Superconductivity in the α-Form Layer Structured Metal Nitride Halide
Abstract
1. Introduction
2. Synthesis and Electron Doping of TiNCl
2.1. Conventional Preparation
2.2. Preparation Using Sodium Amide
2.3. Electron Doping by Intercalation
3. Electronic Structure of TiNCl
3.1. Micro-PES of Electron-Doped TiNCl
3.2. Metalization of TiNCl Induced by Soft X-ray Irradiation
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yamanaka, S.; Kawaji, H.; Hotehama, K.; Ohashi, M. A new layer-structured nitride superconductor. Lithium-intercalated β-zirconium nitride chloride, LixZrNCl. Adv. Mater. 1996, 8, 771–774. [Google Scholar] [CrossRef]
- Yamanaka, S.; Hotehama, K.I.; Kawaji, H. Superconductivity at 25.5K in electron-doped layered hafnium nitride. Nature 1998, 392, 580–582. [Google Scholar] [CrossRef]
- Yamanaka, S.; Yasunaga, T.; Yamaguchi, K.; Tagawa, M. Structure and superconductivity of the intercalation compounds of TiNCl with pyridine and alkali metals as intercalants. J. Mater. Chem. 2009, 19, 2573. [Google Scholar] [CrossRef]
- Yamanaka, S. Intercalation and superconductivity in ternary layer structured metal nitride halides (MNX: M = Ti, Zr, Hf; X = Cl, Br, I). J. Mater. Chem. 2010, 20, 2922–2933. [Google Scholar] [CrossRef]
- Juza, R.; Heners, J. Über Nitridhalogenide des Titans und Zirkons. Z. Für Anorg. Und Allg. Chem. 1964, 332, 159–172. [Google Scholar] [CrossRef]
- Zhang, S.; Tanaka, M.; Zhu, H.; Yamanaka, S. Superconductivity of layered β-HfNCl with varying electron-doping concentrations and interlayer spacings. Supercond. Sci. Technol. 2013, 26, 085015. [Google Scholar] [CrossRef]
- Ueno, K.; Shimotani, H.; Yuan, H.; Ye, J.; Kawasaki, M.; Iwasa, Y. Field-induced superconductivity in electric double layer transistors. J. Phys. Soc. Jpn. 2014, 83, 032001. [Google Scholar] [CrossRef]
- Saito, Y.; Kasahara, Y.; Ye, J.; Iwasa, Y.; Nojima, T. Metallic ground state in an ion-gated two-dimensional superconductor. Science 2015, 350, 409–413. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, M.-R.; Fu, H.-Y.; Wang, X.-M.; Ren, Z.-A.; Chen, G.-F. Electric Field Induced Permanent Superconductivity in Layered Metal Nitride Chlorides HfNCl and ZrNCl. Chin. Phys. Lett. 2018, 35, 097401. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Fu, H.; Gao, M.; Ren, Z.; Chen, G. Dominant role of processing temperature in electric field induced superconductivity in layered ZrNBr. N. J. Phys. 2019, 21, 023002. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Kasahara, Y.; Nomoto, T.; Arita, R.; Nojima, T.; Iwasa, Y. Gate-controlled BCS-BEC crossover in a two-dimensional superconductor. Science 2021, 372, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Saito, Y.; Nojima, T.; Inumaru, K.; Yamanaka, S.; Kasahara, Y.; Iwasa, Y. Gate-controlled low carrier density superconductors: Toward the two-dimensional BCS-BEC crossover. Phys. Rev. B 2018, 98, 064512. [Google Scholar] [CrossRef]
- Taguchi, Y.; Kitora, A.; Iwasa, Y. Increase in Tc upon reduction of doping in LixZrNCl superconductors. Phys. Rev. Lett. 2006, 97, 107001. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Zhang, S. Synthesis and Superconductivity of Electron-Doped β-ZrNCl with Partial Substitution of Ti on Zr Site. J. Supercond. Nov. Magn. 2018, 31, 61–65. [Google Scholar] [CrossRef]
- Tou, H.; Maniwa, Y.; Koiwasaki, T.; Yamanaka, S. Unconventional superconductivity in electron-doped layered Li0.48(THF)yHfNCl. Phys. Rev. Lett. 2001, 86, 5775–5778. [Google Scholar] [CrossRef]
