Superconductivity in the α-Form Layer Structured Metal Nitride Halide
Abstract
:1. Introduction
2. Synthesis and Electron Doping of TiNCl
2.1. Conventional Preparation
2.2. Preparation Using Sodium Amide
2.3. Electron Doping by Intercalation
3. Electronic Structure of TiNCl
3.1. Micro-PES of Electron-Doped TiNCl
3.2. Metalization of TiNCl Induced by Soft X-ray Irradiation
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yamanaka, S.; Kawaji, H.; Hotehama, K.; Ohashi, M. A new layer-structured nitride superconductor. Lithium-intercalated β-zirconium nitride chloride, LixZrNCl. Adv. Mater. 1996, 8, 771–774. [Google Scholar] [CrossRef]
- Yamanaka, S.; Hotehama, K.I.; Kawaji, H. Superconductivity at 25.5K in electron-doped layered hafnium nitride. Nature 1998, 392, 580–582. [Google Scholar] [CrossRef]
- Yamanaka, S.; Yasunaga, T.; Yamaguchi, K.; Tagawa, M. Structure and superconductivity of the intercalation compounds of TiNCl with pyridine and alkali metals as intercalants. J. Mater. Chem. 2009, 19, 2573. [Google Scholar] [CrossRef]
- Yamanaka, S. Intercalation and superconductivity in ternary layer structured metal nitride halides (MNX: M = Ti, Zr, Hf; X = Cl, Br, I). J. Mater. Chem. 2010, 20, 2922–2933. [Google Scholar] [CrossRef]
- Juza, R.; Heners, J. Über Nitridhalogenide des Titans und Zirkons. Z. Für Anorg. Und Allg. Chem. 1964, 332, 159–172. [Google Scholar] [CrossRef]
- Zhang, S.; Tanaka, M.; Zhu, H.; Yamanaka, S. Superconductivity of layered β-HfNCl with varying electron-doping concentrations and interlayer spacings. Supercond. Sci. Technol. 2013, 26, 085015. [Google Scholar] [CrossRef]
- Ueno, K.; Shimotani, H.; Yuan, H.; Ye, J.; Kawasaki, M.; Iwasa, Y. Field-induced superconductivity in electric double layer transistors. J. Phys. Soc. Jpn. 2014, 83, 032001. [Google Scholar] [CrossRef]
- Saito, Y.; Kasahara, Y.; Ye, J.; Iwasa, Y.; Nojima, T. Metallic ground state in an ion-gated two-dimensional superconductor. Science 2015, 350, 409–413. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Gao, M.-R.; Fu, H.-Y.; Wang, X.-M.; Ren, Z.-A.; Chen, G.-F. Electric Field Induced Permanent Superconductivity in Layered Metal Nitride Chlorides HfNCl and ZrNCl. Chin. Phys. Lett. 2018, 35, 097401. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, S.; Fu, H.; Gao, M.; Ren, Z.; Chen, G. Dominant role of processing temperature in electric field induced superconductivity in layered ZrNBr. N. J. Phys. 2019, 21, 023002. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Kasahara, Y.; Nomoto, T.; Arita, R.; Nojima, T.; Iwasa, Y. Gate-controlled BCS-BEC crossover in a two-dimensional superconductor. Science 2021, 372, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Saito, Y.; Nojima, T.; Inumaru, K.; Yamanaka, S.; Kasahara, Y.; Iwasa, Y. Gate-controlled low carrier density superconductors: Toward the two-dimensional BCS-BEC crossover. Phys. Rev. B 2018, 98, 064512. [Google Scholar] [CrossRef] [Green Version]
- Taguchi, Y.; Kitora, A.; Iwasa, Y. Increase in Tc upon reduction of doping in LixZrNCl superconductors. Phys. Rev. Lett. 2006, 97, 107001. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Zhang, S. Synthesis and Superconductivity of Electron-Doped β-ZrNCl with Partial Substitution of Ti on Zr Site. J. Supercond. Nov. Magn. 2018, 31, 61–65. [Google Scholar] [CrossRef]
- Tou, H.; Maniwa, Y.; Koiwasaki, T.; Yamanaka, S. Unconventional superconductivity in electron-doped layered Li0.48(THF)yHfNCl. Phys. Rev. Lett. 2001, 86, 5775–5778. [Google Scholar] [CrossRef]
