Double Quantum Ring under an Intense Nonresonant Laser Field: Zeeman and Spin-Orbit Interaction Effects
Abstract
:1. Introduction
2. Theoretical Framework
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Abbarchi, M.; Mastrandrea, C.A.; Vinattieri, A.; Sanguinetti, S.; Mano, T.; Kuroda, T.; Koguchi, N.; Sakoda, K.; Gurioli, M. Photon Antibunching in Double Quantum Ring Structures. Phys. Rev. B 2009, 79, 085308. [Google Scholar] [CrossRef]
- Gallardo, E.; Martínez, L.J.; Nowak, A.K.; Sarkar, D.; Sanvitto, D.; van der Meulen, H.P.; Calleja, J.M.; Prieto, I.; Granados, D.; Taboada, A.G.; et al. Single-Photon Emission by Semiconductor Quantum Rings in a Photonic Crystal. J. Opt. Soc. Am. B 2010, 27, A21–A24. [Google Scholar] [CrossRef]
- Sanguinetti, S.; Koguchi, N.; Mano, T.; Kuroda, T. Droplet Epitaxy Quantum Ring Structures. J. Nanoelectron. Optoelectron. 2011, 6, 34–50. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, T.; Oliver, R.A.; Hu, E.L. Ultra-low-threshold InGaN/GaN Quantum Dot Micro-Ring Lasers. Opt. Lett. 2018, 43, 799–802. [Google Scholar] [CrossRef]
- Mandel, A.M.; Oshurko, V.B.; Pershin, S.M.; Karpova, E.E.; Artemova, D.G. Tunable-Frequency Lasing on Thin Semiconductor Quantum Rings. Dokl. Phys. 2021, 66, 160–163. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Shao, D.; Manasreh, M.O.; Kunets, V.P.; Wang, Z.M.; Salamo, G.J.; Weaver, B.D. Multicolor Photodetector Based on GaAs Quantum Rings Grown by Droplet Epitaxy. Appl. Phys. Lett. 2009, 94, 171102. [Google Scholar] [CrossRef]
- Samadzadeh, R.; Zavvari, M.; Hosseini, R. Tunable Far Infrared Detection Using Quantum Rings-in-Well Intersubband Photodetectors. Opt. Quant. Electron. 2015, 47, 3555–3565. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; Dorogan, V.; Lee, J.; Mazur, Y.; Kim, E.S.; Salamo, G. Effects of Rapid Thermal Annealing on the Optical Properties of Strain-Free Quantum Ring Solar Cells. Nanoscale Res. Lett. 2013, 8, 5. [Google Scholar] [CrossRef]
- Fujita, H.; James, J.; Carrington, P.J.; Marshall, A.R.J.; Krier, A.; Wagener, M.C.; Botha, J.R. Semiconductor Science and Technology. Semicond. Sci. Technol. 2014, 29, 035014. [Google Scholar] [CrossRef]
- Baxevanis, B.; Pfannkuche, D. Spin Transitions in Semiconductor Quantum Rings. J. Phys. Conf. Ser. 2010, 245, 012023. [Google Scholar] [CrossRef]
- Zipper, E.; Kurpas, M.; Sadowski, J.; Maska, M. Semiconductor Quantum Ring as a Solid-State Spin Qubit. J. Phys. Condens. Matter 2011, 23, 115302. [Google Scholar] [CrossRef]
- Nagasawa, F.; Frustaglia, D.; Saarikoski, H.; Richter, K.; Nitta, J. Control of the Spin Geometric Phase in Semiconductor Quantum Rings. Nat. Commun. 2013, 4, 2526. [Google Scholar] [CrossRef]
- Zamani, A.; Azargoshasb, T.; Niknam, E. Second and Third Harmonic Generations of a Quantum Ring with Rashba and Dresselhaus Spin-Orbit Couplings: Temperature and Zeeman Effects. Phys. B 2017, 523, 85. [Google Scholar] [CrossRef]
