Comparison of Ferromagnetic Materials: Past Work, Recent Trends, and Applications
Abstract
:1. Introduction
2. Past Work
3. Recent Trends
3.1. Hexaborides of Alkaline-Earth Metals
3.1.1. CaB6
3.1.2. BaB6
3.1.3. SrB6
3.2. Nonmagnetic Oxides
3.2.1. HfO2
3.2.2. ZnO
3.2.3. CeO2
3.2.4. MgO
3.2.5. TiO2
3.2.6. ZrO2
3.2.7. SnO2
3.3. C Nanostructures
3.3.1. C Nanotubes
3.3.2. Fullerenes
3.3.3. Graphene
3.3.4. Graphite
3.4. Magnetic Boride Compounds
3.5. Nonmetallic Non-Oxide System
4. Applications
4.1. Spintronic Devices
4.2. Electronic Devices
4.3. Biomedicine
4.4. Artificial Neural Networking
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chikazumi, S.; Graham, C.D. Physics of Ferromagnetism 2e (No. 94); Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials, 2nd ed.; Wiley: New York, NY, USA, 2008. [Google Scholar]
- Peng, L.-C.; Zhang, Y.; Zuo, S.-L.; He, M.; Cai, J.-W.; Wang, S.-G.; Wei, H.-X.; Li, J.-Q.; Zhao, T.-Y.; Shen, B.-G. Lorentz transmission electron microscopy studies on topological magnetic domains. Chin. Phys. B 2018, 27, 066802. [Google Scholar] [CrossRef]
- Goldman, A. Handbook of Modern Ferromagnetic Materials; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Hashmi, S. Comprehensive Materials Processing; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Castillo-Effen, M.; Quintela, D.H.; Jordan, R.; Westhoff, W.; Moreno, W. Wireless sensor networks for flash-flood alerting. In Proceedings of the Fifth IEEE International Caracas Conference on Devices, Circuits and Systems, 2004, Punta Cana, Dominican Republic, 3–5 November 2004. [Google Scholar] [CrossRef]
- Aharoni, A. Introduction to the Theory of Ferromagnetism (Vol. 109); Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Zhao, X.; Li, L.; Bao, K.; Zhu, P.; Tao, Q.; Ma, S.; Liu, B.; Ge, Y.; Li, D.; Cui, T. Synthesis and characterization of a strong ferromagnetic and high hardness intermetallic compound Fe2B. Phys. Chem. Chem. Phys. 2020, 22, 27425–27432. [Google Scholar] [CrossRef]
- Singh, R. Unexpected magnetism in nanomaterials. J. Magn. Magn. Mater. 2013, 346, 58–73. [Google Scholar] [CrossRef]
- Das Pemmaraju, C.; Sanvito, S. Ferromagnetism Driven by Intrinsic Point Defects inHfO2. Phys. Rev. Lett. 2005, 94, 217205. [Google Scholar] [CrossRef]
- Mohanta, S.K.; Mishra, S.N. Electronic structure and magnetic moment of dilute transition metal impurities in semi-metallic CaB6. J. Magn. Magn. Mater. 2017, 444, 349–353. [Google Scholar] [CrossRef]
- Sundaresan, A.; Bhargavi, R.; Rangarajan, N.; Siddesh, U.; Rao, C.N.R. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 2006, 74, 161306. [Google Scholar] [CrossRef]
- Coey, J.M.D. Magnetism in d0 oxides. Nat. Mater. 2019, 18, 652–656. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, D.; Si, M.; Zhu, Z.; Yang, G.; Shi, Z.; Xue, D. Origin of the unexpected room temperature ferromagnetism: Formation of artificial defects on the surface in NaCl particles. J. Mater. Chem. C 2013, 1, 6216–6222. [Google Scholar] [CrossRef]
- Makarova, T.L. Nanomagnetism in otherwise nonmagnetic materials. arXiv 2009, arXiv:0904.1550. [Google Scholar]
- Sundaresan, A.; Rao, C.N.R. Ferromagnetism as a universal feature of inorganic nanoparticles. Nano Today 2009, 4, 96–106. [Google Scholar] [CrossRef]
- Xiang, Z.; Le, M.Q.; Cottinet, P.-J.; Griffiths, P.; Baeza, G.P.; Capsal, J.-F.; Lermusiaux, P.; Della Schiava, N.; Ducharne, B. Development of anisotropic ferromagnetic composites for low-frequency induction heating technology in medical applications. Mater. Today Chem. 2021, 19, 100395. [Google Scholar] [CrossRef]
- Yang, S.; Li, M.; Qing, X.; Guo, L.; Hong, S.; Wang, L.; Wang, C.; Liu, X. Development of Cu-Mn-Ga-based ferromagnetic shape memory single crystals. Materialia 2020, 12, 100789. [Google Scholar] [CrossRef]
- Lungu, I.I.; Grumezescu, A.M.; Fleaca, C. Unexpected Ferromagnetism—A Review. Appl. Sci. 2021, 11, 6707. [Google Scholar] [CrossRef]