- Taguchi, Y.; Hisakabe, M.; Iwasa, Y. Specific heat measurement of the layered nitride superconductor LixZrNCl. Phys. Rev. Lett. 2005, 94, 2–5. [Google Scholar] [CrossRef]
- Yokoya, T.; Ishiwata, Y.; Shin, S.; Shamoto, S.; Iizawa, K.; Kajitani, T.; Hase, I.; Takahashi, T. Changes of electronic structure across the insulator-to-metal transition of quasi-two-dimensional Na-intercalated β-HfNCl studied by photoemission and X-ray absorption. Phys. Rev. B 2001, 64, 153107. [Google Scholar] [CrossRef]
- Takeuchi, T.; Tsuda, S.; Yokoya, T.; Tsukamoto, T.; Shin, S.; Hirai, A.; Shamoto, S.; Kajitani, T. Soft X-ray emission and high-resolution photoemission study of quasi-two-dimensional superconductor NaxHfNCl. Physica C 2003, 392–396, 127–129. [Google Scholar] [CrossRef]
- Yokoya, T.; Takeuchi, T.; Tsuda, S.; Kiss, T.; Higuchi, T.; Shin, S.; Iizawa, K.; Shamoto, S.; Kajitani, T.; Takahashi, T. Valence-band photoemission study of β-ZrNCl and the quasi-two-dimensional superconductor NaxZrNCl. Phys. Rev. B 2004, 70, 193103. [Google Scholar] [CrossRef]
- Tou, H.; Maniwa, Y.; Yamanaka, S. Superconducting characteristics in electron-doped layered hafnium nitride: 15N isotope effect studies. Phys. Rev. B 2003, 67, 100509. [Google Scholar] [CrossRef] [Green Version]
- Weht, R.; Filippetti, A.; Pickett, W.E. Electron doping in the honeycomb bilayer superconductors (Zr, Hf)NCl. Europhys. Lett. 1999, 48, 320–325. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, A.; Sakai, Y.; Ekino, T.; Zhang, S.; Tanaka, M.; Yamanaka, S.; Gabovich, A.M. Scanning Tunnelling Microscopy and Spectroscopy of the Layered Nitride Superconductor α-NaxTiNCl. Phys. Procedia 2016, 81, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Ekino, T.; Takasaki, T.; Muranaka, T.; Fujii, H.; Akimitsu, J.; Yamanaka, S. Tunneling spectroscopy of MgB2 and Li0.5(THF)yHfNCl. Phys. B Condens. Matter 2003, 328, 23–25. [Google Scholar] [CrossRef]
- Kawaji, H.; Hotehama, K.I.; Yamanaka, S. Superconductivity of Alkali Metal Intercalated β-Zirconium Nitride Chloride, AxZrNCl (A = Li, Na, K). Chem. Mater. 1997, 9, 2127–2130. [Google Scholar] [CrossRef]
- Takano, T.; Kishiume, T.; Taguchi, Y.; Iwasa, Y. Interlayer-spacing dependence of Tc in LixMyHfNCl (M: Molecule) superconductors. Phys. Rev. Lett. 2008, 100, 247005. [Google Scholar] [CrossRef]
- Kasahara, Y.; Kishiume, T.; Kobayashi, K.; Taguchi, Y.; Iwasa, Y. Superconductivity in molecule-intercalated LixZrNCl with variable interlayer spacing. Phys. Rev. B 2010, 82, 054504. [Google Scholar] [CrossRef]
- Kasahara, Y.; Kishiume, T.; Takano, T.; Kobayashi, K.; Matsuoka, E.; Onodera, H.; Kuroki, K.; Taguchi, Y.; Iwasa, Y. Enhancement of Pairing Interaction and Magnetic Fluctuations toward a Band Insulator in an Electron-Doped LixZrNCl Superconductor. Phys. Rev. Lett. 2009, 103, 077004. [Google Scholar] [CrossRef] [Green Version]
- Kotegawa, H.; Oshiro, S.; Shimizu, Y.; Tou, H.; Kasahara, Y.; Kishiume, T.; Taguchi, Y.; Iwasa, Y. Strong suppression of coherence effect and appearance of pseudogap in the layered nitride superconductor LixZrNCl: 91Zr- and 15N-NMR studies. Phys. Rev. B 2014, 90, 020503. [Google Scholar] [CrossRef] [Green Version]
- Kasahara, Y.; Kuroki, K.; Yamanaka, S.; Taguchi, Y. Unconventional superconductivity in electron-doped layered metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I). Physica C 2015, 514, 354–367. [Google Scholar] [CrossRef] [Green Version]
