Electrochemical Potential of the Metal Organic Framework MIL-101(Fe) as Cathode Material in Li-Ion Batteries
Abstract
:1. Introduction
2. Computational Method
3. Results
3.1. Spin State of the Pristine Phase
3.2. Iron Reduction: Ideal Case
3.3. Iron Reduction upon Lithium Intercalation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
B3LYP | Becke, 3-parameter, Lee–Yang–Parr functional |
DFT | Density functional theory |
GD3 | Grimme’s D3 dispersion |
GGA | Generalized gradient approximation |
LSDA | Local spin density approximation |
MIL | Matériaux de lÍnstitut Lavoisier |
MOF | Metal-organic frameworks |
SBU | Secondary building unit |
ZPE | Zero-point energy |
References
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, G.; Bahamon, D.; Keshavarz, F.; Giménez, X.; Gamallo, P.; Sayós, R. Density functional theory-based adsorption isotherms for pure and flue gas mixtures on Mg-MOF-74. Application in CO2 capture swing adsorption processes. J. Phys. Chem. C 2018, 122, 3945–3957. [Google Scholar] [CrossRef] [Green Version]
- Crivelli, P.; Cooke, D.; Barbiellini, B.; Brown, B.L.; Feldblyum, J.I.; Guo, P.; Gidley, D.W.; Gerchow, L.; Matzger, A.J. Positronium emission spectra from self-assembled metal-organic frameworks. Phys. Rev. B 2014, 89, 241103. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.; Goldman, H.; Zhai, Q.; Feng, P.; Tom, H.; Mills, A., Jr. Monoenergetic positronium emission from metal-organic framework crystals. Phys. Rev. Lett. 2015, 114, 153201. [Google Scholar] [CrossRef] [Green Version]
- Mezenov, Y.A.; Krasilin, A.A.; Dzyuba, V.P.; Nominé, A.; Milichko, V.A. Metal–organic frameworks in modern physics: Highlights and perspectives. Adv. Sci. 2019, 6, 1900506. [Google Scholar] [CrossRef] [Green Version]
- Paolella, A.; Faure, C.; Timoshevskii, V.; Marras, S.; Bertoni, G.; Guerfi, A.; Vijh, A.; Armand, M.; Zaghib, K. A review on hexacyanoferrate-based materials for energy storage and smart windows: Challenges and perspectives. J. Mater. Chem. A 2017, 5, 18919–18932. [Google Scholar] [CrossRef]
- Bai, J.; Gao, D.; Wu, H.; Wang, S.; Cheng, F.; Feng, C. Synthesis of Ni/NiO@ MIL-101 (Cr) Composite as Novel Anode for Lithium-Ion Battery Application. J. Nanosci. Nanotechnol. 2019, 19, 8063–8070. [Google Scholar] [CrossRef]
- Sharma, N.; Szunerits, S.; Boukherroub, R.; Ye, R.; Melinte, S.; Thotiyl, M.O.; Ogale, S. Dual-ligand Fe-metal organic framework based robust high capacity Li ion battery anode and its use in a flexible battery format for electro-thermal heating. ACS Appl. Energy Mater. 2019, 2, 4450–4457. [Google Scholar] [CrossRef]
- Burkhardt, S.E.; Bois, J.; Tarascon, J.M.; Hennig, R.G.; Abruña, H.D. Li-carboxylate anode structure-property relationships from molecular modeling. Chem. Mater. 2013, 25, 132–141. [Google Scholar] [CrossRef]
- Combelles, C.; Doublet, M.L. Structural, magnetic and redox properties of a new cathode material for Li-ion batteries: The iron-based metal organic framework. Ionics 2008, 14, 279–283. [Google Scholar] [CrossRef]
- Shin, J.; Kim, M.; Cirera, J.; Chen, S.; Halder, G.J.; Yersak, T.A.; Paesani, F.; Cohen, S.M.; Meng, Y.S. MIL-101 (Fe) as a lithium-ion battery electrode material: A relaxation and intercalation mechanism during lithium insertion. J. Mater. Chem. A 2015, 3, 4738–4744. [Google Scholar] [CrossRef]
- Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188. [Google Scholar] [CrossRef]
- Hafiz, H.; Suzuki, K.; Barbiellini, B.; Orikasa, Y.; Callewaert, V.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Yamada, R.; Uchimoto, Y.; et al. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution X-ray Compton scattering. Sci. Adv. 2017, 3, e1700971. [Google Scholar] [CrossRef] [Green Version]
