Double Quantum Ring under an Intense Nonresonant Laser Field: Zeeman and Spin-Orbit Interaction Effects
Abstract
1. Introduction
2. Theoretical Framework
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Abbarchi, M.; Mastrandrea, C.A.; Vinattieri, A.; Sanguinetti, S.; Mano, T.; Kuroda, T.; Koguchi, N.; Sakoda, K.; Gurioli, M. Photon Antibunching in Double Quantum Ring Structures. Phys. Rev. B 2009, 79, 085308. [Google Scholar] [CrossRef]
- Gallardo, E.; Martínez, L.J.; Nowak, A.K.; Sarkar, D.; Sanvitto, D.; van der Meulen, H.P.; Calleja, J.M.; Prieto, I.; Granados, D.; Taboada, A.G.; et al. Single-Photon Emission by Semiconductor Quantum Rings in a Photonic Crystal. J. Opt. Soc. Am. B 2010, 27, A21–A24. [Google Scholar] [CrossRef]
- Sanguinetti, S.; Koguchi, N.; Mano, T.; Kuroda, T. Droplet Epitaxy Quantum Ring Structures. J. Nanoelectron. Optoelectron. 2011, 6, 34–50. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, T.; Oliver, R.A.; Hu, E.L. Ultra-low-threshold InGaN/GaN Quantum Dot Micro-Ring Lasers. Opt. Lett. 2018, 43, 799–802. [Google Scholar] [CrossRef]
- Mandel, A.M.; Oshurko, V.B.; Pershin, S.M.; Karpova, E.E.; Artemova, D.G. Tunable-Frequency Lasing on Thin Semiconductor Quantum Rings. Dokl. Phys. 2021, 66, 160–163. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Shao, D.; Manasreh, M.O.; Kunets, V.P.; Wang, Z.M.; Salamo, G.J.; Weaver, B.D. Multicolor Photodetector Based on GaAs Quantum Rings Grown by Droplet Epitaxy. Appl. Phys. Lett. 2009, 94, 171102. [Google Scholar] [CrossRef]
- Samadzadeh, R.; Zavvari, M.; Hosseini, R. Tunable Far Infrared Detection Using Quantum Rings-in-Well Intersubband Photodetectors. Opt. Quant. Electron. 2015, 47, 3555–3565. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; Dorogan, V.; Lee, J.; Mazur, Y.; Kim, E.S.; Salamo, G. Effects of Rapid Thermal Annealing on the Optical Properties of Strain-Free Quantum Ring Solar Cells. Nanoscale Res. Lett. 2013, 8, 5. [Google Scholar] [CrossRef]
- Fujita, H.; James, J.; Carrington, P.J.; Marshall, A.R.J.; Krier, A.; Wagener, M.C.; Botha, J.R. Semiconductor Science and Technology. Semicond. Sci. Technol. 2014, 29, 035014. [Google Scholar] [CrossRef]
- Baxevanis, B.; Pfannkuche, D. Spin Transitions in Semiconductor Quantum Rings. J. Phys. Conf. Ser. 2010, 245, 012023. [Google Scholar] [CrossRef]
- Zipper, E.; Kurpas, M.; Sadowski, J.; Maska, M. Semiconductor Quantum Ring as a Solid-State Spin Qubit. J. Phys. Condens. Matter 2011, 23, 115302. [Google Scholar] [CrossRef]
- Nagasawa, F.; Frustaglia, D.; Saarikoski, H.; Richter, K.; Nitta, J. Control of the Spin Geometric Phase in Semiconductor Quantum Rings. Nat. Commun. 2013, 4, 2526. [Google Scholar] [CrossRef]
- Zamani, A.; Azargoshasb, T.; Niknam, E. Second and Third Harmonic Generations of a Quantum Ring with Rashba and Dresselhaus Spin-Orbit Couplings: Temperature and Zeeman Effects. Phys. B 2017, 523, 85. [Google Scholar] [CrossRef]
