Fabry-Perot Cavity Leaky Wave Antennas with Tunable Features for Terahertz Applications
Abstract
:1. Introduction
2. Leaky-Wave Antennas
2.1. Fabry-Perot Cavity Leaky-Wave Antennas
2.2. Antenna Parameters and Main Rules for FPC-LWA Design
2.3. Techniques for the Analysis of FPC-LWA Features
2.4. Fabry-Perot Cavity Leaky Wave Antennas at THz Frequencies
3. Fabry-Perot Cavity Leaky Wave Antennas Based on Tunable Metamaterials
3.1. Liquid Crystals for THz Antenna Design
3.2. Design of the Fabry-Perot Cavity Leaky-Wave Antenna with Liquid Crystals
4. Liquid Crystal Cell as a Grounded Dielectric Slab
4.1. The Grounded Anisotropic Dielectric Slab Model
4.2. Modal Spectra of Grounded Isotropic and Anisotropic Dielectric Slab
5. Graphene Fabry–Perot Cavity Leaky Wave Antennas for THz Beam Steering
5.1. Graphene Planar Waveguide
5.2. Graphene Substrate Superstrate
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dhillon, S.S.; Vitiello, M.S.; Linfield, E.H.; Davies, A.G.; Hoffmann, M.C.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G.P.; et al. The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 2017, 50, 043001. [Google Scholar] [CrossRef]
- Tu, W.; Zhong, S.; Shen, Y.; Incecik, A. Nondestructive testing of marine protective coatings using terahertz waves with stationary wavelet transform. Ocean Eng. 2016, 111, 582–592. [Google Scholar] [CrossRef] [Green Version]
- Heinz, E.; May, T.; Born, D.; Zieger, G.; Anders, S.; Zakosarenko, V.; Meyer, H.-G.; Schäffel, C. Passive 350 GHz video imaging systems for security applications. J. Infrared Millim. Terahertz Waves 2015, 36, 879–895. [Google Scholar] [CrossRef]
- Leahy-Hoppa, M.R.; Fitch, M.J.; Zheng, X.; Hayden, L.M.; Osiander, R. Wideband terahertz spectroscopy of explosives. Chem. Phys. Lett. 2007, 434, 227–230. [Google Scholar] [CrossRef]
- Haglund, R.F.; Neev, J.; Wood, R.F. Commercial and biomedical applications of ultrashort pulse lasers; laser plasma generation and diagnostics. In Proceedings of the SPIE, San Jose, CA, USA, 29 May 2001. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Murdock, J.N.; Gutierrez, F. State of the Art in 60-GHz Integrated Circuits and Systems for Wireless Communications. Proc. IEEE 2011, 99, 1390–1436. [Google Scholar] [CrossRef]
- Miles, R.; Zhang, X.-C.; Eisele, H.; Krotkus, A. Terahertz Frequency Detection and Identification of Materials and Objects; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; ISBN 978-1-4020-6503-3. [Google Scholar]
- Akyildiz, I.F.; Jornet, J.M.; Han, C. Terahertz band: Next frontier for wireless communications. Phys. Com. 2014, 12, 16–32. [Google Scholar] [CrossRef]
- Monticone, F.; Alù, A. Leaky-wave theory, techniques, and applications: From microwaves to visible frequencies. Proc. IEEE 2015, 103, 793–821. [Google Scholar] [CrossRef]
- Tamir, T.; Oliner, A.A. Guided complex waves. Part 1: Fields at an interface. Proc. Inst. Electr. Eng. 1963, 110, 310–324. [Google Scholar] [CrossRef]
- Tamir, T.; Oliner, A.A. Guided complex waves. Part 2: Relation to radiation patterns. Proc. Inst. Electr. Eng. 1963, 110, 325–334. [Google Scholar] [CrossRef]
- Croswell, W.; Zucker, F.J. Surface-wave antennas. In Antenna Engineering Handbook; Volakis, J.L., Ed.; McGraw-Hill: New York, NY, USA, 2007; Chapter 10. [Google Scholar]
- Jackson, D.R.; Oliner, A.A. Leaky-wave antennas. In Modern Antenna Handbook; Balanis, C.A., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 325–367. ISBN 978-0-470-29415-4. [Google Scholar]
- Galli, A.; Baccarelli, P.; Burghignoli, P. Leaky-Wave Antennas. In Wiley Encyclopedia of Electrical and Electronics Engineering; Webster, J.G., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; ISBN 978-0-471-34608-1. [Google Scholar]
- Fuscaldo, W.; Tofani, S.; Burghignoli, P.; Baccarelli, P.; Galli, A. Terahertz leaky-wave antennas based on metasurfaces and tunable materials. In Metamaterials and Metasurfaces; Canet-Ferrer, J., Ed.; IntechOpen: London, UK, 2018; pp. 93–116. [Google Scholar]
- von Trentini, G. Partially reflecting sheet arrays. IEEE Trans. Antennas Propag. 1956, 4, 666–671. [Google Scholar] [CrossRef]
- Ip, A.; Jackson, D.R. Radiation from cylindrical leaky waves. IEEE Trans. Antennas Propag. 1990, 38, 482–488. [Google Scholar] [CrossRef]
- Zhao, T.; Jackson, D.R.; Williams, J.T.; Oliner, A.A. General formulas for 2Dleaky-wave antennas. IEEE Trans. Antennas Propag. 2005, 53, 3525–3533. [Google Scholar] [CrossRef]
- Feresidis, A.P.; Vardaxoglou, J.C. High gain planar antenna using optimised partially reflective surfaces. IEE Proc. Microwaves Antennas Propag. 2001, 148, 345–350. [Google Scholar] [CrossRef]
