# FL* Interpretation of a Dichotomy in the Spin Susceptibility of the Cuprates

## Abstract

**:**

## 1. Introduction

## 2. Emergence of FL* Structure in the t-t′-J Model

## 3. FL* Solution of FL vs. NFL Dichotomy in the Spin Susceptibility in SM

## 4. Discussion

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Uchida, S. It High Temperature Superconductivity. The Road to Higher Critical Temperature; Springer Series in Materials Science 213; Springer: Tokyo, Japan, 2015. [Google Scholar]
- Sobota, J.A.; He, Y.; Shen, Z.-X.T. Angle-resolved photoemission studies of quantum materials. Rev. Mod. Phys.
**2021**, 93, 025006. [Google Scholar] [CrossRef] - Ando, Y.; Komiya, S.; Segawa, K.; Ono, S.; Kurita, Y. Electronic Phase Diagram of High-Tc Cuprate Superconductors from a Mapping of the In-Plane Resistivity Curvature. Phys. Rev. Lett.
**2004**, 93, 267001. [Google Scholar] [CrossRef] [Green Version] - Wuyts, B.; Moshchalkov, V.V.; Bruynseraede, Y. Resistivity and Hall effect of metallic oxygen-deficient YBa
_{2}Cu_{3}O_{x}films in the normal state. Phys. Rev. B**1996**, 53, 9418–9432. [Google Scholar] [CrossRef] - Nakano, T.; Oda, M.; Manabe, C.; Momono, N.; Miura, Y.; Ido, M. Magnetic properties and electronic conduction of superconducting La
_{2−x}Sr_{x}CuO_{4}. Phys. Rev. B**1994**, 49, 16000–16008. [Google Scholar] [CrossRef] - Ohsugi, S.; Kitaoka, Y.; Ishida, K.; Zheng, G.-Q.; Asayama, K. Cu NMR and NQR Studies of High-T c Superconductor La
_{2−x}Sr_{x}CuO_{4}. J. Phys. Soc. Jpn.**1994**, 63, 700–715. [Google Scholar] [CrossRef] - Senthil, T.; Sachdev, S.; Vojta, M. Fractionalized Fermi Liquids. Phys. Rev. Lett.
**2003**, 90, 216403. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Paramekanti, A.; Vishwanath, A. Extending Luttinger’s theorem to Z2 fractionalized phases of matter. Phys. Rev. B
**1994**, 70, 245118. [Google Scholar] [CrossRef] [Green Version] - Seibold, G.; Arpaia, R.; Peng, Y.Y.; Fumagalli, R.; Braicovich, L.; Di Castro, C.; Grilli, M.; Ghiringhelli, G.C.; Caprara, S. Strange metal behaviour from charge density fluctuations in cuprates. Commun. Phys.
**2021**, 4, 7. [Google Scholar] [CrossRef] - Mei, J.-W.; Kawasaki, S.; Zheng, G.-Q.; Weng, Z.-Y.; Wen, X.G. Luttinger-volume violating Fermi liquid in the pseudogap phase of the cuprate superconductors. Phys. Rev. B
**2012**, 85, 134519. [Google Scholar] [CrossRef] - Sachdev, S. Emergent gauge fields and the high-temperature superconductors. Phyl. Trans. R. Soc. A
**2016**, 374, 20150248. [Google Scholar] [CrossRef] [Green Version] - Ogata, M.; Shiba, H. Bethe-ansatz wave function, momentum distribution, and spin correlation in the one-dimensional strongly correlated Hubbard model. Phys. Rev. B
**1990**, 41, 2326–2338. [Google Scholar] [CrossRef] [PubMed] - Ren, Y.; Anderson, P.W. Asymptotic correlation functions in the one-dimensional Hubbard model with applications to high-Tc superconductivity. Phys. Rev. B
**1993**, 48, 16662–16672. [Google Scholar] [CrossRef] [PubMed] - Wilczek, F. Fractional Statistics and Anyon Superconductivity; World Scientific: Singapore, 1990. [Google Scholar]
- Marchetti, P.A.; Su, Z.-B.; Yu, L. Dimensional reduction of U(1) × SU(2) Chern-Simons bosonization: Application to the t-J model. Nucl. Phys. B
