The Depairing Current Density of a Fe(Se,Te) Crystal Evaluated in Presence of Demagnetizing Factors
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296–3297. [Google Scholar] [CrossRef]
- Bednorz, J.G.; Müller, K.A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B Condens. Matter 1986, 64, 189–193. [Google Scholar] [CrossRef]
- Hsu, F.-C.; Luo, J.-Y.; Yeh, K.-W.; Chen, T.-K.; Huang, T.-W.; Wu, P.M.; Lee, Y.-C.; Huang, Y.-L.; Chu, Y.-Y.; Yan, D.-C.; et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. USA 2008, 105, 14262–14264. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, A.; Buchkov, K.; Tomov, V.; Nazarova, E.; Leo, A.; Grimaldi, G.; Nigro, A.; Pace, S.; Polichetti, M. Evidence of pinning crossover and the role of twin boundaries in the peak effect in FeSeTe iron based superconductor. Supercond. Sci. Technol. 2018, 31, 015014. [Google Scholar] [CrossRef]
- Galluzzi, A.; Buchkov, K.; Nazarova, E.; Tomov, V.; Grimaldi, G.; Leo, A.; Pace, S.; Polichetti, M. Transport properties and high upper critical field of a Fe(Se,Te) iron based superconductor. Eur. Phys. J. Spec. Top. 2019, 228, 725–731. [Google Scholar] [CrossRef]
- Galluzzi, A.; Buchkov, K.; Nazarova, E.; Tomov, V.; Leo, A.; Grimaldi, G.; Pace, S.; Polichetti, M. Magnetic field sweep rate influence on the critical current capabilities of a Fe(Se,Te) crystal. J. Appl. Phys. 2020, 128, 073902. [Google Scholar] [CrossRef]
- Hosono, H.; Yamamoto, A.; Hiramatsu, H.; Ma, Y. Recent advances in iron-based superconductors toward applications. Mater. Today 2018, 21, 278–302. [Google Scholar] [CrossRef]
- Yuan, H.Q.; Singleton, J.; Balakirev, F.F.; Baily, S.A.; Chen, G.F.; Luo, J.L.; Wang, N.L. Nearly isotropic superconductivity in (Ba,K)Fe2As2. Nature 2009, 457, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, A.; Jaroszynski, J.; Tarantini, C.; Balicas, L.; Jiang, J.; Gurevich, A.; Larbalestier, D.C.; Jin, R.; Sefat, A.S.; McGuire, M.A.; et al. Small anisotropy, weak thermal fluctuations, and high field superconductivity in Co-doped iron pnictide Ba(Fe1−xCox)2As2. Appl. Phys. Lett. 2009, 94, 062511. [Google Scholar] [CrossRef]
- Grimaldi, G.; Leo, A.; Martucciello, N.; Braccini, V.; Bellingeri, E.; Ferdeghini, C.; Galluzzi, A.; Polichetti, M.; Nigro, A.; Villegier, J.-C.; et al. Weak or Strong Anisotropy in Fe(Se,Te) Superconducting Thin Films Made of Layered Iron-Based Material? IEEE Trans. Appl. Supercond. 2019, 29, 1–4. [Google Scholar] [CrossRef]
- Leo, A.; Braccini, V.; Bellingeri, E.; Ferdeghini, C.; Galluzzi, A.; Polichetti, M.; Nigro, A.; Pace, S.; Grimaldi, G. Anisotropy effects on the quenching current of Fe(Se,Te) Thin Films. IEEE Trans. Appl. Supercond. 2018, 28, 8234633. [Google Scholar] [CrossRef]
- Eley, S.; Willa, R.; Chan, M.K.; Bauer, E.D.; Civale, L. Vortex phases and glassy dynamics in the highly anisotropic superconductor HgBa2CuO4+δ. Sci. Rep. 2020, 10, 10239. [Google Scholar] [CrossRef]
- Polichetti, M.; Galluzzi, A.; Buchkov, K.; Tomov, V.; Nazarova, E.; Leo, A.; Grimaldi, G.; Pace, S. A precursor mechanism triggering the second magnetization peak phenomenon in superconducting materials. Sci. Rep. 2021, 11, 7247. [Google Scholar] [CrossRef] [PubMed]