- Kataoka, N.; Terashima, K.; Tanaka, M.; Hosoda, W.; Taniguchi, T.; Wakita, T.; Muraoka, Y.; Yokoya, T. µ-PES Studies on TiNCl and Quasi-two-dimensional Superconductor Na-intercalated TiNCl. J. Phys. Soc. Jpn. 2019, 88, 104709. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, S.; Umemoto, K.; Zheng, Z.; Suzuki, Y.; Matsui, H.; Toyota, N.; Inumaru, K. Preparation and superconductivity of intercalation compounds of TiNCl with aliphatic amines. J. Mater. Chem. 2012, 22, 10752–10762. [Google Scholar] [CrossRef]
- Zhang, S.; Tanaka, M.; Yamanaka, S. Superconductivity in electron-doped layered TiNCl with variable interlayer coupling. Phys. Rev. B 2012, 86, 024516. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Dai, Y.; Ma, Y.; Ju, L.; Wei, W.; Huang, B. Novel titanium nitride halide TiNX (X = F, Cl, Br) monolayers: Potential materials for highly efficient excitonic solar cells. J. Mater. Chem. A 2018, 6, 2073–2080. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.-B.; Wang, D.; Liu, H.; Peng, P.; Liu, L.-M. Single-layer Group-IVB nitride halides as promising photocatalysts. J. Mater. Chem. A 2014, 2, 6755. [Google Scholar] [CrossRef]
- Zhou, L.; Zhuo, Z.; Kou, L.; Du, A.; Tretiak, S. Computational Dissection of Two-Dimensional Rectangular Titanium Mononitride TiN: Auxetics and Promises for Photocatalysis. Nano Lett. 2017, 17, 4466–4472. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Zhao, X.; Wu, D.; Zhang, X.; Zhou, Z. Tetragonal-structured anisotropic 2D metal nitride monolayers and their halides with versatile promises in energy storage and conversion. J. Mater. Chem. A 2017, 5, 2870–2875. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Z.; Du, A.; Zhao, M. Band inversion and topological aspects in a TiNI monolayer. Phys. Chem. Chem. Phys. 2016, 18, 22154–22159. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, R.-W.; Li, X.; Koepernik, K.; Yao, Y.; Zhang, H. High-Throughput Screening and Automated Processing toward Novel Topological Insulators. J. Phys. Chem. Lett. 2018, 9, 6224–6231. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Yao, Y.; Zhang, H. High throughput screening for two-dimensional topological insulators. 2D Mater. 2018, 5, 045023. [Google Scholar] [CrossRef]
- Rostami Osanloo, M.; Saadat, A.; Van de Put, M.L.; Laturia, A.; Vandenberghe, W.G. Transition-metal nitride halide dielectrics for transition-metal dichalcogenide transistors. Nanoscale 2022, 14, 157–165. [Google Scholar] [CrossRef]
- Hossain, M.M.; Naqib, S.H. Structural, elastic, electronic, andoptical properties of layered TiNX (X = F, Cl, Br, I) compounds: A density functional theory study. Mol. Phys. 2020, 118, e1609706. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Peng, J.; Qin, W.; Zeng, J.; Zhao, J.; Wu, J.; Chu, W.; Wang, L.; Wu, C.; Xie, Y. Freestanding Cubic ZrN Single-Crystalline Films with Two-Dimensional Superconductivity. J. Am. Chem. Soc. 2019, 141, 10183–10187. [Google Scholar] [CrossRef] [PubMed]
- Schurz, C.M.; Shlyk, L.; Schleid, T.; Niewa, R. Superconducting nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I). Z. Krist. 2011, 226, 395–416. [Google Scholar] [CrossRef]
- Juza, R.; Klose, W. Die Kristallstruktur des Zirkonnitridjodids. Angew. Chem. 1959, 71, 161. [Google Scholar] [CrossRef]
- Juza, R.; Friedrichsen, H. Die Kristallstruktur von β-ZrNCl und β-ZrNBr. Z. Anorg. Allg. Chem. 1964, 332, 173–178. [Google Scholar] [CrossRef]
- Juza, R.; Klose, W. Über ein Nitridjodid des Zirkons. Z. Anorg. Allg. Chem. Anorg. Allg. Chem. 1964, 327, 207–214. [Google Scholar] [CrossRef]