- Young, D.P.; Hall, D.; Torelli, M.E.; Fisk, Z.; Sarrao, J.L.; Thompson, J.D.; Ott, H.-R.; Oseroff, S.B.; Goodrich, R.G.; Zysler, R. High-temperature weak ferromagnetism in a low-density free-electron gas. Nature 1999, 397, 412–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denlinger, J.D.; Clack, J.A.; Allen, J.W.; Gweon, G.-H.; Poirier, D.M.; Olson, C.G.; Sarrao, J.L.; Bianchi, A.D.; Fisk, Z. Bulk Band Gaps in Divalent Hexaborides. Phys. Rev. Lett. 2002, 89, 157601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, K.M.; Jaime, O.; Cahill, J.T.; Edwards, D.; Misture, S.T.; Graeve, O.A.; Vasquez, V.R. Surface termination analysis of stoichiometric metal hexaborides: Insights from first-principles and XPS measurements. Acta Mater. 2018, 144, 187–201. [Google Scholar] [CrossRef]
- Etourneau, J.; Mercurio, J.-P.; Hagenmuller, P. Compounds Based on Octahedral B6 Units: Hexaborides and Tetraborides. In Boron and Refractory Borides; Springer: Berlin/Heidelberg, Germany, 1977; pp. 115–138. [Google Scholar] [CrossRef]
- Johnson, R.W.; Daane, A.H. Electron Requirements of Bonds in Metal Borides. J. Chem. Phys. 1963, 38, 425. [Google Scholar] [CrossRef] [Green Version]
- Katsura, Y.; Yamamoto, A.; Ogino, H.; Horii, S.; Shimoyama, J.-I.; Kishio, K.; Takagi, H. On the possibility of MgB2-like superconductivity in potassium hexaboride. Phys. C Supercond. Its Appl. 2010, 470, S633–S634. [Google Scholar] [CrossRef]
- Cahill, J.T.; Graeve, O.A. Hexaborides: A review of structure, synthesis and processing. J. Mater. Res. Technol. 2019, 8, 6321–6335. [Google Scholar] [CrossRef]
- Bennett, M.C.; van Lierop, J.; Berkeley, E.M.; Mansfield, J.F.; Henderson, C.; Aronson, M.C.; Young, D.P.; Bianchi, A.; Fisk, Z.; Balakirev, F.; et al. Weak ferromagnetism in CaB6. Phys. Rev. B 2004, 69, 132407. [Google Scholar] [CrossRef]
- Maiti, K. Role of vacancies and impurities in the ferromagnetism of semiconducting CaB6. Europhys. Lett. 2008, 82, 67006. [Google Scholar] [CrossRef] [Green Version]
- Ackland, K.; Venkatesan, M.; Coey, J.M.D. Magnetism of BaB6 thin films synthesized by pulsed laser deposition. J. Appl. Phys. 2012, 111, 07A322. [Google Scholar] [CrossRef]
- Bao, L.; Qi, X.; Tana, T.; Chao, L.; Tegus, O. Effects of induced optical tunable and ferromagnetic behaviors of Ba doped nanocrystalline LaB6. Phys. Chem. Chem. Phys. 2016, 18, 19165–19172. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.; Young, D.P.; Fisk, Z.; Murphy, T.P.; Palm, E.C.; Teklu, A.; Goodrich, R.G. Fermi-surface measurements on the low-carrier density ferromagnet Ca1−xLaxB6 and SrB6. Phys. Rev. B 2001, 64, 233105. [Google Scholar] [CrossRef] [Green Version]
- Stankiewicz, J.; Schlottmann, P.; Arauzo, A.; Perez, M.J.M.; Rosa, P.F.S.; Civale, L.; Fisk, Z. Localized magnetic moments in metallic SrB6 single crystals. J. Phys. Condens. Matter 2018, 31, 065602. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, M.C.; Gallego, S.; Sanchez, N. Surface ferromagnetism in non-magnetic and dilute magnetic oxides. J. Phys. Conf. Ser. 2011, 303, 012001. [Google Scholar] [CrossRef]
- Xie, Q.; Wang, W.-P.; Xie, Z.; Zhan, P.; Li, Z.-C.; Zhang, Z.-J. Room temperature ferromagnetism in un-doped amorphous HfO 2 nano-helix arrays. Chin. Phys. B 2015, 24, 057503. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, G.; Yunoki, S. Surface ferromagnetism in HfO2 induced by excess oxygen. Solid State Commun. 2017, 252, 33–39. [Google Scholar] [CrossRef]
- Straumal, B.B.; Protasova, S.G.; Mazilkin, A.A.; Goering, E.; Schütz, G.; Straumal, P.B.; Baretzky, B. Ferromagnetic behaviour of ZnO: The role of grain boundaries. Beilstein J. Nanotechnol. 2016, 7, 1936–1947. [Google Scholar] [CrossRef] [Green Version]
- Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science 2000, 287, 1019–1022. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Katayama-Yoshida, H. First principles materials design for semiconductor spintronics. Semicond. Sci. Technol. 2002, 17, 367–376. [Google Scholar] [CrossRef]