- Taguchi, Y.; Hisakabe, M.; Iwasa, Y. Specific heat measurement of the layered nitride superconductor LixZrNCl. Phys. Rev. Lett. 2005, 94, 2–5. [Google Scholar] [CrossRef]
- Yokoya, T.; Ishiwata, Y.; Shin, S.; Shamoto, S.; Iizawa, K.; Kajitani, T.; Hase, I.; Takahashi, T. Changes of electronic structure across the insulator-to-metal transition of quasi-two-dimensional Na-intercalated β-HfNCl studied by photoemission and X-ray absorption. Phys. Rev. B 2001, 64, 153107. [Google Scholar] [CrossRef]
- Takeuchi, T.; Tsuda, S.; Yokoya, T.; Tsukamoto, T.; Shin, S.; Hirai, A.; Shamoto, S.; Kajitani, T. Soft X-ray emission and high-resolution photoemission study of quasi-two-dimensional superconductor NaxHfNCl. Physica C 2003, 392–396, 127–129. [Google Scholar] [CrossRef]
- Yokoya, T.; Takeuchi, T.; Tsuda, S.; Kiss, T.; Higuchi, T.; Shin, S.; Iizawa, K.; Shamoto, S.; Kajitani, T.; Takahashi, T. Valence-band photoemission study of β-ZrNCl and the quasi-two-dimensional superconductor NaxZrNCl. Phys. Rev. B 2004, 70, 193103. [Google Scholar] [CrossRef]
- Tou, H.; Maniwa, Y.; Yamanaka, S. Superconducting characteristics in electron-doped layered hafnium nitride: 15N isotope effect studies. Phys. Rev. B 2003, 67, 100509. [Google Scholar] [CrossRef]
- Weht, R.; Filippetti, A.; Pickett, W.E. Electron doping in the honeycomb bilayer superconductors (Zr, Hf)NCl. Europhys. Lett. 1999, 48, 320–325. [Google Scholar] [CrossRef]
- Sugimoto, A.; Sakai, Y.; Ekino, T.; Zhang, S.; Tanaka, M.; Yamanaka, S.; Gabovich, A.M. Scanning Tunnelling Microscopy and Spectroscopy of the Layered Nitride Superconductor α-NaxTiNCl. Phys. Procedia 2016, 81, 73–76. [Google Scholar] [CrossRef][Green Version]
- Ekino, T.; Takasaki, T.; Muranaka, T.; Fujii, H.; Akimitsu, J.; Yamanaka, S. Tunneling spectroscopy of MgB2 and Li0.5(THF)yHfNCl. Phys. B Condens. Matter 2003, 328, 23–25. [Google Scholar] [CrossRef]
- Kawaji, H.; Hotehama, K.I.; Yamanaka, S. Superconductivity of Alkali Metal Intercalated β-Zirconium Nitride Chloride, AxZrNCl (A = Li, Na, K). Chem. Mater. 1997, 9, 2127–2130. [Google Scholar] [CrossRef]
- Takano, T.; Kishiume, T.; Taguchi, Y.; Iwasa, Y. Interlayer-spacing dependence of Tc in LixMyHfNCl (M: Molecule) superconductors. Phys. Rev. Lett. 2008, 100, 247005. [Google Scholar] [CrossRef]
- Kasahara, Y.; Kishiume, T.; Kobayashi, K.; Taguchi, Y.; Iwasa, Y. Superconductivity in molecule-intercalated LixZrNCl with variable interlayer spacing. Phys. Rev. B 2010, 82, 054504. [Google Scholar] [CrossRef]
- Kasahara, Y.; Kishiume, T.; Takano, T.; Kobayashi, K.; Matsuoka, E.; Onodera, H.; Kuroki, K.; Taguchi, Y.; Iwasa, Y. Enhancement of Pairing Interaction and Magnetic Fluctuations toward a Band Insulator in an Electron-Doped LixZrNCl Superconductor. Phys. Rev. Lett. 2009, 103, 077004. [Google Scholar] [CrossRef]
- Kotegawa, H.; Oshiro, S.; Shimizu, Y.; Tou, H.; Kasahara, Y.; Kishiume, T.; Taguchi, Y.; Iwasa, Y. Strong suppression of coherence effect and appearance of pseudogap in the layered nitride superconductor LixZrNCl: 91Zr- and 15N-NMR studies. Phys. Rev. B 2014, 90, 020503. [Google Scholar] [CrossRef]
- Kasahara, Y.; Kuroki, K.; Yamanaka, S.; Taguchi, Y. Unconventional superconductivity in electron-doped layered metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I). Physica C 2015, 514, 354–367. [Google Scholar] [CrossRef]