- Cross, J.B.; Schlegel, H.B. Molecular orbital studies of titanium nitride chemical vapor deposition: Gas phase β -elimination. Chem. Phys. Lett. 2001, 340, 343–347. [Google Scholar] [CrossRef]
- Umanskii, S.Y.; Novoselov, K.P.; Minushev, A.K.; Siodmiak, M.; Frenking, G.; Korkin, A.A. Thermodynamics and kinetics of initial gas phase reactions in chemical vapor deposition of titanium nitride. Theoretical study of TiCl4 ammonolysis. J. Comput. Chem. 2001, 22, 1366–1376. [Google Scholar] [CrossRef]
- Saeki, Y.; Matsuzaki, R.; Yajima, A.; Akiyama, M. Reaction Process of Titanium Tetrachloride with Ammonia in the Vapor Phase and Properties of the Titanium Nitride Formed. Bull. Chem. Soc. Jpn. 1982, 55, 3193–3196. [Google Scholar] [CrossRef] [Green Version]
- Fowles, G.W.A.; Pollard, F.H. Studies on the behaviour of halides of the transition metals with ammonia. Part II. The reaction of titanium tetrachloride with ammonia. J. Chem. Soc. 1953, 22, 2588. [Google Scholar] [CrossRef]
- Kurtz, S.R.; Gordon, R.G. Chemical vapor deposition of titanium nitride at low temperatures. Thin Solid Films 1986, 140, 277–290. [Google Scholar] [CrossRef]
- Ohashi, M.; Yamanaka, S.; Hattori, M. Chemical vapor transport of layer structured crystal β-ZrNCl. J. Solid State Chem. 1988, 77, 342–347. [Google Scholar] [CrossRef]
- Yajima, A.; Segawa, Y.; Matsuzaki, R.; Saeki, Y. Reaction Process of Zirconium Tetrachloride with Ammonia in the Vapor Phase and Properties of the Zirconium Nitride Formed. Bull. Chem. Soc. Jpn. 1983, 56, 2638–2642. [Google Scholar] [CrossRef] [Green Version]
- Sosnov, E.A.; Malkov, A.A.; Malygin, A.A. Chemical transformations at the silica surface upon sequential interactions with titanium tetrachloride and ammonia vapors. Russ. J. Gen. Chem. 2015, 85, 2533–2540. [Google Scholar] [CrossRef]
- Ohashi, M.; Yamanaka, S.; Hattori, M. Synthesis of β-ZrClN by Thermal Decomposition of Zirconium(IV) Amide Trichloride. Bull. Chem. Soc. Jpn. 1986, 59, 2627–2628. [Google Scholar] [CrossRef] [Green Version]
- Odahara, J.; Sun, W.; Miura, A.; Rosero-Navarro, N.C.; Nagao, M.; Tanaka, I.; Ceder, G.; Tadanaga, K. Self-Combustion Synthesis of Novel Metastable Ternary Molybdenum Nitrides. ACS Mater. Lett. 2019, 1, 64–70. [Google Scholar] [CrossRef]
- Miura, A. Low-temperature synthesis and rational design of nitrides and oxynitrides for novel functional material development. J. Ceram. Soc. Jpn. 2017, 125, 552–558. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Kataoka, N.; Matsumoto, R.; Inumaru, K.; Takano, Y.; Yokoya, T. Synthetic Route of Layered Titanium Nitride Chloride TiNCl Using Sodium Amide. ACS Omega 2022, 7, 6375–6380. [Google Scholar] [CrossRef]
- Kuhn, A.; Hoppe, H.; Strähle, J.; Garcia-Alvarado, F. Electrochemical Lithium Intercalation in Titanium Nitride Chloride. J. Electrochem. Soc. 2004, 151, A843. [Google Scholar] [CrossRef]
- Ohashi, M.; Uyeoka, K.; Yamanaka, S.; Hattori, M. Co-Intercalation of Tetrahydrofuran and Propylene Carbonate with Alkali Metals in β-ZrNCl Layer Structured Crystal. Bull. Chem. Soc. Jpn. 1991, 64, 2814–2818. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Tanaka, M.; Watanabe, E.; Zhu, H.; Inumaru, K.; Yamanaka, S. Superconductivity of alkali metal intercalated TiNBr with alpha-type nitride layers. Supercond. Sci. Technol. 2013, 26, 122001. [Google Scholar] [CrossRef]
- Yamanaka, S.; Okumura, H.; Zhu, L. Alkali metal intercalation in layer structured α-HfNBr. J. Phys. Chem. Solids 2004, 65, 565–569. [Google Scholar] [CrossRef]