- Kuriplach, J.; Pulkkinen, A.; Barbiellini, B. First-principles study of the impact of grain boundary formation in the cathode material LiFePO4. Condens. Matter 2019, 4, 80. [Google Scholar] [CrossRef] [Green Version]
- Kmječ, T.; Kohout, J.; Dopita, M.; Veverka, M.; Kuriplach, J. Mössbauer Spectroscopy of Triphylite (LiFePO4) at Low Temperatures. Condens. Matter 2019, 4, 86. [Google Scholar] [CrossRef] [Green Version]
- Yamada, T.; Shiraishi, K.; Kitagawa, H.; Kimizuka, N. Applicability of MIL-101 (Fe) as a cathode of lithium ion batteries. Chem. Commun. 2017, 53, 8215–8218. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, H.; Yue, L.; Liang, J.; Li, T.; Liu, Q.; Luo, Y.; Kong, X.; Lu, S.; Shi, X.; et al. Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochem. Commun. 2021, 122, 106881. [Google Scholar] [CrossRef]
- Xie, L.S.; Skorupskii, G.; Dincă, M. Electrically Conductive Metal–Organic Frameworks. Chem. Rev. 2020, 120, 8536–8580. [Google Scholar] [CrossRef] [Green Version]
- Overgaard, J.; Larsen, F.K.; Schiøtt, B.; Iversen, B.B. Electron density distributions of redox active mixed valence carboxylate bridged trinuclear iron complexes. J. Am. Chem. Soc. 2003, 125, 11088–11099. [Google Scholar] [CrossRef]
- Dutta, A.K.; Maji, S.K.; Dutta, S. A symmetric oxo-centered trinuclear chloroacetato bridged iron (III) complex: Structural, spectroscopic and electrochemical studies. J. Mol. Struct. 2012, 1027, 87–91. [Google Scholar] [CrossRef]
- Boudalis, A.K.; Sanakis, Y.; Dahan, F.; Hendrich, M.; Tuchagues, J.P. An octanuclear complex containing the {Fe3O}7+ metal core: Structural, magnetic, Mössbauer, and electron paramagnetic resonance studies. Inorg. Chem. 2006, 45, 443–453. [Google Scholar] [CrossRef]
- De Oliveira, A.; Mavrandonakis, A.; de Lima, G.F.; De Abreu, H.A. Cyanosilylation of Aldehydes Catalyzed by MIL-101 (Cr): A Theoretical Investigation. ChemistrySelect 2017, 2, 7813–7820. [Google Scholar] [CrossRef]
- Mavrandonakis, A.; Vogiatzis, K.D.; Boese, A.D.; Fink, K.; Heine, T.; Klopper, W. Ab Initio Study of the Adsorption of Small Molecules on Metal–Organic Frameworks with Oxo-centered Trimetallic Building Units: The Role of the Undercoordinated Metal Ion. Inorg. Chem. 2015, 54, 8251–8263. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.D.; Sun, Y.W.; Ding, Y.H. A quantum-chemical insight on chemical fixation carbon dioxide with epoxides co-catalyzed by MIL-101 and tetrabutylammonium bromide. J. CO2 Util. 2018, 28, 200–206. [Google Scholar] [CrossRef]
- Pourreza, A.; Askari, S.; Rashidi, A.; Seif, A.; Kooti, M. Highly efficient SO3Ag-functionalized MIL-101 (Cr) for adsorptive desulfurization of the gas stream: Experimental and DFT study. Chem. Eng. J. 2019, 363, 73–83. [Google Scholar] [CrossRef]
- Barona, M.; Snurr, R.Q. Exploring the Tunability of Trimetallic MOF Nodes for Partial Oxidation of Methane to Methanol. ACS Appl. Mater. Interfaces 2020, 12, 28217–28231. [Google Scholar] [CrossRef]
- Jia, Q.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellini, B.; Bansil, A.; Holby, E.F.; Zelenay, P.; et al. Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 2015, 9, 12496–12505. [Google Scholar] [CrossRef]
- Allerdt, A.; Hafiz, H.; Barbiellini, B.; Bansil, A.; Feiguin, A.E. Many-Body Effects in FeN4 Center Embedded in Graphene. Appl. Sci. 2020, 10, 2542. [Google Scholar] [CrossRef] [Green Version]