**1996**, 482, 731–757. [Google Scholar] [CrossRef] [Green Version] - Weng, Z.Y.; Sheng, D.N.; Chen, Y.-C.; Ting, C.S. Phase string effect in the t-J model: General theory. Phys. Rev. B
**1997**, 55, 3894–3906. [Google Scholar] [CrossRef] [Green Version] - Fröhlich, J.; Marchetti, P.A. Slave fermions, slave bosons, and semions from bosonization of the two-dimensional t-J model. Phys. Rev. B
**1992**, 46, 6535–6552. [Google Scholar] [CrossRef] [PubMed] - Marchetti, P.A.; Su, Z.-B.; Yu, L. Spin-charge gauge approach to metal-insulator crossover and transport properties in high-Tc cuprates. J. Phys. Condens. Matter
**2007**, 19, 125212. [Google Scholar] [CrossRef] [Green Version] - Reizer, M.Y. Relativistic effects in the electron density of states, specific heat, and the electron spectrum of normal metals. Phys. Rev. B
**1989**, 40, 11571–11575. [Google Scholar] [CrossRef] [PubMed] - Marchetti, P.A.; Ye, F.; Su, Z.-B.; Yu, L. Hole pairing from attraction of opposite-chirality spin vortices: Non-BCS superconductivity in underdoped cuprates. Phys. Rev. B
**2011**, 84, 214525. [Google Scholar] [CrossRef] [Green Version] - Marchetti, P.A.; Bighin, G. Universality in Cuprates: A Gauge Approach. J. Low Temp. Phys.
**2016**, 185, 87–101. [Google Scholar] [CrossRef] [Green Version] - Marchetti, P.A.; Gambaccini, M. Gauge approach to the pseudogap phenomenology of the spectral weight in high Tc cuprates. J. Phys. Condens. Matter.
**2012**, 24, 475601. [Google Scholar] [PubMed] [Green Version] - Uemura, Y.J. Bose-Einstein to BCS Crossover Picture for High-Tc Cuprates. Phys. C
**1997**, 282–287, 194–197. [Google Scholar] [CrossRef] [Green Version] - Haldane, F.D.M. Fractional statistics in arbitrary dimensions: A generalization of the Pauli principle. Phys. Rev. Lett.
**1991**, 67, 937–940. [Google Scholar] [CrossRef] [PubMed] - Wu, Y.-S. Statistical Distribution for Generalized Ideal Gas of Fractional-Statistics Particles. Phys. Rev. Lett.
**1994**, 73, 922–925. [Google Scholar] [CrossRef] [PubMed] - Marchetti, P.A.; Ye, F.; Su, Z.-B.; Yu, L. Charge carriers with fractional exclusion statistics in cuprates. Phys. Rev. B
**2019**, 100, 035103. [Google Scholar] [CrossRef] [Green Version] - Marchetti, P.A.; Dipartimento di Fisica e Astronomia, Università di Padova, Padova, Italy. Unpublished Work. 2022.
- Berthier, C.; Julien, M.; Horvatic, M.; Berthier, Y. NMR Studies of the Normal State of High Temperature Superconductors. J. Phys.
**1996**, 6, 2205–2236. [Google Scholar] [CrossRef] - Prozorov, R.; Giannetta, R.W. Magnetic penetration depth in unconventional superconductors. Supercond. Sci. Technol.
**2006**, 19, R41. [Google Scholar] [CrossRef] [Green Version] - Loktev, V.M.; Quick, R.M.; Sharapov, S.G. Phase fluctuations and pseudogap phenomena. Phys. Rep.
**2001**, 349, 1–123. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**The calculated uniform spin susceptibility at several dopings in SM (notice, however, that actually the SM starts for $\delta =0.18,\phantom{\rule{0.166667em}{0ex}}0.16,\phantom{\rule{0.166667em}{0ex}}0.14,\phantom{\rule{0.166667em}{0ex}}0.10,\phantom{\rule{0.166667em}{0ex}}0.08$ around $T=120,\phantom{\rule{0.166667em}{0ex}}150,\phantom{\rule{0.166667em}{0ex}}180,\phantom{\rule{0.166667em}{0ex}}230,\phantom{\rule{0.166667em}{0ex}}270\phantom{\rule{0.166667em}{0ex}}\mathrm{K}$, respectively); the dotted curves are the corresponding experimental data in LSCO, expressed in units of ${10}^{-7}$ emu/g, taken from [5].

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Marchetti, P.
FL* Interpretation of a Dichotomy in the Spin Susceptibility of the Cuprates. *Condens. Matter* **2023**, *8*, 30.
https://doi.org/10.3390/condmat8020030

**AMA Style**

Marchetti P.
FL* Interpretation of a Dichotomy in the Spin Susceptibility of the Cuprates. *Condensed Matter*. 2023; 8(2):30.
https://doi.org/10.3390/condmat8020030

**Chicago/Turabian Style**

Marchetti, Pieralberto.
2023. "FL* Interpretation of a Dichotomy in the Spin Susceptibility of the Cuprates" *Condensed Matter* 8, no. 2: 30.
https://doi.org/10.3390/condmat8020030