- Straumal, B.B.; Mazilkin, A.A.; Protasova, S.G.; Myatiev, A.A.; Straumal, P.B.; Schütz, G.; van Aken, P.A.; Goering, E.; Baretzky, B. Magnetization study of nanograined pure and Mn-doped ZnO films: Formation of a ferromagnetic grain-boundary foam. Phys. Rev. B 2009, 79, 205206. [Google Scholar] [CrossRef] [Green Version]
- Pazhanivelu, V.; Blessington Selvadurai, A.P.; Murugaraj, R. Unexpected ferromagnetism in Ist group elements doped ZnO based DMS nanoparticles. Mater. Lett. 2015, 151, 112–114. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, Z.; Fu, J.; Xu, Y.; Qi, J.; Xue, D. Room temperature ferromagnetism of pure ZnO nanoparticles. J. Appl. Phys. 2009, 105, 113928. [Google Scholar] [CrossRef]
- Sun, Y.; Zong, Y.; Feng, J.; Li, X.; Yan, F.; Lan, Y.; Zhang, L.; Ren, Z.; Zheng, X. Oxygen vacancies driven size-dependent d0 room temperature ferromagnetism in well-dispersed dopant-free ZnO nanoparticles and density functional theory calculation. J. Alloys Compd. 2018, 739, 1080–1088. [Google Scholar] [CrossRef]
- Shojaee, A.; Mostafavi, A.; Shamspur, T.; Fathirad, F. Green synthesis of cerium oxide nanoparticles: Characterization, parameters optimization and investigation of photocatalytic application. Biointerface Res. Appl. Chem 2020, 10, 5932–5937. [Google Scholar]
- Han, X.; Lee, J.; Yoo, H.-I. Oxygen-vacancy-induced ferromagnetism in CeO2 from first principles. Phys. Rev. B 2009, 79, 100403. [Google Scholar] [CrossRef]
- Killivalavan, A.; Prabakar, A.C.; Chandra Babu, K.; Naidu, B.; Sathyaseelan, G.; Rameshkumar, D.; Sivakumar, K.; Senthilnathan, I.; Baskaran, E.; Manikandan, B.R.R. Synthesis and characterization of pure and Cu doped CeO2 nanoparticles: Photocatalytic and antibacterial activities evaluation. Biointerface Res. Appl. Chem 2020, 10, 5306–5311. [Google Scholar]
- Liu, Y.; Lockman, Z.; Aziz, A.; MacManus-Driscoll, J. Size dependent ferromagnetism in cerium oxide (CeO2) nanostructures independent of oxygen vacancies. J. Phys. Condens. Matter 2008, 20, 165201. [Google Scholar] [CrossRef]
- Fernandes, V.; Mossanek, R.J.O.; Schio, P.; Klein, J.J.; De Oliveira, A.J.A.; Ortiz, W.A.; Mattoso, N.; Varalda, J.; Schreiner, W.H.; Abbate, M.; et al. Dilute-defect magnetism: Origin of magnetism in nanocrystalline CeO2. Phys. Rev. B 2009, 80, 035202. [Google Scholar] [CrossRef]
- Singh, J.P.; Chae, K.H. d° Ferromagnetism of Magnesium Oxide. Condens. Matter 2017, 2, 36. [Google Scholar] [CrossRef] [Green Version]
- Araujo, C.M.; Kapilashrami, M.; Jun, X.; Jayakumar, O.D.; Nagar, S.; Wu, Y.; Århammar, C.; Johansson, B.; Belova, L.; Ahuja, R.; et al. Room temperature ferromagnetism in pristine MgO thin films. Appl. Phys. Lett. 2010, 96, 232505. [Google Scholar] [CrossRef]
- Li, J.; Jiang, Y.; Li, Y.; Yang, D.; Xu, Y.; Yan, M. Origin of room temperature ferromagnetism in MgO films. Appl. Phys. Lett. 2013, 102, 072406. [Google Scholar] [CrossRef]
- Mahadeva, S.K.; Fan, J.; Biswas, A.; Sreelatha, K.S.; Belova, L.; Rao, K.V. Magnetism of Amorphous and Nano-Crystallized Dc-Sputter-Deposited MgO Thin Films. Nanomaterials 2013, 3, 486–497. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Hong, J.; Park, Y.R.; Kim, K.J. The origin of oxygen vacancy induced ferromagnetism in undoped TiO2. J. Phys. Condens. Matter 2009, 21, 195405. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Tao, L.L.; Song, B.; Zhang, L.; Zhang, Y.; Sui, Y.; Liu, Z.; Tang, J.; Han, X.F. Effect of Ga-doping and oxygen vacancies on the ferromagnetism of TiO2 thin films. J. Alloys Compd. 2017, 694, 929–934. [Google Scholar] [CrossRef]
- Santara, B.; Pal, B.; Giri, P.K. Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. J. Appl. Phys. 2011, 110, 114322. [Google Scholar] [CrossRef]
- Chu, D.; Zeng, Y.-P.; Jiang, D.; Masuda, Y. Room Temperature Ferromagnetism in Transition Metal Doped TiO2 Nanowires. Sci. Adv. Mater. 2009, 1, 227–229. [Google Scholar] [CrossRef]
- Albanese, E.; Puigdollers, A.R.; Pacchioni, G. Theory of Ferromagnetism in Reduced ZrO2–x Nanoparticles. ACS Omega 2018, 3, 5301–5307. [Google Scholar] [CrossRef]