- Pourmand, S.E.; Rezaei, G. The Rashba and Dresselhaus Spin-Orbit Interactions Effects on the Optical Properties of a Quantum Ring. Phys. B 2018, 543, 27. [Google Scholar] [CrossRef]
- Pourmand, S.E.; Rezaei, G.; Vaseghi, B. Impacts of External Fields and Rashba and Dresselhaus Spin-Orbit Interactions on the Optical Rectification, Second and Third Harmonic Generations of a Quantum Ring. Eur. Phys. J. B 2019, 92, 96. [Google Scholar] [CrossRef]
- Sigurdsson, H.; Kibis, O.V.; Shelykh, I.A. Optically induced Aharonov-Bohm effect in mesoscopic rings. Phys. Rev. B 2014, 90, 235413. [Google Scholar] [CrossRef]
- Kozin, V.K.; Iorsh, I.V.; Kibis, O.V.; Shelykh, I.A. Quantum ring with the Rashba spin-orbit interaction in the regime of strong light-matter coupling. Phys. Rev. B 2018, 97, 155434. [Google Scholar] [CrossRef]
- Kozin, V.K.; Iorsh, I.V.; Kibis, O.V.; Shelykh, I.A. Periodic array of quantum rings strongly coupled to circularly polarized light as a topological insulator. Phys. Rev. B 2018, 97, 035416. [Google Scholar] [CrossRef]
- Mano, T.; Kuroda, T.; Sanguinetti, S.; Ochiai, T.; Tateno, T.; Kim, J.; Noda, T.; Kawabe, M.; Sakoda, K.; Kido, G.; et al. Self-Assembly of Concentric Quantum Double Rings. Nano Lett. 2005, 5, 425. [Google Scholar] [CrossRef]
- Kuroda, T.; Mano, T.; Ochiai, T.; Sanguinetti, S.; Noda, T.; Kuroda, K.; Sakoda, K.; Kido, G.; Koguchi, N. Excitonic Transitions in Semiconductor Concentric Quantum Double Rings. Phys. E 2006, 32, 46. [Google Scholar] [CrossRef]
- Mühle, A.; Wegscheider, W.; Haug, R.J. Coulomb-Coupled Concentric Quantum Rings. Phys. E 2008, 40, 1246. [Google Scholar] [CrossRef]
- Kim, J.S. Investigation of Various Optical Transitions in GaAs/Al0.3Ga0.7As Double Quantum Ring Grown by Droplet Epitaxy. Phys. Status Solidi RRL 2016, 10, 1862. [Google Scholar] [CrossRef]
- Li, S.-S.; Xia, J.-B. Electronic Structures of GaAs/AlxGa1-xAs Quantum Double Rings. Nanoscale Res. Lett. 2006, 1, 167. [Google Scholar] [CrossRef]
- Planelles, J.; Climente, J. Semiconductor Concentric Double Rings in a Magnetic Field. Eur. Phys. J. B 2005, 48, 65. [Google Scholar] [CrossRef]
- Bejan, D.; Niculescu, E.C. Electronic and Optical Properties of Asymmetric GaAs Double Quantum Dots in Intense Laser Fields. Phil. Mag. 2016, 96, 1131–1149. [Google Scholar] [CrossRef]
- Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A.; Ojeda, J.H.; Bragard, J.; Laroze, D. Modeling of Anisotropic Properties of Double Quantum Rings by the Terahertz Laser Field. Sci. Rep. 2018, 8, 6145. [Google Scholar] [CrossRef]
- Barseghyan, M.G.; Mughnetsyan, V.N.; Baghramyan, H.M.; Ungan, F.; Pérez, L.M.; Laroze, D. Control of Electronic and Optical Properties of a Laser Dressed Double Quantum Dot Molecule by Lateral Electric Field. Phys. E 2021, 126, 114362. [Google Scholar] [CrossRef]
- Khajeh Salehani, H. Optical Absorption in Concentric Double Quantum Rings. Opt. Quantum Electron. 2023, 55, 644. [Google Scholar] [CrossRef]
