Section 3.6 |
Operation above 4.2 K | Not addressed |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Gourlay, S.A.; Prestemon, S.O. Dipole Magnets above 20 Tesla: Research Needs for a Path via High-Temperature Superconducting REBCO Conductors. Instruments 2019, 3, 62. https://doi.org/10.3390/instruments3040062
Wang X, Gourlay SA, Prestemon SO. Dipole Magnets above 20 Tesla: Research Needs for a Path via High-Temperature Superconducting REBCO Conductors. Instruments. 2019; 3(4):62. https://doi.org/10.3390/instruments3040062
Chicago/Turabian StyleWang, Xiaorong, Stephen A. Gourlay, and Soren O. Prestemon. 2019. "Dipole Magnets above 20 Tesla: Research Needs for a Path via High-Temperature Superconducting REBCO Conductors" Instruments 3, no. 4: 62. https://doi.org/10.3390/instruments3040062
APA StyleWang, X., Gourlay, S. A., & Prestemon, S. O. (2019). Dipole Magnets above 20 Tesla: Research Needs for a Path via High-Temperature Superconducting REBCO Conductors. Instruments, 3(4), 62. https://doi.org/10.3390/instruments3040062