- Llovo, I.F.; Sónora, D.; Mosqueira, J.; Salem-Sugui, S.; Sundar, S.; Alvarenga, A.D.; Xie, T.; Liu, C.; Li, S.L.; Luo, H.Q. Vortex dynamics and second magnetization peak in the iron-pnictide superconductor Ca0.82La0.18Fe0.96Ni0.04As2. Supercond. Sci. Technol. 2021, 34, 115010. [Google Scholar] [CrossRef]
- Yi, X.; Xing, X.; Meng, Y.; Zhou, N.; Wang, C.; Sun, Y.; Shi, Z. Anomalous Second Magnetization Peak in 12442-Type RbCa2Fe4As4F2 Superconductors. Chin. Phys. Lett. 2023, 40, 027401. [Google Scholar] [CrossRef]
- Lopes, P.V.; Sundar, S.; Salem-Sugui, S.; Hong, W.; Luo, H.; Ghivelder, L. Second magnetization peak, anomalous field penetration, and Josephson vortices in KCa2Fe4As4F2 bilayer pnictide superconductor. Sci. Rep. 2022, 12, 20359. [Google Scholar] [CrossRef]
- Prozorov, R.; Ni, N.; Tanatar, M.A.; Kogan, V.G.; Gordon, R.T.; Martin, C.; Blomberg, E.C.; Prommapan, P.; Yan, J.Q.; Bud’ko, S.L.; et al. Vortex phase diagram of Ba(Fe0.93Co0.07)2As2 single crystals. Phys. Rev. B 2008, 78, 224506. [Google Scholar] [CrossRef]
- Sun, Y.; Taen, T.; Tsuchiya, Y.; Pyon, S.; Shi, Z.; Tamegai, T. Magnetic relaxation and collective vortex creep in FeTe0.6Se0.4 single crystal. Europhys. Lett. 2013, 103, 57013. [Google Scholar] [CrossRef]
- Pramanik, A.K.; Harnagea, L.; Nacke, C.; Wolter, A.U.B.; Wurmehl, S.; Kataev, V.; Büchner, B. Fishtail effect and vortex dynamics in LiFeAs single crystals. Phys. Rev. B 2011, 83, 094502. [Google Scholar] [CrossRef]
- Sundar, S.; Salem-Sugui, S.; Amorim, H.S.; Wen, H.H.; Yates, K.A.; Cohen, L.F.; Ghivelder, L. Plastic pinning replaces collective pinning as the second magnetization peak disappears in the pnictide superconductor Ba0.75K0.25Fe2As2. Phys. Rev. B 2017, 95, 134509. [Google Scholar] [CrossRef]
- Taen, T.; Tsuchiya, Y.; Nakajima, Y.; Tamegai, T. Critical current densities and vortex dynamics in FeTexSe1−x single crystals. Phys. C Supercond. Appl. 2010, 470, 1106–1108. [Google Scholar] [CrossRef]
- Ren, C.; Wang, Z.S.; Luo, H.Q.; Yang, H.; Shan, L.; Wen, H.H. Evidence for two energy gaps in superconducting Ba0.6K0.4Fe2As2 single crystals and the breakdown of the uemura plot. Phys. Rev. Lett. 2008, 101, 257006. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Dou, S.X.; Ren, Z.A.; Yi, W.; Li, Z.C.; Zhao, Z.X.; Lee, S.I. Unconventional superconductivity of NdFeAsO0.82F0.18 indicated by the low temperature dependence of the lower critical field Hc1. J. Phys. Condens. Matter 2009, 21, 205701. [Google Scholar] [CrossRef]
- Martin, C.; Gordon, R.T.; Tanatar, M.A.; Kim, H.; Ni, N.; Bud’Ko, S.L.; Canfield, P.C.; Luo, H.; Wen, H.H.; Wang, Z.; et al. Nonexponential London penetration depth of external magnetic fields in superconducting Ba1−xKxFe2As2 single crystals. Phys. Rev. B 2009, 80, 020501. [Google Scholar] [CrossRef]
- Abdel-Hafiez, M.; Ge, J.; Vasiliev, A.N.; Chareev, D.A.; Van De Vondel, J.; Moshchalkov, V.V.; Silhanek, A.V. Temperature dependence of lower critical field Hc1(T) shows nodeless superconductivity in FeSe. Phys. Rev. B 2013, 88, 174512. [Google Scholar] [CrossRef]
- Song, Y.J.; Ghim, J.S.; Yoon, J.H.; Lee, K.J.; Jung, M.H.; Ji, H.S.; Shim, J.H.; Bang, Y.; Kwon, Y.S. Small anisotropy of the lower critical field and the s±- wave two-gap feature in single-crystal LiFeAs. Europhys. Lett. 2011, 94, 57008. [Google Scholar] [CrossRef]