- Ning, S.; Zhan, P.; Xie, Q.; Li, Z.; Zhang, Z. Room-temperature ferromagnetism in un-doped ZrO2 thin films. J. Phys. D Appl. Phys. 2013, 46, 445004. [Google Scholar] [CrossRef]
- Hong, N.H.; Park, C.-K.; Raghavender, A.T.; Ciftja, O.; Bingham, N.S.; Phan, M.H.; Srikanth, H. Room temperature ferromagnetism in monoclinic Mn-doped ZrO2 thin films. J. Appl. Phys. 2012, 111, 07C302. [Google Scholar] [CrossRef]
- Li, J.; Bai, G.; Jiang, Y.; Du, Y.; Wu, C.; Yan, M. Origin of room temperature ferromagnetism in SnO2 films. J. Magn. Magn. Mater. 2017, 426, 545–549. [Google Scholar] [CrossRef]
- Wang, X.L.; Dai, Z.X.; Zeng, Z. Search for ferromagnetism in SnO2 doped with transition metals (V, Mn, Fe, and Co). J. Phys. Condens. Matter 2008, 20, 045214. [Google Scholar] [CrossRef] [Green Version]
- Janani, M.; Srikrishnarka, P.; Nair, S.V.; Nair, A.S. An in-depth review on the role of carbon nanostructures in dye-sensitized solar cells. J. Mater. Chem. A 2015, 3, 17914–17938. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Song, Y.; Zhang, X.; Ma, Y.; Liang, J.; Chen, Y. Room-Temperature Ferromagnetism of Graphene. Nano Lett. 2009, 9, 220–224. [Google Scholar] [CrossRef]
- Guevenilir, E.; Kincal, C.; Kamber, U.; Guerlue, O.; Yildiz, D.; Grygiel, C.; Van der Beek, C.J. Investigation of ferromagnetism on graphite due to swift heavy ion irradiation. Verh. Dtsch. Phys. Ges. 2017, 50, 50004365. [Google Scholar]
- Céspedes, O.; Ferreira, M.S.; Sanvito, S.; Kociak, M.; Coey, J.M.D. Contact induced magnetism in carbon nanotubes. J. Phys. Condens. Matter 2004, 16, L155–L161. [Google Scholar] [CrossRef]
- Friedman, A.L.; Chun, H.; Jung, Y.J.; Heiman, D.; Glaser, E.R.; Menon, L. Possible room-temperature ferromagnetism in hydrogenated carbon nanotubes. Phys. Rev. B 2010, 81, 115461. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Zhao, H.; Xiong, L.; Zhang, F.; Fu, Q.; Ma, Z.; Xu, C.; Lin, Z.; Wang, H.; Hu, Z.; et al. Enhanced ferromagnetic properties of N2 plasma-treated carbon nanotubes. J. Mater. Sci. 2019, 54, 2307–2314. [Google Scholar] [CrossRef]
- Kim, D.W.; Lee, K.W.; Lee, C.E. Defect-induced room-temperature ferromagnetism in single-walled carbon nanotubes. J. Magn. Magn. Mater. 2018, 460, 397–400. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Höhne, R.; Esquinazi, P. Can Carbon Be Ferromagnetic? Adv. Mater. 2002, 14, 753. [Google Scholar] [CrossRef]
- Ata, M.; Machida, M.; Watanabe, H.; Seto, J. Polymer-C60 Composite with Ferromagnetism. Jpn. J. Appl. Phys. 1994, 33, 1865–1871. [Google Scholar] [CrossRef]
- Makarova, T. Magnetism in Polymerized Fullerenes. In Frontiers of Multifunctional Integrated Nanosystems; Buzaneva, E., Scharff, P., Eds.; NATO Science Series II: Mathematics, Physics and Chemistry; Springer: Dordrecht, The Netherlands, 2004; Volume 152, pp. 331–342. [Google Scholar] [CrossRef]
- Makarova, T.L.; Sundqvist, B. Pressure-induced ferromagnetism of fullerenes. High Press. Res. 2003, 23, 135–141. [Google Scholar] [CrossRef]
- Wood, R.A.; Lewis, M.H.; Lees, M.R.; Bennington, S.M.; Cain, M.G.; Kitamura, N. Ferromagnetic fullerene. J. Phys. Condens. Matter 2002, 14, L385–L391. [Google Scholar] [CrossRef]
- Ghosh, S.; Tongay, S.; Hebard, A.F.; Sahin, H.; Peeters, F.M. Ferromagnetism in stacked bilayers of Pd/C60. J. Magn. Magn. Mater. 2014, 349, 128–134. [Google Scholar] [CrossRef]
- Yazyev, O.V.; Helm, L. Defect-induced magnetism in graphene. Phys. Rev. B 2007, 75, 125408. [Google Scholar] [CrossRef] [Green Version]
- Nuckolls, K.P.; Oh, M.; Wong, D.; Lian, B.; Watanabe, K.; Taniguchi, T.; Bernevig, B.A.; Yazdani, A. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 2020, 588, 610–615. [Google Scholar] [CrossRef]
- Wang, W.L.; Meng, S.; Kaxiras, E. Graphene NanoFlakes with Large Spin. Nano Lett. 2007, 8, 241–245. [Google Scholar] [CrossRef]
- Sahu, V.; Maurya, V.K.; Singh, G.; Patnaik, S.; Sharma, R.K. Enhanced ferromagnetism in edge enriched holey/lacey reduced graphene oxide nanoribbons. Mater. Des. 2017, 132, 295–301. [Google Scholar] [CrossRef]