- Tylus, U.; Jia, Q.; Hafiz, H.; Allen, R.; Barbiellini, B.; Bansil, A.; Mukerjee, S. Engendering anion immunity in oxygen consuming cathodes based on Fe-Nx electrocatalysts: Spectroscopic and electrochemical advanced characterizations. Appl. Catal. Environ. 2016, 198, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, J.L.; Mroz, A.M.; Le, K.N.; Hendon, C.H. Electronic Structure Modeling of Metal–Organic Frameworks. Chem. Rev. 2020, 120, 8641–8715. [Google Scholar] [CrossRef]
- Mann, G.W.; Lee, K.; Cococcioni, M.; Smit, B.; Neaton, J.B. First-principles Hubbard U approach for small molecule binding in metal-organic frameworks. J. Chem. Phys. 2016, 144, 174104. [Google Scholar] [CrossRef] [PubMed]
- Rosen, A.S.; Notestein, J.M.; Snurr, R.Q. Comparing GGA, GGA+ U, and meta-GGA functionals for redox-dependent binding at open metal sites in metal–organic frameworks. J. Chem. Phys. 2020, 152, 224101. [Google Scholar] [CrossRef] [PubMed]
- Trepte, K.; Schwalbe, S.; Seifert, G. Electronic and magnetic properties of DUT-8 (Ni). Phys. Chem. Chem. Phys. 2015, 17, 17122–17129. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Repisky, M.; Komorovsky, S.; Kadek, M.; Konecny, L.; Ekström, U.; Malkin, E.; Kaupp, M.; Ruud, K.; Malkina, O.L.; Malkin, V.G. ReSpect: Relativistic spectroscopy DFT program package. J. Chem. Phys. 2020, 152, 184101. [Google Scholar] [CrossRef]
- Becke, A. Density-functional thermochemistry. III. The role of exact exchange. Chem. Phys. 1993, 98, 5648. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Accounts 2008, 120, 215–241. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, K.; Perdew, J.P.; Wang, Y. Derivation of a generalized gradient approximation: The PW91 density functional. In Electronic Density Functional Theory; Springer: Berlin, Germany, 1998; pp. 81–111. [Google Scholar]
- Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [Green Version]
- Vogiatzis, K.D.; Klopper, W.; Mavrandonakis, A.; Fink, K. Magnetic properties of paddlewheels and trinuclear clusters with exposed metal sites. ChemPhysChem 2011, 12, 3307. [Google Scholar] [CrossRef]
- Yu, K.; Kiesling, K.; Schmidt, J. Trace flue gas contaminants poison coordinatively unsaturated metal–organic frameworks: Implications for CO2 adsorption and separation. J. Phys. Chem. C 2012, 116, 20480–20488. [Google Scholar] [CrossRef]
- Hou, X.J.; Li, H.; He, P. Theoretical investigation for adsorption of CO2 and CO on MIL-101 compounds with unsaturated metal sites. Comput. Theor. Chem. 2015, 1055, 8–14. [Google Scholar] [CrossRef]
- Bigdeli, A.; Khorasheh, F.; Tourani, S.; Khoshgard, A.; Bidaroni, H.H. Removal of terephthalic acid from aqueous solution using metal-organic frameworks; A molecular simulation study. J. Solid State Chem. 2020, 282, 121059. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Voss, J.M.; Marsh, B.M.; Zhou, J.; Garand, E. Interaction between ionic liquid cation and water: Infrared predissociation study of [bmim]+·(H2O) n clusters. Phys. Chem. Chem. Phys. 2016, 18, 18905–18913. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myrseth, V.; Bozek, J.; Kukk, E.; Sæthre, L.; Thomas, T. Adiabatic and vertical carbon 1s ionization energies in representative small molecules. J. Electron Spectrosc. Relat. Phenom. 2002, 122, 57–63. [Google Scholar] [CrossRef]
- Young, D.C. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Agusta, M.K.; Saputro, A.G.; Tanuwijaya, V.V.; Hidayat, N.N.; Dipojono, H.K. Hydrogen adsorption on Fe-based metal organic frameworks: DFT study. Procedia Eng. 2017, 170, 136–140. [Google Scholar] [CrossRef]
- Zhou, F.; Cococcioni, M.; Marianetti, C.A.; Morgan, D.; Ceder, G. First-principles prediction of redox potentials in transition-metal compounds with LDA+ U. Phys. Rev. B 2004, 70, 235121. [Google Scholar] [CrossRef] [Green Version]