- Prozorov, R.; Kogan, V.G. London penetration depth in iron-based superconductors. Rep. Prog. Phys. 2011, 74, 124505–124525. [Google Scholar] [CrossRef]
- Rosenstein, B.; Li, D. Ginzburg-Landau theory of type II superconductors in magnetic field. Rev. Mod. Phys. 2010, 82, 109–168. [Google Scholar] [CrossRef]
- Tahara, S.; Anlage, S.M.; Halbritter, J.; Eom, C.B.; Fork, D.K.; Geballe, T.H.; Beasley, M.R. Critical currents, pinning, and edge barriers in narrow YBa2Cu3O7−δ thin films. Phys. Rev. B 1990, 41, 11203–11208. [Google Scholar] [CrossRef] [PubMed]
- Tinkham, M. Introduction to Superconductivity; Dover Publications: Mineola, NY, USA, 2004; ISBN 0486134725. [Google Scholar]
- Arpaia, R.; Nawaz, S.; Lombardi, F.; Bauch, T. Improved nanopatterning for YBCO nanowires approaching the depairing current. IEEE Trans. Appl. Supercond. 2013, 23, 1101505. [Google Scholar] [CrossRef]
- Wang, T.; Ma, Y.; Li, W.; Chu, J.; Wang, L.; Feng, J.; Xiao, H.; Li, Z.; Hu, T.; Liu, X.; et al. Two-gap superconductivity in CaFe0.88Co0.12AsF revealed by temperature dependence of the lower critical field Hc1c(T). npj Quantum Mater. 2019, 4, 33. [Google Scholar] [CrossRef]
- Musolino, N.; Bals, S.; Van Tendeloo, G.; Clayton, N.; Walker, E.; Flükiger, R. Modulation-free phase in heavily Pb-doped (Bi,Pb)2212 crystals. Phys. C Supercond. Its Appl. 2003, 399, 1–7. [Google Scholar] [CrossRef]
- Galluzzi, A.; Leo, A.; Masi, A.; Varsano, F.; Nigro, A.; Grimaldi, G.; Polichetti, M. Magnetic Vortex Phase Diagram for a Non-Optimized CaKFe4As4 Superconductor Presenting a Wide Vortex Liquid Region and an Ultra-High Upper Critical Field. Appl. Sci. 2023, 13, 884. [Google Scholar] [CrossRef]
- Felner, I.; Kopelevich, Y. Magnetization measurement of a possible high-temperature superconducting state in amorphous carbon doped with sulfur. Phys. Rev. B 2009, 79, 233409. [Google Scholar] [CrossRef]
- Yadav, C.S.; Paulose, P.L. Upper critical field, lower critical field and critical current density of FeTe0.60Se0.40 single crystals. New J. Phys. 2009, 11, 103046. [Google Scholar] [CrossRef]
- Stoner, E.C. XCVII. The demagnetizing factors for ellipsoids. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1945, 36, 803–821. [Google Scholar] [CrossRef]
- Prando, G.; Giraud, R.; Aswartham, S.; Vakaliuk, O.; Abdel-Hafiez, M.; Hess, C.; Wurmehl, S.; Wolter, A.U.B.; Büchner, B. Evidence for a vortex–glass transition in superconducting Ba(Fe0.9Co0.1)2As2. J. Phys. Condens. Matter 2013, 25, 505701. [Google Scholar] [CrossRef] [PubMed]
- Yeshurun, Y.; Malozemoff, A.P.; Shaulov, A. Magnetic relaxation in high-temperature superconductors. Rev. Mod. Phys. 1996, 68, 911–949. [Google Scholar] [CrossRef]
- Maheshwari, P.K.; Gahtori, B.; Gupta, A.; Awana, V.P.S. Impact of Fe site Co substitution on superconductivity of Fe1−xCoxSe0.5Te0.5 (x = 0.0 to 0.10): A flux free single crystal study. AIP Adv. 2017, 7, 15006. [Google Scholar] [CrossRef]