- Mombrú, A.W.; Pardo, H.; Faccio, R.; de Lima, O.F.; Leite, E.R.; Zanelatto, G.; Lanfredi, A.J.C.; Cardoso, C.A.; Araújo-Moreira, F.M. Multilevel ferromagnetic behavior of room-temperature bulk magnetic graphite. Phys. Rev. B 2005, 71, 100404. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Xia, H.; Zhou, X.; Yang, X.; Song, Y.; Wang, T. Raman study of correlation between defects and ferromagnetism in graphite. J. Phys. D Appl. Phys. 2011, 44, 085001. [Google Scholar] [CrossRef]
- Yang, X.; Xia, H.; Qin, X.; Li, W.; Dai, Y.; Liu, X.; Zhao, M.; Xia, Y.; Yan, S.; Wang, B. Correlation between the vacancy defects and ferromagnetism in graphite. Carbon 2009, 47, 1399–1406. [Google Scholar] [CrossRef]
- Mohammadi, R.; Lech, A.T.; Xie, M.; Weaver, B.E.; Yeung, M.T.; Tolbert, S.H.; Kaner, R.B. Tungsten tetraboride, an inexpensive superhard material. Proc. Natl. Acad. Sci. USA 2011, 108, 10958–10962. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Ostrikov, K.; Sanvito, S.; Du, A. Prediction of room-temperature ferromagnetism and large perpendicular magnetic anisotropy in a planar hypercoordinate FeB3 monolayer. Nanoscale Horiz. 2021, 6, 43–48. [Google Scholar] [CrossRef]
- Singh, V.; Ram, S.; Srinivas, V. Ferromagnetic nickel filled in borate shell by controlled oxidation–crystallization of boride in air. J. Alloys Compd. 2014, 610, 100–106. [Google Scholar] [CrossRef]
- Zieschang, A.-M.; Bocarsly, J.D.; Schuch, J.; Reichel, C.V.; Kaiser, B.; Jaegermann, W.; Seshadri, R.; Albert, B. Magnetic and Electrocatalytic Properties of Nanoscale Cobalt Boride, Co3B. Inorg. Chem. 2019, 58, 16609–16617. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Xiang, H.J.; Wei, S.-H.; Li, S.-S.; Xia, J.-B.; Li, J. Origin and Enhancement of Hole-Induced Ferromagnetism in First-Row d0 Semiconductors. Phys. Rev. Lett. 2009, 102, 017201. [Google Scholar] [CrossRef]
- Kaminski, A.; Das Sarma, S. Polaron Percolation in Diluted Magnetic Semiconductors. Phys. Rev. Lett. 2002, 88, 247202. [Google Scholar] [CrossRef] [Green Version]
- Schwerdt, J.I.; Goya, G.F.; Calatayud, M.P.; Herenu, C.B.; Reggiani, P.C.; Goya, R.G. Magnetic field-assisted gene delivery: Achievements and therapeutic potential. Curr. Gene Ther. 2012, 12, 116–126. [Google Scholar] [CrossRef]
- Nedelkoski, Z.; Kepaptsoglou, D.; Lari, L.; Wen, T.; Booth, R.A.; Oberdick, S.D.; Galindo, P.L.; Ramasse, Q.M.; Evans, R.F.L.; Majetich, S.; et al. Origin of reduced magnetization and domain formation in small magnetite nanoparticles. Sci. Rep. 2017, 7, 45997. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Zhang, L.; Hu, L.; Yu, H.; Min, G.; Yu, H. Structure and magnetic properties of nanocrystalline CaB6 films deposited by magnetron sputtering. J. Alloys Compd. 2014, 599, 175–178. [Google Scholar] [CrossRef]
- Cen, C.; Ma, Y.; Wang, Q.; Eom, C.-B. Surface magnetism and proximity effects in hexaboride thin films. Appl. Phys. Lett. 2017, 110, 102404. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.-Q.; Han, R.-S.; Liu, L.-H.; Sun, H.-Y. Preparation and magnetic properties of DC-sputtered porous HfO2 films. Ceram. Int. 2016, 42, 18925–18930. [Google Scholar] [CrossRef]
- Zhan, P.; Wang, W.; Liu, C.; Hu, Y.; Li, Z.; Zhang, Z.; Zhang, P.; Wang, B.; Cao, X. Oxygen vacancy–induced ferromagnetism in un-doped ZnO thin films. J. Appl. Phys. 2012, 111, 033501. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, W.; Huang, Y.; Wu, P. Unexpected ferromagnetism in n-type polycrystalline K-doped ZnO films prepared by RF-magnetron sputtering. J. Mater. Sci. Mater. Electron. 2015, 26, 8451–8455. [Google Scholar] [CrossRef]
- Phan, T.-L.; Zhang, Y.D.; Yang, D.S.; Nghia, N.X.; Thanh, T.D.; Yu, S.C. Defect-induced ferromagnetism in ZnO nanoparticles prepared by mechanical milling. Appl. Phys. Lett. 2013, 102, 072408. [Google Scholar] [CrossRef]
- Das, J.; Pradhan, S.K.; Mishra, D.K.; Sahu, D.R.; Sarangi, S.; Varma, S.; Nayak, B.B.; Huang, J.-L.; Roul, B.K. Unusual ferromagnetism in high purity ZnO sintered ceramics. Mater. Res. Bull. 2011, 46, 42–47. [Google Scholar] [CrossRef]