- Kataoka, N.; Terashima, K.; Tanaka, M.; Hosoda, W.; Taniguchi, T.; Wakita, T.; Muraoka, Y.; Yokoya, T. µ-PES Studies on TiNCl and Quasi-two-dimensional Superconductor Na-intercalated TiNCl. J. Phys. Soc. Jpn. 2019, 88, 104709. [Google Scholar] [CrossRef]
- Yamanaka, S.; Umemoto, K.; Zheng, Z.; Suzuki, Y.; Matsui, H.; Toyota, N.; Inumaru, K. Preparation and superconductivity of intercalation compounds of TiNCl with aliphatic amines. J. Mater. Chem. 2012, 22, 10752–10762. [Google Scholar] [CrossRef]
- Zhang, S.; Tanaka, M.; Yamanaka, S. Superconductivity in electron-doped layered TiNCl with variable interlayer coupling. Phys. Rev. B 2012, 86, 024516. [Google Scholar] [CrossRef]
- Liang, Y.; Dai, Y.; Ma, Y.; Ju, L.; Wei, W.; Huang, B. Novel titanium nitride halide TiNX (X = F, Cl, Br) monolayers: Potential materials for highly efficient excitonic solar cells. J. Mater. Chem. A 2018, 6, 2073–2080. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.-B.; Wang, D.; Liu, H.; Peng, P.; Liu, L.-M. Single-layer Group-IVB nitride halides as promising photocatalysts. J. Mater. Chem. A 2014, 2, 6755. [Google Scholar] [CrossRef]
- Zhou, L.; Zhuo, Z.; Kou, L.; Du, A.; Tretiak, S. Computational Dissection of Two-Dimensional Rectangular Titanium Mononitride TiN: Auxetics and Promises for Photocatalysis. Nano Lett. 2017, 17, 4466–4472. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Zhao, X.; Wu, D.; Zhang, X.; Zhou, Z. Tetragonal-structured anisotropic 2D metal nitride monolayers and their halides with versatile promises in energy storage and conversion. J. Mater. Chem. A 2017, 5, 2870–2875. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Z.; Du, A.; Zhao, M. Band inversion and topological aspects in a TiNI monolayer. Phys. Chem. Chem. Phys. 2016, 18, 22154–22159. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, R.-W.; Li, X.; Koepernik, K.; Yao, Y.; Zhang, H. High-Throughput Screening and Automated Processing toward Novel Topological Insulators. J. Phys. Chem. Lett. 2018, 9, 6224–6231. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Yao, Y.; Zhang, H. High throughput screening for two-dimensional topological insulators. 2D Mater. 2018, 5, 045023. [Google Scholar] [CrossRef]
- Rostami Osanloo, M.; Saadat, A.; Van de Put, M.L.; Laturia, A.; Vandenberghe, W.G. Transition-metal nitride halide dielectrics for transition-metal dichalcogenide transistors. Nanoscale 2022, 14, 157–165. [Google Scholar] [CrossRef]
- Hossain, M.M.; Naqib, S.H. Structural, elastic, electronic, andoptical properties of layered TiNX (X = F, Cl, Br, I) compounds: A density functional theory study. Mol. Phys. 2020, 118, e1609706. [Google Scholar] [CrossRef]
- Guo, Y.; Peng, J.; Qin, W.; Zeng, J.; Zhao, J.; Wu, J.; Chu, W.; Wang, L.; Wu, C.; Xie, Y. Freestanding Cubic ZrN Single-Crystalline Films with Two-Dimensional Superconductivity. J. Am. Chem. Soc. 2019, 141, 10183–10187. [Google Scholar] [CrossRef] [PubMed]
- Schurz, C.M.; Shlyk, L.; Schleid, T.; Niewa, R. Superconducting nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I). Z. Krist. 2011, 226, 395–416. [Google Scholar] [CrossRef]
- Juza, R.; Klose, W. Die Kristallstruktur des Zirkonnitridjodids. Angew. Chem. 1959, 71, 161. [Google Scholar] [CrossRef]
- Juza, R.; Friedrichsen, H. Die Kristallstruktur von β-ZrNCl und β-ZrNBr. Z. Anorg. Allg. Chem. 1964, 332, 173–178. [Google Scholar] [CrossRef]
- Juza, R.; Klose, W. Über ein Nitridjodid des Zirkons. Z. Anorg. Allg. Chem. Anorg. Allg. Chem. 1964, 327, 207–214. [Google Scholar] [CrossRef]