- Murugesan, K.; Lingannan, G.; Ishigaki, K.; Uwatoko, Y.; Sekine, C.; Kawamura, Y.; Junichi, H.; Joseph, B.; Vajeeston, P.; Maheswari, P.K.; et al. Pressure Dependence of Superconducting Properties, Pinning Mechanism, and Crystal Structure of the Fe0.99Mn0.01Se0.5Te0.5 Superconductor. ACS Omega 2021, 6, 30419–30431. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Hu, R.; Petrovic, C. Critical fields, thermally activated transport, and critical current density of β-FeSe single crystals. Phys. Rev. B 2011, 84, 014520. [Google Scholar] [CrossRef]
- Dutta, P.; Pramanick, S.; Chatterjee, S. Effect of S-doping on the magnetic and electrical properties of FeSe superconductor. Phys. C Supercond. Appl. 2022, 602, 1354126. [Google Scholar] [CrossRef]
- Fletcher, J.D.; Serafin, A.; Malone, L.; Analytis, J.G.; Chu, J.H.; Erickson, A.S.; Fisher, I.R.; Carrington, A. Evidence for a nodal-line superconducting state in LaFePO. Phys. Rev. Lett. 2009, 102, 147001. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Imai, Y.; Komiya, S.; Tsukada, I.; Maeda, A. Anomalous temperature dependence of the superfluid density caused by a dirty-to-clean crossover in superconducting FeSe0.4Te0.6 single crystals. Phys. Rev. B 2011, 84, 132503. [Google Scholar] [CrossRef]
- Bendele, M.; Weyeneth, S.; Puzniak, R.; Maisuradze, A.; Pomjakushina, E.; Conder, K.; Pomjakushin, V.; Luetkens, H.; Katrych, S.; Wisniewski, A.; et al. Anisotropic superconducting properties of single-crystalline FeSe0.5Te0.5. Phys. Rev. B 2010, 81, 224520. [Google Scholar] [CrossRef]
- Milošević, M.V.; Perali, A. Emergent phenomena in multicomponent superconductivity: An introduction to the focus issue. Supercond. Sci. Technol. 2015, 28, 060201. [Google Scholar] [CrossRef]
- Weyeneth, S.; Puzniak, R.; Mosele, U.; Zhigadlo, N.D.; Katrych, S.; Bukowski, Z.; Karpinski, J.; Kohout, S.; Roos, J.; Keller, H. Anisotropy of superconducting single crystal SmFeAsO0.8F0.2 studied by torque magnetometry. J. Supercond. Nov. Magn. 2009, 22, 325–329. [Google Scholar] [CrossRef]
- Gonnelli, R.S.; Daghero, D.; Tortello, M.; Ummarino, G.A.; Stepanov, V.A.; Kremer, R.K.; Kim, J.S.; Zhigadlo, N.D.; Karpinski, J. Point-contact Andreev-reflection spectroscopy in ReFeAsO1−xFx (Re = La, Sm): Possible evidence for two nodeless gaps. Phys. C Supercond. Appl. 2009, 469, 512–520. [Google Scholar] [CrossRef]
- Szabó, P.; Pribulová, Z.; Pristáš, G.; Bud’ko, S.L.; Canfield, P.C.; Samuely, P. Evidence for two-gap superconductivity in Ba0.55K 0.45Fe2As2 from directional point-contact Andreev-reflection spectroscopy. Phys. Rev. B 2009, 79, 012503. [Google Scholar] [CrossRef]
- Mu, G.; Luo, H.; Wang, Z.; Shan, L.; Ren, C.; Wen, H.H. Low temperature specific heat of the hole-doped Ba0.6K0.4Fe2As2 single crystals. Phys. Rev. B 2009, 79, 174501. [Google Scholar] [CrossRef]
- Bekaert, J.; Vercauteren, S.; Aperis, A.; Komendová, L.; Prozorov, R.; Partoens, B.; Milošević, M.V. Anisotropic type-I superconductivity and anomalous superfluid density in OsB2. Phys. Rev. B 2016, 94, 144506. [Google Scholar] [CrossRef]
- Klein, T.; Braithwaite, D.; Demuer, A.; Knafo, W.; Lapertot, G.; Marcenat, C.; Rodière, P.; Sheikin, I.; Strobel, P.; Sulpice, A.; et al. Thermodynamic phase diagram of Fe(Se0.5Te0.5) single crystals in fields up to 28 tesla. Phys. Rev. B 2010, 82, 184506. [Google Scholar] [CrossRef]
- Diaconu, A.; Martin, C.; Hu, J.; Liu, T.; Qian, B.; Mao, Z.; Spinu, L. Possible nodal superconducting gap in Fe1+y(Te1−xSex) single crystals from ultralow temperature penetration depth measurements. Phys. Rev. B 2013, 88, 104502. [Google Scholar] [CrossRef]