- Rumaiz, A.K.; Ali, B.; Ceylan, A.; Boggs, M.; Beebe, T.; Ismat Shah, S. Experimental studies on vacancy induced ferromagnetism in undoped TiO2. Solid State Commun. 2007, 144, 334–338. [Google Scholar] [CrossRef] [Green Version]
- Singhal, R.K.; Kumar, S.; Kumari, P.; Xing, Y.T.; Saitovitch, E. Evidence of defect-induced ferromagnetism and its “switch” action in pristine bulk TiO2. Appl. Phys. Lett. 2011, 98, 092510. [Google Scholar] [CrossRef]
- Sangaletti, L.; Mozzati, M.C.; Galinetto, P.; Azzoni, C.B.; Speghini, A.; Bettinelli, M.; Calestani, G. Ferromagnetism on a paramagnetic host background: The case of rutile TM:TiO2 single crystals (TM = Cr, Mn, Fe, Co, Ni, Cu). J. Phys. Condens. Matter 2006, 18, 7643–7650. [Google Scholar] [CrossRef] [PubMed]
- Geng, K.; Xie, Y.; Xu, L.; Yan, B. Structure and magnetic properties of ZrO2-coated Fe powders and Fe/ZrO2 soft magnetic composites. Adv. Powder Technol. 2017, 28, 2015–2022. [Google Scholar] [CrossRef]
- Shi, S.; Gao, D.; Xu, Q.; Yang, Z.; Xue, D. Singly-charged oxygen vacancy-induced ferromagnetism in mechanically milled SnO2 powders. RSC Adv. 2014, 4, 45467–45472. [Google Scholar] [CrossRef]
- Mehraj, S.; Ansari, M.S.; Al-Ghamdi, A.A. Alimuddin Annealing dependent oxygen vacancies in SnO2 nanoparticles: Structural, electrical and their ferromagnetic behavior. Mater. Chem. Phys. 2016, 171, 109–118. [Google Scholar] [CrossRef]
- Singh, V.; Srinivas, V. Evolution of Ni:B2O3 core-shell structure and magnetic properties on devitrification of amorphous NiB particles in air. J. Appl. Phys. 2009, 106, 053910. [Google Scholar] [CrossRef]
- Yiping, L.; Hadjipanayis, G.C.; Sorensen, C.M.; Klabunde, K.J. Magnetic and structural properties of ultrafine Co-B particles. J. Magn. Magn. Mater. 1989, 79, 321–326. [Google Scholar] [CrossRef]
- Song, C.; Pan, F. Transition Metal-Doped Magnetic Oxides. Semicond. Semimet. 2013, 88, 227–259. [Google Scholar] [CrossRef]
- Wolf, S.A.; Awschalom, D.D.; Buhrman, R.A.; Daughton, J.M.; von Molnár, S.; Roukes, M.L.; Chtchelkanova, A.Y.; Treger, D.M. Spintronics: A Spin-Based Electronics Vision for the Future. Science 2001, 294, 1488–1495. [Google Scholar] [CrossRef] [Green Version]
- Sinova, J.; Žutić, I. New moves of the spintronics tango. Nat. Mater. 2012, 11, 368–371. [Google Scholar] [CrossRef]
- Jang, K.; Jung, H.N.; Lee, J.W.; Xu, S.; Liu, Y.H.; Ma, Y.; Jeong, J.; Song, Y.M.; Kim, J.; Kim, B.H.; et al. Ferromagnetic, Folded Electrode Composite as a Soft Interface to the Skin for Long-Term Electrophysiological Recording. Adv. Funct. Mater. 2016, 26, 7281–7290. [Google Scholar] [CrossRef] [Green Version]
- Stretchable Bioelectronics for Medical Devices and Systems; Rogers, J.A.; Ghaffari, R.; Kim, D.-H. (Eds.) Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef] [Green Version]
- Corá, L.A.; Américo, M.F.; Oliveira, R.B.; Serra, C.H.R.; Baffa, O.; Evangelista, R.C.; Oliveira, G.F.; Miranda, J.R.A. Biomagnetic Methods: Technologies Applied to Pharmaceutical Research. Pharm. Res. 2010, 28, 438–455. [Google Scholar] [CrossRef] [PubMed]
- Mulens, V.; del Puerto Morales, M.; Barber, D.F. Development of Magnetic Nanoparticles for Cancer Gene Therapy: A Comprehensive Review. ISRN Nanomater. 2013, 2013, 646284. [Google Scholar] [CrossRef]
- Laosiritaworn, W.; Chotchaithanakorn, N. Artificial neural networks parameters optimization with design of experiments: An application in ferromagnetic materials modeling. Chiang Mai J. Sci. 2009, 36, 83–91. [Google Scholar]
- Borders, W.A.; Akima, H.; Fukami, S.; Moriya, S.; Kurihara, S.; Horio, Y.; Sato, S.; Ohno, H. Analogue spin–orbit torque device for artificial-neural-network-based associative memory operation. Appl. Phys. Express 2016, 10, 013007. [Google Scholar] [CrossRef]
- Fukami, S.; Ohno, H. Perspective: Spintronic synapse for artificial neural network. J. Appl. Phys. 2018, 124, 151904. [Google Scholar] [CrossRef] [Green Version]