- Cross, J.B.; Schlegel, H.B. Molecular orbital studies of titanium nitride chemical vapor deposition: Gas phase β -elimination. Chem. Phys. Lett. 2001, 340, 343–347. [Google Scholar] [CrossRef]
- Umanskii, S.Y.; Novoselov, K.P.; Minushev, A.K.; Siodmiak, M.; Frenking, G.; Korkin, A.A. Thermodynamics and kinetics of initial gas phase reactions in chemical vapor deposition of titanium nitride. Theoretical study of TiCl4 ammonolysis. J. Comput. Chem. 2001, 22, 1366–1376. [Google Scholar] [CrossRef]
- Saeki, Y.; Matsuzaki, R.; Yajima, A.; Akiyama, M. Reaction Process of Titanium Tetrachloride with Ammonia in the Vapor Phase and Properties of the Titanium Nitride Formed. Bull. Chem. Soc. Jpn. 1982, 55, 3193–3196. [Google Scholar] [CrossRef]
- Fowles, G.W.A.; Pollard, F.H. Studies on the behaviour of halides of the transition metals with ammonia. Part II. The reaction of titanium tetrachloride with ammonia. J. Chem. Soc. 1953, 22, 2588. [Google Scholar] [CrossRef]
- Kurtz, S.R.; Gordon, R.G. Chemical vapor deposition of titanium nitride at low temperatures. Thin Solid Films 1986, 140, 277–290. [Google Scholar] [CrossRef]
- Ohashi, M.; Yamanaka, S.; Hattori, M. Chemical vapor transport of layer structured crystal β-ZrNCl. J. Solid State Chem. 1988, 77, 342–347. [Google Scholar] [CrossRef]
- Yajima, A.; Segawa, Y.; Matsuzaki, R.; Saeki, Y. Reaction Process of Zirconium Tetrachloride with Ammonia in the Vapor Phase and Properties of the Zirconium Nitride Formed. Bull. Chem. Soc. Jpn. 1983, 56, 2638–2642. [Google Scholar] [CrossRef]
- Sosnov, E.A.; Malkov, A.A.; Malygin, A.A. Chemical transformations at the silica surface upon sequential interactions with titanium tetrachloride and ammonia vapors. Russ. J. Gen. Chem. 2015, 85, 2533–2540. [Google Scholar] [CrossRef]
- Ohashi, M.; Yamanaka, S.; Hattori, M. Synthesis of β-ZrClN by Thermal Decomposition of Zirconium(IV) Amide Trichloride. Bull. Chem. Soc. Jpn. 1986, 59, 2627–2628. [Google Scholar] [CrossRef]
- Odahara, J.; Sun, W.; Miura, A.; Rosero-Navarro, N.C.; Nagao, M.; Tanaka, I.; Ceder, G.; Tadanaga, K. Self-Combustion Synthesis of Novel Metastable Ternary Molybdenum Nitrides. ACS Mater. Lett. 2019, 1, 64–70. [Google Scholar] [CrossRef]
- Miura, A. Low-temperature synthesis and rational design of nitrides and oxynitrides for novel functional material development. J. Ceram. Soc. Jpn. 2017, 125, 552–558. [Google Scholar] [CrossRef]
- Tanaka, M.; Kataoka, N.; Matsumoto, R.; Inumaru, K.; Takano, Y.; Yokoya, T. Synthetic Route of Layered Titanium Nitride Chloride TiNCl Using Sodium Amide. ACS Omega 2022, 7, 6375–6380. [Google Scholar] [CrossRef]
- Kuhn, A.; Hoppe, H.; Strähle, J.; Garcia-Alvarado, F. Electrochemical Lithium Intercalation in Titanium Nitride Chloride. J. Electrochem. Soc. 2004, 151, A843. [Google Scholar] [CrossRef]
- Ohashi, M.; Uyeoka, K.; Yamanaka, S.; Hattori, M. Co-Intercalation of Tetrahydrofuran and Propylene Carbonate with Alkali Metals in β-ZrNCl Layer Structured Crystal. Bull. Chem. Soc. Jpn. 1991, 64, 2814–2818. [Google Scholar] [CrossRef]
- Zhang, S.; Tanaka, M.; Watanabe, E.; Zhu, H.; Inumaru, K.; Yamanaka, S. Superconductivity of alkali metal intercalated TiNBr with alpha-type nitride layers. Supercond. Sci. Technol. 2013, 26, 122001. [Google Scholar] [CrossRef]
- Yamanaka, S.; Okumura, H.; Zhu, L. Alkali metal intercalation in layer structured α-HfNBr. J. Phys. Chem. Solids 2004, 65, 565–569. [Google Scholar] [CrossRef]