- Kumar, R.; Varma, G.D. Study of TAFF and vortex phase of FexTe0.60Se0.40 (0.970 ≤ x ≤ 1.030) single crystals. Phys. Scr. 2020, 95, 045814. [Google Scholar] [CrossRef]
- Poole, C.; Farach, H.; Creswick, R.; Prozorov, R. Superconductivity; Academic Press: Cambridge, MA, USA, 2007; ISBN 0080550487. [Google Scholar]
- Peri, A.; Mangel, I.; Keren, A. Superconducting Stiffness and Coherence Length of FeSe0.5Te0.5 Measured in a Zero-Applied Field. Condens. Matter 2023, 8, 39. [Google Scholar] [CrossRef]
- Bardeen, J. Critical fields and currents in superconductors. Rev. Mod. Phys. 1962, 34, 667–681. [Google Scholar] [CrossRef]
- Maiorov, B.; Mele, P.; Baily, S.A.; Weigand, M.; Lin, S.Z.; Balakirev, F.F.; Matsumoto, K.; Nagayoshi, H.; Fujita, S.; Yoshida, Y.; et al. Inversion of the upper critical field anisotropy in FeTeS films. Supercond. Sci. Technol. 2014, 27, 044005. [Google Scholar] [CrossRef]
- Her, J.L.; Kohama, Y.; Matsuda, Y.H.; Kindo, K.; Yang, W.H.; Chareev, D.A.; Mitrofanova, E.S.; Volkova, O.S.; Vasiliev, A.N.; Lin, J.Y. Anisotropy in the upper critical field of FeSe and FeSe0.33Te0.67 single crystals. Supercond. Sci. Technol. 2015, 28, 045013. [Google Scholar] [CrossRef]
- Sun, Y.; Pan, Y.; Zhou, N.; Xing, X.; Shi, Z.; Wang, J.; Zhu, Z.; Sugimoto, A.; Ekino, T.; Tamegai, T.; et al. Comparative study of superconducting and normal-state anisotropy in Fe1+yTe0.6Se0.4 superconductors with controlled amounts of interstitial excess Fe. Phys. Rev. B 2021, 103, 224506. [Google Scholar] [CrossRef]
- Mishev, V.; Nakajima, M.; Eisaki, H.; Eisterer, M. Effects of introducing isotropic artificial defects on the superconducting properties of differently doped Ba-122 based single crystals. Sci. Rep. 2016, 6, 27783. [Google Scholar] [CrossRef] [PubMed]
- Kondo, K.; Motoki, S.; Hatano, T.; Urata, T.; Iida, K.; Ikuta, H. NdFeAs(O,H) epitaxial thin films with high critical current density. Supercond. Sci. Technol. 2020, 33, 09LT01. [Google Scholar] [CrossRef]
- Li, J.; Yuan, J.; Yuan, Y.H.; Ge, J.Y.; Li, M.Y.; Feng, H.L.; Pereira, P.J.; Ishii, A.; Hatano, T.; Silhanek, A.V.; et al. Direct observation of the depairing current density in single-crystalline Ba0.5K0.5Fe2As2 microbridge with nanoscale thickness. Appl. Phys. Lett. 2013, 103, 62603. [Google Scholar] [CrossRef]
- Bristow, M.; Knafo, W.; Reiss, P.; Meier, W.; Canfield, P.C.; Blundell, S.J.; Coldea, A.I. Competing pairing interactions responsible for the large upper critical field in a stoichiometric iron-based superconductor CaKFe4As4. Phys. Rev. B 2020, 101, 134502. [Google Scholar] [CrossRef]
- Sun, Y.; Ohnuma, H.; Ayukawa, S.-Y.; Noji, T.; Koike, Y.; Tamegai, T.; Kitano, H. Achieving the depairing limit along the c axis in Fe1+yTe1−xSex single crystals. Phys. Rev. B 2020, 101, 134516. [Google Scholar] [CrossRef]
- Galluzzi, A.; Buchkov, K.; Tomov, V.; Nazarova, E.; Kovacheva, D.; Leo, A.; Grimaldi, G.; Pace, S.; Polichetti, M. Mixed state properties of iron based Fe(Se,Te) superconductor fabricated by Bridgman and by self-flux methods. J. Appl. Phys. 2018, 123, 233904. [Google Scholar] [CrossRef]