- Hotehama, K.; Koiwasaki, T.; Umemoto, K.; Yamanaka, S.; Tou, H. Effect of Swelling on the Superconducting Characteristics in Electron-Doped β-ZrNCl and HfNCl. J. Phys. Soc. Jpn. 2010, 79, 014707. [Google Scholar] [CrossRef]
- Harshman, D.R.; Fiory, A.T. Modeling Intercalated Group-4-Metal Nitride Halide Superconductivity with Interlayer Coulomb Coupling. J. Supercond. Nov. Magn. 2015, 28, 2967–2978. [Google Scholar] [CrossRef] [Green Version]
- Yin, Q.; Ylvisaker, E.R.; Pickett, W.E. Spin and charge fluctuations in α-structure layered nitride superconductors. Phys. Rev. B 2011, 83, 014509. [Google Scholar] [CrossRef] [Green Version]
- Felser, C.; Seshadri, R. Electronic structures and instabilities of ZrNCl and HfNCl: Implications for superconductivity in the doped compounds. J. Mater. Chem. 1999, 9, 459–464. [Google Scholar] [CrossRef]
- Kuroki, K. Spin-fluctuation-mediated d+id’ pairing mechanism in doped β-MNCl (M=Hf, Zr) superconductors. Phys. Rev. B 2010, 81, 104502. [Google Scholar] [CrossRef]
- Kusakabe, K. Pair-hopping mechanism of superconductivity activated by the nano-space layered structure. J. Phys. Chem. Solids 2012, 73, 1546–1549. [Google Scholar] [CrossRef]
- Yin, Z.P.; Kutepov, A.; Kotliar, G. Correlation-Enhanced Electron-Phonon Coupling: Applications of GW and Screened Hybrid Functional to Bismuthates, Chloronitrides, and Other High-Tc Superconductors. Phys. Rev. X 2013, 3, 021011. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, A.; Shohara, K.; Ekino, T.; Zheng, Z.; Yamanaka, S. Nanoscale electronic structure of the layered nitride superconductors α-KxTiNCl and β-HfNCl y observed by scanning tunneling microscopy and spectroscopy. Phys. Rev. B 2012, 85, 144517. [Google Scholar] [CrossRef] [Green Version]
- Ino, A.; Yamazaki, K.; Yamasaki, T.; Higashiguchi, M.; Shimada, K.; Namatame, H.; Taniguchi, M.; Oguchi, T.; Chen, X.; Yamanaka, S. Angle-resolved-photoemission study of layer-structured nitride β-HfNCl. J. Electron Spectros. Relat. Phenom. 2005, 144–147, 667–669. [Google Scholar] [CrossRef]
- Zhu, L.; Ohashi, M.; Yamanaka, S. Zirconium nitride derived from layer-structured β-ZrNCl by deintercalation of chlorine layers. Chem. Mater. 2002, 14, 4517–4521. [Google Scholar] [CrossRef]
- Hegde, R.I.; Fiordalice, R.W.; Tobin, P.J. TiNCl formation during low-temperature, low-pressure chemical vapor deposition of TiN. Appl. Phys. Lett. 1993, 62, 2326–2328. [Google Scholar] [CrossRef]
- Kataoka, N.; Tanaka, M.; Hosoda, W.; Taniguchi, T.; Fujimori, S.; Wakita, T.; Muraoka, Y.; Yokoya, T. Soft X-ray irradiation induced metallization of layered TiNCl. J. Phys. Condens. Matter 2021, 33, 035501. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, M.; Kataoka, N.; Yokoya, T. Superconductivity in the α-Form Layer Structured Metal Nitride Halide. Condens. Matter 2022, 7, 33. https://doi.org/10.3390/condmat7020033
Tanaka M, Kataoka N, Yokoya T. Superconductivity in the α-Form Layer Structured Metal Nitride Halide. Condensed Matter. 2022; 7(2):33. https://doi.org/10.3390/condmat7020033
Chicago/Turabian StyleTanaka, Masashi, Noriyuki Kataoka, and Takayoshi Yokoya. 2022. "Superconductivity in the α-Form Layer Structured Metal Nitride Halide" Condensed Matter 7, no. 2: 33. https://doi.org/10.3390/condmat7020033
APA StyleTanaka, M., Kataoka, N., & Yokoya, T. (2022). Superconductivity in the α-Form Layer Structured Metal Nitride Halide. Condensed Matter, 7(2), 33. https://doi.org/10.3390/condmat7020033