- Hotehama, K.; Koiwasaki, T.; Umemoto, K.; Yamanaka, S.; Tou, H. Effect of Swelling on the Superconducting Characteristics in Electron-Doped β-ZrNCl and HfNCl. J. Phys. Soc. Jpn. 2010, 79, 014707. [Google Scholar] [CrossRef]
- Harshman, D.R.; Fiory, A.T. Modeling Intercalated Group-4-Metal Nitride Halide Superconductivity with Interlayer Coulomb Coupling. J. Supercond. Nov. Magn. 2015, 28, 2967–2978. [Google Scholar] [CrossRef][Green Version]
- Yin, Q.; Ylvisaker, E.R.; Pickett, W.E. Spin and charge fluctuations in α-structure layered nitride superconductors. Phys. Rev. B 2011, 83, 014509. [Google Scholar] [CrossRef]
- Felser, C.; Seshadri, R. Electronic structures and instabilities of ZrNCl and HfNCl: Implications for superconductivity in the doped compounds. J. Mater. Chem. 1999, 9, 459–464. [Google Scholar] [CrossRef]
- Kuroki, K. Spin-fluctuation-mediated d+id’ pairing mechanism in doped β-MNCl (M=Hf, Zr) superconductors. Phys. Rev. B 2010, 81, 104502. [Google Scholar] [CrossRef]
- Kusakabe, K. Pair-hopping mechanism of superconductivity activated by the nano-space layered structure. J. Phys. Chem. Solids 2012, 73, 1546–1549. [Google Scholar] [CrossRef]
- Yin, Z.P.; Kutepov, A.; Kotliar, G. Correlation-Enhanced Electron-Phonon Coupling: Applications of GW and Screened Hybrid Functional to Bismuthates, Chloronitrides, and Other High-Tc Superconductors. Phys. Rev. X 2013, 3, 021011. [Google Scholar] [CrossRef]
- Sugimoto, A.; Shohara, K.; Ekino, T.; Zheng, Z.; Yamanaka, S. Nanoscale electronic structure of the layered nitride superconductors α-KxTiNCl and β-HfNCl y observed by scanning tunneling microscopy and spectroscopy. Phys. Rev. B 2012, 85, 144517. [Google Scholar] [CrossRef]
- Ino, A.; Yamazaki, K.; Yamasaki, T.; Higashiguchi, M.; Shimada, K.; Namatame, H.; Taniguchi, M.; Oguchi, T.; Chen, X.; Yamanaka, S. Angle-resolved-photoemission study of layer-structured nitride β-HfNCl. J. Electron Spectros. Relat. Phenom. 2005, 144–147, 667–669. [Google Scholar] [CrossRef]
- Zhu, L.; Ohashi, M.; Yamanaka, S. Zirconium nitride derived from layer-structured β-ZrNCl by deintercalation of chlorine layers. Chem. Mater. 2002, 14, 4517–4521. [Google Scholar] [CrossRef]
- Hegde, R.I.; Fiordalice, R.W.; Tobin, P.J. TiNCl formation during low-temperature, low-pressure chemical vapor deposition of TiN. Appl. Phys. Lett. 1993, 62, 2326–2328. [Google Scholar] [CrossRef]
- Kataoka, N.; Tanaka, M.; Hosoda, W.; Taniguchi, T.; Fujimori, S.; Wakita, T.; Muraoka, Y.; Yokoya, T. Soft X-ray irradiation induced metallization of layered TiNCl. J. Phys. Condens. Matter 2021, 33, 035501. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, M.; Kataoka, N.; Yokoya, T. Superconductivity in the α-Form Layer Structured Metal Nitride Halide. Condens. Matter 2022, 7, 33. https://doi.org/10.3390/condmat7020033
Tanaka M, Kataoka N, Yokoya T. Superconductivity in the α-Form Layer Structured Metal Nitride Halide. Condensed Matter. 2022; 7(2):33. https://doi.org/10.3390/condmat7020033
Chicago/Turabian StyleTanaka, Masashi, Noriyuki Kataoka, and Takayoshi Yokoya. 2022. "Superconductivity in the α-Form Layer Structured Metal Nitride Halide" Condensed Matter 7, no. 2: 33. https://doi.org/10.3390/condmat7020033
APA StyleTanaka, M., Kataoka, N., & Yokoya, T. (2022). Superconductivity in the α-Form Layer Structured Metal Nitride Halide. Condensed Matter, 7(2), 33. https://doi.org/10.3390/condmat7020033