- Tsurkan, V.; Deisenhofer, J.; Günther, A.; Kant, C.; Klemm, M.; von Nidda, H.-A.; Schrettle, F.; Loidl, A. Physical properties of FeSe0.5Te0.5 single crystals grown under different conditions. Eur. Phys. J. B 2011, 79, 289–299. [Google Scholar] [CrossRef]
- Wittlin, A.; Aleshkevych, P.; Przybylińska, H.; Gawryluk, D.J.; Dłuzewski, P.; Berkowski, M.; Puźniak, R.; Gutowska, M.U.; Wiśniewski, A. Microstructural magnetic phases in superconducting FeTe0.65Se0.35. Supercond. Sci. Technol. 2012, 25, 065019. [Google Scholar] [CrossRef]
- Sivakov, A.G.; Bondarenko, S.I.; Prokhvatilov, A.I.; Timofeev, V.P.; Pokhila, A.S.; Koverya, V.P.; Dudar, I.S.; Link, S.I.; Legchenkova, I.V.; Bludov, A.N.; et al. Microstructural and transport properties of superconducting FeTe0.65Se0.35 crystals. Supercond. Sci. Technol. 2017, 30, 015018. [Google Scholar] [CrossRef]
- McQueen, T.M.; Huang, Q.; Ksenofontov, V.; Felser, C.; Xu, Q.; Zandbergen, H.; Hor, Y.S.; Allred, J.; Williams, A.J.; Qu, D.; et al. Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe. Phys. Rev. B 2009, 79, 014522. [Google Scholar] [CrossRef]
- Onar, K.; Yakinci, M.E. Solid state synthesis and characterization of bulk β-FeSe superconductors. J. Alloys Compd. 2015, 620, 210–216. [Google Scholar] [CrossRef]
- Fiamozzi Zignani, C.; De Marzi, G.; Grimaldi, G.; Leo, A.; Guarino, A.; Vannozzi, A.; della Corte, A.; Pace, S. Fabrication and Physical Properties of Polycrystalline Iron-Chalcogenides Superconductors. IEEE Trans. Appl. Supercond. 2017, 27, 1–5. [Google Scholar] [CrossRef]
- Galluzzi, A.; Nigro, A.; Fittipaldi, R.; Guarino, A.; Pace, S.; Polichetti, M. DC magnetic characterization and pinning analysis on Nd1.85Ce0.15CuO4 cuprate superconductor. J. Magn. Magn. Mater. 2019, 475, 125–129. [Google Scholar] [CrossRef]
- Galluzzi, A.; Mancusi, D.; Cirillo, C.; Attanasio, C.; Pace, S.; Polichetti, M. Determination of the Transition Temperature of a Weak Ferromagnetic Thin Film by Means of an Evolution of the Method Based on the Arrott Plots. J. Supercond. Nov. Magn. 2018, 31, 1127–1132. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galluzzi, A.; Buchkov, K.; Tomov, V.; Nazarova, E.; Leo, A.; Grimaldi, G.; Crisan, A.; Polichetti, M. The Depairing Current Density of a Fe(Se,Te) Crystal Evaluated in Presence of Demagnetizing Factors. Condens. Matter 2023, 8, 91. https://doi.org/10.3390/condmat8040091
Galluzzi A, Buchkov K, Tomov V, Nazarova E, Leo A, Grimaldi G, Crisan A, Polichetti M. The Depairing Current Density of a Fe(Se,Te) Crystal Evaluated in Presence of Demagnetizing Factors. Condensed Matter. 2023; 8(4):91. https://doi.org/10.3390/condmat8040091
Chicago/Turabian StyleGalluzzi, Armando, Krastyo Buchkov, Vihren Tomov, Elena Nazarova, Antonio Leo, Gaia Grimaldi, Adrian Crisan, and Massimiliano Polichetti. 2023. "The Depairing Current Density of a Fe(Se,Te) Crystal Evaluated in Presence of Demagnetizing Factors" Condensed Matter 8, no. 4: 91. https://doi.org/10.3390/condmat8040091
APA StyleGalluzzi, A., Buchkov, K., Tomov, V., Nazarova, E., Leo, A., Grimaldi, G., Crisan, A., & Polichetti, M. (2023). The Depairing Current Density of a Fe(Se,Te) Crystal Evaluated in Presence of Demagnetizing Factors. Condensed Matter, 8(4), 91. https://doi.org/10.3390/condmat8040091