- Mantovan, R.; Gunnlaugsson, H.P.; Johnston, K.; Masenda, H.; Mølholt, T.E.; Naidoo, D.; Ncube, M.; Shayestehaminzadeh, S.; Bharuth-Ram, K.; Fanciulli, M.; et al. Atomic-Scale Magnetic Properties of Truly 3d-Diluted ZnO. Adv. Electron. Mater. 2015, 1, 1400039. [Google Scholar] [CrossRef]
- Qi, B.; Ólafsson, S.; Gíslason, H.P. Vacancy defect-induced d0 ferromagnetism in undoped ZnO nanostructures: Controversial origin and challenges. Prog. Mater. Sci. 2017, 90, 45–74. [Google Scholar] [CrossRef]
- Pereira, L.M.C. Experimentally evaluating the origin of dilute magnetism in nanomaterials. J. Phys. D Appl. Phys. 2017, 50, 393002. [Google Scholar] [CrossRef]
- Walter, J.; Voigt, B.; Day-Roberts, E.; Heltemes, K.; Fernandes, R.M.; Birol, T.; Leighton, C. Voltage-induced ferromagnetism in a diamagnet. Sci. Adv. 2020, 6, eabb7721. [Google Scholar] [CrossRef]
Materials | Saturation Magnetization (emu/g) | Observation | Origin of Ferromagnetism | References |
---|---|---|---|---|
Traditional materials | ||||
Fe | 217.9 | Field-induced change in the magnetic domain | Interactions between electrons in the outermost d orbitals | [88] |
Co | 162.7 | Field-induced change in the magnetic domain | Interactions between electrons in the outermost d orbitals | [88] |
Ni | 57.5 | Field-induced change in the magnetic domain | Interactions between electrons in the outermost d orbitals | [88] |
Magnetite (Fe3O4) | 90.92 | Less strongly magnetized than the parent materials | Magnetic domains of parent materials | [88,89] |
Maghemite (Fe2O3) | 84–88 | Less strongly magnetized than the parent materials | - | [88] |
CoFe2O4 | ~75 | Although the parent materials are ferromagnetic, it shows less ferromagnetism | Magnetism of parent materials | [88] |
Hexaborides of alkaline-earth metals | ||||
CaB6 films | Thickness: 0.5 µm (~4.63) Thickness: 1.6 µm (~0.46) Thickness: 2.3 µm (~0.102) | Saturation magnetization is inversely proportional to thickness | Defects induced by grains boundaries and lattice distortion | [90] |
CaB6 crystals | ~0.0489 | Samples demonstrated ferromagnetism | Surface contamination | [27] |
BaB6 thin films | ~2.454 at 450–550 | No variation due to thickness | Surface contamination | [11] |
SrB6 | 0.06 μB per unit cell | Temperature affected the magnetic properties | Defects of surface layers | [91] |
Nonmagnetic oxides | ||||
HfO2 films | ~13.223 | Annealing and vacuuming influenced ferromagnetism | Porous structure of the film O vacancies | [92] |
ZnO thin films | annealed at 150 0.08 annealed at 600 0.42 (at 300 K) | Thermal annealing under an Ar flow caused a defect | Single occupied O vacancies | [93] |
ZnO nanowires | 0.41 at 300 K | Structural elongation was determined by an applied parallel magnetic field | 2p orbitals of O; when Zn affects the local spin moment of the O orbital | [84] |
ZnO films doped with K | 0%K-doped ZnO films: 0.79 4%K-doped ZnO films: 1.09 6%K-doped ZnO films: 1.3 8%K-doped ZnO films: 1.91 11%K-doped ZnO films: 0.63 (at T = 300 K) | With an increase in the K concentration, the saturation magnetization initially increased and then decreased | Holes and ZnK defect | [94] |
ZnO nanoparticles (NPs) | Raw NPs: Diamagnetic 50 h-milled NPs: 0.031 100 h-milled NPs: 0.047 200 h-milled NPs: 0.086 (at T = 300 K) | Mechanical milling of diamagnetic ZnO powders induced defects. With an increase in the defect concentration, ferromagnetism increased | Intrinsic defects related to O and Zn vacancies | [95] |
-sintered: 0.0183 -sintered: 0.0190 -sintered: 0.00188 (at T = 300 K) | With an increase in temperature, the saturation magnetization initially increased and then again decreased | -Interstitial (Zn/O) ion defects in the samples | [96] | |
ZnO single crystals | 0.63 × 10−4 (untreated sample) 0.16 × 10−3 (treated sample) (T = 300 K) | With an increase in the purity of the sample, the saturation magnetization increased | O vacancies generated by thermal annealing under an Ar flow | [84] |
TiO2 films on Si substrates |
PO2 = 50 mTorr: Diamagnetic PO2 = 0.2 mTorr: Very weakly Diamagnetic + FM (~0.005 PO2 = 0.02 mTorr: ~0.075 (At T = 25 ) | The magnetic moment of the system was inversely proportional to the concentration of O vacancies | O vacancies | [97] |