- Callaway, J.; Zou, X.; Bagayoko, D. Total energy of metallic lithium. Phys. Rev. B 1983, 27, 631. [Google Scholar] [CrossRef]
- Férey, G.; Millange, F.; Morcrette, M.; Serre, C.; Doublet, M.L.; Grenèche, J.M.; Tarascon, J.M. Mixed-valence Li/Fe-based metal–organic frameworks with both reversible redox and sorption properties. Angew. Chem. Int. Ed. 2007, 46, 3259–3263. [Google Scholar] [CrossRef] [PubMed]
- Combelles, C.; Yahia, M.B.; Pedesseau, L.; Doublet, M.L. Design of Electrode Materials for Lithium-Ion Batteries: The Example of Metal- Organic Frameworks. J. Phys. Chem. C 2010, 114, 9518–9527. [Google Scholar] [CrossRef]
- Barbiellini, B.; Platzman, P. The healing mechanism for excited molecules near metallic surfaces. New J. Phys. 2006, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Kaupp, M.; von Schnering, H.G. Formal Oxidation State versus Partial Charge—A Comment. Angew. Chem. Int. Ed. Engl. 1995, 34, 986. [Google Scholar] [CrossRef]
- Fukui, K. Role of frontier orbitals in chemical reactions. Science 1982, 218, 747–754. [Google Scholar] [CrossRef] [Green Version]
Spin State | E (Hartree) | G (Hartree) | Issues | <S> | <SA> |
---|---|---|---|---|---|
2 | −5001.915339 (N/A) | −5001.963031 | GSB, SC, IF (i86.00), (ECF) | 2.44 | 3.77 |
4 | N/A (−5000.866234) | N/A | GOCF | N/A | N/A |
6 | N/A (−5000.826470) | N/A | GOCF | N/A | N/A |
8 | −5001.918126 (N/A) | −5001.968546 | GSB, (ECF) | 15.91 | 15.76 |
10 | −5001.930723 (N/A) | −5001.982318 | (ECF) | 24.89 | 24.75 |
12 | −5001.901809 (−5000.924017) | −5001.955201 | GSB | 36.06 | 35.76 |
14 | −5001.970826 (−5001.003524) | −5002.025318 | GSB | 48.82 | 48.75 |
16 | −5001.986669 (−5001.024176) | −5002.042885 | - | 63.77 | 63.75 |
Vertical Transitions (16tet Geometry) | |||
Functional | Relativity | Basis Set | (eV) |
B3LYP | nonrelat. | ucc-pVDZ | 0.562 |
B3LYP | nonrelat. | ucc-pVTZ | 0.567 |
B3LYP | scalar | ucc-pVDZ | 0.578 |
B3LYP | scalar + SOC | ucc-pVDZ | 0.585 |
PBE | nonrelat. | ucc-pVDZ | 0.001 |
Non-Vertical Transitions | |||
Functional | Relativity | Basis Set | (eV) |
B3LYP | nonrelat. | ucc-pVDZ | 0.411 |
B3LYP | nonrelat. | def2-TZVP (Gaussian) | 0.431 |
Charge | Spin State | Energy (Hartree) |
---|---|---|
+1 | 16 | −5001.0242 |
+1 | 14 | −5001.0035 |
0 | 15 | −5001.2772 |
0 | 13 | −5001.2446 |
−1 | 14 | −5001.3631 |
−1 | 12 | −5001.3409 |
−2 | 13 | −5001.2788 |
−2 | 9 | −5001.2332 |
Additional Electrons | Charge (e) | (eV) | V (V) |
---|---|---|---|
+1 e | +0 | −6.89 | 5.24 |
+2 e | −1 | −9.22 | 2.96 |
+3 e | −2 | −6.93 | 0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keshavarz, F.; Kadek, M.; Barbiellini, B.; Bansil, A. Electrochemical Potential of the Metal Organic Framework MIL-101(Fe) as Cathode Material in Li-Ion Batteries. Condens. Matter 2021, 6, 22. https://doi.org/10.3390/condmat6020022
Keshavarz F, Kadek M, Barbiellini B, Bansil A. Electrochemical Potential of the Metal Organic Framework MIL-101(Fe) as Cathode Material in Li-Ion Batteries. Condensed Matter. 2021; 6(2):22. https://doi.org/10.3390/condmat6020022
Chicago/Turabian StyleKeshavarz, Fatemeh, Marius Kadek, Bernardo Barbiellini, and Arun Bansil. 2021. "Electrochemical Potential of the Metal Organic Framework MIL-101(Fe) as Cathode Material in Li-Ion Batteries" Condensed Matter 6, no. 2: 22. https://doi.org/10.3390/condmat6020022
APA StyleKeshavarz, F., Kadek, M., Barbiellini, B., & Bansil, A. (2021). Electrochemical Potential of the Metal Organic Framework MIL-101(Fe) as Cathode Material in Li-Ion Batteries. Condensed Matter, 6(2), 22. https://doi.org/10.3390/condmat6020022