- Pourmand, S.E.; Rezaei, G. The Rashba and Dresselhaus Spin-Orbit Interactions Effects on the Optical Properties of a Quantum Ring. Phys. B 2018, 543, 27. [Google Scholar] [CrossRef]
- Pourmand, S.E.; Rezaei, G.; Vaseghi, B. Impacts of External Fields and Rashba and Dresselhaus Spin-Orbit Interactions on the Optical Rectification, Second and Third Harmonic Generations of a Quantum Ring. Eur. Phys. J. B 2019, 92, 96. [Google Scholar] [CrossRef]
- Sigurdsson, H.; Kibis, O.V.; Shelykh, I.A. Optically induced Aharonov-Bohm effect in mesoscopic rings. Phys. Rev. B 2014, 90, 235413. [Google Scholar] [CrossRef]
- Kozin, V.K.; Iorsh, I.V.; Kibis, O.V.; Shelykh, I.A. Quantum ring with the Rashba spin-orbit interaction in the regime of strong light-matter coupling. Phys. Rev. B 2018, 97, 155434. [Google Scholar] [CrossRef]
- Kozin, V.K.; Iorsh, I.V.; Kibis, O.V.; Shelykh, I.A. Periodic array of quantum rings strongly coupled to circularly polarized light as a topological insulator. Phys. Rev. B 2018, 97, 035416. [Google Scholar] [CrossRef]
- Mano, T.; Kuroda, T.; Sanguinetti, S.; Ochiai, T.; Tateno, T.; Kim, J.; Noda, T.; Kawabe, M.; Sakoda, K.; Kido, G.; et al. Self-Assembly of Concentric Quantum Double Rings. Nano Lett. 2005, 5, 425. [Google Scholar] [CrossRef]
- Kuroda, T.; Mano, T.; Ochiai, T.; Sanguinetti, S.; Noda, T.; Kuroda, K.; Sakoda, K.; Kido, G.; Koguchi, N. Excitonic Transitions in Semiconductor Concentric Quantum Double Rings. Phys. E 2006, 32, 46. [Google Scholar] [CrossRef]
- Mühle, A.; Wegscheider, W.; Haug, R.J. Coulomb-Coupled Concentric Quantum Rings. Phys. E 2008, 40, 1246. [Google Scholar] [CrossRef]
- Kim, J.S. Investigation of Various Optical Transitions in GaAs/Al0.3Ga0.7As Double Quantum Ring Grown by Droplet Epitaxy. Phys. Status Solidi RRL 2016, 10, 1862. [Google Scholar] [CrossRef]
- Li, S.-S.; Xia, J.-B. Electronic Structures of GaAs/AlxGa1-xAs Quantum Double Rings. Nanoscale Res. Lett. 2006, 1, 167. [Google Scholar] [CrossRef]
- Planelles, J.; Climente, J. Semiconductor Concentric Double Rings in a Magnetic Field. Eur. Phys. J. B 2005, 48, 65. [Google Scholar] [CrossRef]
- Bejan, D.; Niculescu, E.C. Electronic and Optical Properties of Asymmetric GaAs Double Quantum Dots in Intense Laser Fields. Phil. Mag. 2016, 96, 1131–1149. [Google Scholar] [CrossRef]
- Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A.; Ojeda, J.H.; Bragard, J.; Laroze, D. Modeling of Anisotropic Properties of Double Quantum Rings by the Terahertz Laser Field. Sci. Rep. 2018, 8, 6145. [Google Scholar] [CrossRef]
- Barseghyan, M.G.; Mughnetsyan, V.N.; Baghramyan, H.M.; Ungan, F.; Pérez, L.M.; Laroze, D. Control of Electronic and Optical Properties of a Laser Dressed Double Quantum Dot Molecule by Lateral Electric Field. Phys. E 2021, 126, 114362. [Google Scholar] [CrossRef]
- Khajeh Salehani, H. Optical Absorption in Concentric Double Quantum Rings. Opt. Quantum Electron. 2023, 55, 644. [Google Scholar] [CrossRef]