TiO2 films | Anatase film: ~0.52 Rutile film: ~1.42 | Using vacuum, O vacancies can be filled | - Rutile films demonstrated ferromagnetism owing to O vacancies | [52] |
Anatase TiO2 (12 h H2-annealed to 873 K) | 0.066 | Hydrogenation generated local 3d moments | Complexes of Ti3+ and O defects Hybridization of O vacancies with Ti 3d–O 2p orbitals | [98] |
Transition metal ion (TM = Cr, Mn, Fe, Co, Ni, Cu)-doped rutile TiO2 single crystals | Undoped TiO2: 0.00016 Cr-doped TiO2: 0.00036 Mn-doped TiO2: 0.00055 Fe-doped TiO2: 0.00136 Co-doped TiO2: 0.00021 Ni-doped TiO2: 0.00086 Cu-doped TiO2: 0.00015 | Results suggest a close superposition of paramagnetic and ferromagnetic behaviors | Separation of the metallic phases of Ni, Co, and Fe Unpaired d electrons of transition metal ions | [99] |
CeO2−x films | When x = 0.03: ~1.34 When x = 0.1: ~1.02 (T = 300 K) | Both Ce3+ and Ce4+ are present | O and Ce vacancies | [47] |
MgO films | Untreated sample: ~0.751 Annealed sample: ~0.329 | Reduction in the concentration of Mg vacancies is proportional to the reduction of Mg after annealing | Mg cation vacancies | [51] |
ZrO2 with Fe | 205.56 | Analysis helped to improve the magnetic characteristics of this system | Induced defects and stress | [100] |
High-purity SnO2 powders | 0 h-milled: 0.0006 4 h-milled: 0.0019 12 h-milled: 0.0055 20 h-milled: 0.0105 | Temperature increases inversely with saturation magnetization | Singly charged O vacancies High defect density - | [101] |
SnO2 NPs | Powder in raw form: 0.019 Powder annealed at 773 K: 0.015 Powder annealed at 973 K: 0.012 Powder annealed at 1173 K: 0.010 Powder annealed at 1373 K: 0.006 Powder annealed at 1573 K: 0.001 (T = 300 K) | The saturation magnetizations of NPs reduced when the NPs were annealed at temperatures higher than 500 °C | O vacancies (T = 5 K) | [102] |
Carbon Nanostructures | ||||
Highly oriented graphite samples | Kish graphite: 0.6 × 10−3 ± 0.2 × 10−3 at T = 300 K | Different possibilities for the ferromagnetic-like behaviors in the samples | Magnetic impurities Topological defects Itinerant ferromagnetism | [63] |
C60 |
0.045 | Upon applying a pressure of 9 GPa at 800 K, the ferromagnetic behavior significantly decreased | C radical formation | [73] |
Graphene | Annealing at T = 300 At 300 K: 0.004 At 2 K: 0.25 Annealing at T = −500 At 300 K: 0.020 At 2 K: 0.90 | Graphene prepared at 1073 K did not clearly exhibit ferromagnetism | Defects induced by annealing | [62] |
Graphene nanoribbons | 1.1 | Optimization of density twist and turn edge defects | Defect density | [78] |
Implantation of ions on pyrolytic graphite—12C | 14.4 | Implantation steps are directly proportional to the vacancy density | Vacancy density | [69] |
C Nanotubes | 0.5227 | N2 plasma treatment | Amine- and N pyridine-based bonding configuration | [66] |
Magnetic Borides | ||||
Ni2B with O | 29 | Treatment of Ni with boride prevented the oxidation of Ni | Intrinsic defects - | [103] |
CoB | 75–135 | Change in magnetic properties with an increase in crystallization | Intrinsic defects | [104] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasaili, P.; Sharma, N.K.; Bhattarai, A. Comparison of Ferromagnetic Materials: Past Work, Recent Trends, and Applications. Condens. Matter 2022, 7, 12. https://doi.org/10.3390/condmat7010012
Rasaili P, Sharma NK, Bhattarai A. Comparison of Ferromagnetic Materials: Past Work, Recent Trends, and Applications. Condensed Matter. 2022; 7(1):12. https://doi.org/10.3390/condmat7010012
Chicago/Turabian StyleRasaili, Prithivi, Nitin Kumar Sharma, and Ajaya Bhattarai. 2022. "Comparison of Ferromagnetic Materials: Past Work, Recent Trends, and Applications" Condensed Matter 7, no. 1: 12. https://doi.org/10.3390/condmat7010012
APA StyleRasaili, P., Sharma, N. K., & Bhattarai, A. (2022). Comparison of Ferromagnetic Materials: Past Work, Recent Trends, and Applications. Condensed Matter, 7(1), 12. https://doi.org/10.3390/condmat7010012