- Vinasco, J.A.; Radu, A.; Tiutiunnyk, A.; Restrepo, R.L.; Laroze, D.; Feddi, E.; Mora-Ramos, M.E.; Morales, A.L.; Duque, C.A. Revisiting the adiabatic approximation for bound states calculation in axisymemetric and asymmetrical quantum structures. Superlattices Micros 2020, 138, 106384. [Google Scholar] [CrossRef]
- Breuer, H.P.; Dietz, K.; Holthaus, M. A Remark on the Kramers-Henneberger Transformation. Phys. Lett. A 1992, 165, 341–346. [Google Scholar] [CrossRef]
- COMSOL. Multiphysics; v. 5.4; COMSOL AB: Stockholm, Sweden, 2012. [Google Scholar]
- COMSOL. Multiphysics Reference Guide; COMSOL: Stockholm, Sweden, 2012. [Google Scholar]
- COMSOL. Multiphysics Users Guide; COMSOL: Stockholm, Sweden, 2012. [Google Scholar]
- Henneberger, W.C. Perturbation method for atoms in intense light beams. Phys. Rev. Lett. 1968, 21, 12. [Google Scholar] [CrossRef]
- Burnett, K.; Reed, V.C.; Knight, P.L. Atoms in ultra-intense laser fields. J. Phys. B At. Mol. Opt. 1993, 26, 561. [Google Scholar] [CrossRef]
- Lima, F.M.S.; Amato, M.A.; Nunes, O.A.C.; Fonseca, A.L.A.; Enders, B.G.; da Silva, E.F., Jr. Unexpected transition from single to double quantum well potential induced by intense laser fields in a semiconductor quantum well. J. Appl. Phys. 2009, 105, 123111. [Google Scholar] [CrossRef]
- Falaye, B.J.; Sun, G.-H.; Adepoju, A.G.; Liman, M.S.; Oyewumi, K.J.; Dong, S.-H. An electron of helium atom under a high-intensity lasr field. Laser Phys. 2017, 27, 026004. [Google Scholar] [CrossRef][Green Version]
- Gavrila, M. Atomic stabilization in superintense laser fields. J. Phys. B At. Mol. Opt. 2002, 35, R147–R193. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora-Ramos, M.E.; Vinasco, J.A.; Radu, A.; Restrepo, R.L.; Morales, A.L.; Sahin, M.; Mommadi, O.; Sierra-Ortega, J.; Escorcia-Salas, G.E.; Heyn, C.; et al. Double Quantum Ring under an Intense Nonresonant Laser Field: Zeeman and Spin-Orbit Interaction Effects. Condens. Matter 2023, 8, 79. https://doi.org/10.3390/condmat8030079
Mora-Ramos ME, Vinasco JA, Radu A, Restrepo RL, Morales AL, Sahin M, Mommadi O, Sierra-Ortega J, Escorcia-Salas GE, Heyn C, et al. Double Quantum Ring under an Intense Nonresonant Laser Field: Zeeman and Spin-Orbit Interaction Effects. Condensed Matter. 2023; 8(3):79. https://doi.org/10.3390/condmat8030079
Chicago/Turabian StyleMora-Ramos, Miguel E., Juan A. Vinasco, Adrian Radu, Ricardo L. Restrepo, Alvaro L. Morales, Mehmet Sahin, Omar Mommadi, José Sierra-Ortega, Gene Elizabeth Escorcia-Salas, Christian Heyn, and et al. 2023. "Double Quantum Ring under an Intense Nonresonant Laser Field: Zeeman and Spin-Orbit Interaction Effects" Condensed Matter 8, no. 3: 79. https://doi.org/10.3390/condmat8030079
APA StyleMora-Ramos, M. E., Vinasco, J. A., Radu, A., Restrepo, R. L., Morales, A. L., Sahin, M., Mommadi, O., Sierra-Ortega, J., Escorcia-Salas, G. E., Heyn, C., Duque, D. A., & Duque, C. A. (2023). Double Quantum Ring under an Intense Nonresonant Laser Field: Zeeman and Spin-Orbit Interaction Effects. Condensed Matter, 8(3), 79. https://doi.org/10.3390/condmat8030079