- Vinasco, J.A.; Radu, A.; Tiutiunnyk, A.; Restrepo, R.L.; Laroze, D.; Feddi, E.; Mora-Ramos, M.E.; Morales, A.L.; Duque, C.A. Revisiting the adiabatic approximation for bound states calculation in axisymemetric and asymmetrical quantum structures. Superlattices Micros 2020, 138, 106384. [Google Scholar] [CrossRef]
- Breuer, H.P.; Dietz, K.; Holthaus, M. A Remark on the Kramers-Henneberger Transformation. Phys. Lett. A 1992, 165, 341–346. [Google Scholar] [CrossRef]
- COMSOL. Multiphysics; v. 5.4; COMSOL AB: Stockholm, Sweden, 2012. [Google Scholar]
- COMSOL. Multiphysics Reference Guide; COMSOL: Stockholm, Sweden, 2012. [Google Scholar]
- COMSOL. Multiphysics Users Guide; COMSOL: Stockholm, Sweden, 2012. [Google Scholar]
- Henneberger, W.C. Perturbation method for atoms in intense light beams. Phys. Rev. Lett. 1968, 21, 12. [Google Scholar] [CrossRef]
- Burnett, K.; Reed, V.C.; Knight, P.L. Atoms in ultra-intense laser fields. J. Phys. B At. Mol. Opt. 1993, 26, 561. [Google Scholar] [CrossRef]
- Lima, F.M.S.; Amato, M.A.; Nunes, O.A.C.; Fonseca, A.L.A.; Enders, B.G.; da Silva, E.F., Jr. Unexpected transition from single to double quantum well potential induced by intense laser fields in a semiconductor quantum well. J. Appl. Phys. 2009, 105, 123111. [Google Scholar] [CrossRef]
- Falaye, B.J.; Sun, G.-H.; Adepoju, A.G.; Liman, M.S.; Oyewumi, K.J.; Dong, S.-H. An electron of helium atom under a high-intensity lasr field. Laser Phys. 2017, 27, 026004. [Google Scholar] [CrossRef]
- Gavrila, M. Atomic stabilization in superintense laser fields. J. Phys. B At. Mol. Opt. 2002, 35, R147–R193. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora-Ramos, M.E.; Vinasco, J.A.; Radu, A.; Restrepo, R.L.; Morales, A.L.; Sahin, M.; Mommadi, O.; Sierra-Ortega, J.; Escorcia-Salas, G.E.; Heyn, C.; et al. Double Quantum Ring under an Intense Nonresonant Laser Field: Zeeman and Spin-Orbit Interaction Effects. Condens. Matter 2023, 8, 79. https://doi.org/10.3390/condmat8030079
Mora-Ramos ME, Vinasco JA, Radu A, Restrepo RL, Morales AL, Sahin M, Mommadi O, Sierra-Ortega J, Escorcia-Salas GE, Heyn C, et al. Double Quantum Ring under an Intense Nonresonant Laser Field: Zeeman and Spin-Orbit Interaction Effects. Condensed Matter. 2023; 8(3):79. https://doi.org/10.3390/condmat8030079
Chicago/Turabian StyleMora-Ramos, Miguel E., Juan A. Vinasco, Adrian Radu, Ricardo L. Restrepo, Alvaro L. Morales, Mehmet Sahin, Omar Mommadi, José Sierra-Ortega, Gene Elizabeth Escorcia-Salas, Christian Heyn, and et al. 2023. "Double Quantum Ring under an Intense Nonresonant Laser Field: Zeeman and Spin-Orbit Interaction Effects" Condensed Matter 8, no. 3: 79. https://doi.org/10.3390/condmat8030079
APA StyleMora-Ramos, M. E., Vinasco, J. A., Radu, A., Restrepo, R. L., Morales, A. L., Sahin, M., Mommadi, O., Sierra-Ortega, J., Escorcia-Salas, G. E., Heyn, C., Duque, D. A., & Duque, C. A. (2023). Double Quantum Ring under an Intense Nonresonant Laser Field: Zeeman and Spin-Orbit Interaction Effects. Condensed Matter, 8(3), 79. https://doi.org/10.3390/condmat8030079