- Lovat, G.; Burghignoli, P.; Jackson, D.R. Fundamental properties and optimization of broadside radiation from uniform leaky-wave antennas. IEEE Trans. Antennas Propag. 2006, 54, 1442–1452. [Google Scholar] [CrossRef]
- Luukkonen, O.; Simovski, C.; Granet, G.; Goussetis, G.; Lioubtchenko, D.; Raisanen, A.V.; Tretyakov, S.A. Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE Trans. Antennas Propag. 2008, 56, 1624–1632. [Google Scholar] [CrossRef] [Green Version]
- Itoh, T. Numerical Techniques for Microwave and Millimeter-Wave Passive Structures; Wiley-Interscience: Hoboken, NJ, USA, 1989. [Google Scholar]
- Sorrentino, R. Numerical Methods for Passive Microwave and Millimeter Wave Structures; IEEE Press: New York, NY, USA, 1989. [Google Scholar]
- Felsen, L.B.; Marcuvitz, N. Radiation and Scattering of Waves; John Wiley & Sons: Hoboken, NJ, USA, 1994; ISBN 978-0-7803-1088-9. [Google Scholar]
- Goldstone, L.; Oliner, A. Leaky-wave antennas I: Rectangular waveguides. IRE Trans. Antennas Propag. 1959, 7, 307–319. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering; Wiley India Pvt. Limited: Delhi, India, 2009; ISBN 978-81-265-1049-8. [Google Scholar]
- Alonso-delPino, M.; Reck, T.; Jung-Kubiak, C.; Lee, C.; Chattopadhyay, G. Development of silicon micromachined microlens antennas at 1.9 THz. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 191–198. [Google Scholar] [CrossRef]
- Llombart, N.; Chattopadhyay, G.; Skalare, A.; Mehdi, I. Novel terahertz antenna based on a silicon lens fed by a leaky wave enhanced waveguide. IEEE Trans. Antennas Propag. 2011, 59, 2160–2168. [Google Scholar] [CrossRef]
- Hussain, N.; Park, I. Optimization of a small lens for a leaky-wave slit dipole antenna at the terahertz band. In Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 October 2016; pp. 782–783. [Google Scholar]
- Neto, A.; Llombart, N.; Baselmans, J.J.A.; Baryshev, A.; Yates, S.J.C. Demonstration of the leaky lens antenna at submillimeter wavelengths. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 26–32. [Google Scholar] [CrossRef]
- Bueno, J.; Yurduseven, O.; Yates, S.J.C.; Llombart, N.; Murugesan, V.; Thoen, D.J.; Baryshev, A.M.; Neto, A.; Baselmans, J.J.A. Photon noise limited performance over an octave of bandwidth of kinetic inductance detectors for sub-millimeter astronomy. In Proceedings of the 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016; pp. 1–2. [Google Scholar]
- Llombart, N.; Bueno, J.; Yurduseven, O.; Baselmans, J.; Neto, A. Dual polarized leaky wave antenna coupled KIDs for THz space applications. In Proceedings of the 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Millimeter, Tucson, AZ, USA, 14–19 September 2014; pp. 1–2. [Google Scholar]
- Hussain, N.; Park, I. Design of a wide-gain-bandwidth metasurface antenna at terahertz frequency. AIP Adv. 2017, 7, 055313. [Google Scholar] [CrossRef] [Green Version]
- Hussain, N.; Nguyen, T.K.; Park, I. Performance comparison of a planar substrate-integrated Fabry-Perot cavity antenna with different unit cells at terahertz frequency. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; pp. 1–4. [Google Scholar]
- Nguyen, T.K.; Ta, B.Q.; Park, I. Design of a planar, high-gain, substrate-integrated Fabry–Perot cavity antenna at terahertz frequency. Curr. Appl. Phy. 2015, 15, 1047–1053. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Tofani, S.; Zografopoulos, D.C.; Baccarelli, P.; Burghignoli, P.; Beccherelli, R.; Galli, A. Systematic design of THz leaky-wave antennas based on homogenized metasurfaces. IEEE Trans. Antennas Propag. 2018, 66, 1169–1178. [Google Scholar] [CrossRef]
- Tofani, S.; Fuscaldo, W.; Zografopoulos, D.C.; Burghignoli, P.; Baccarelli, P.; Beccherelli, R.; Galli, A. Design-flow of Fabry-Perot cavity leaky-wave antennas based on homogenized metasurfaces. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–4. [Google Scholar]
- Tofani, S.; Fuscaldo, W.; Zografopoulos, D.C.; Baccarelli, P.; Burghignoli, P.; Beccherelli, R.; Galli, A. Spatial Dispersion Analysis of Homogenized Metafurfaces for Terahertz Leaky-wave Antennas. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018. [Google Scholar]
- Li, J.; He, M.; Wu, C.; Zhang, C. Radiation-pattern-reconfigurable graphene leaky-wave antenna at terahertz band based on dielectric grating structure. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1771–1775. [Google Scholar] [CrossRef]
- Esquius-Morote, M.; Gómez-Diaz, J.S.; Perruisseau-Carrier, J. Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Jafar-Zanjani, S.; Mosallaei, H. Real-time two-dimensional beam steering with gate-tunable materials: A theoretical investigation. Appl. Opt. 2016, 55, 6137–6144. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Tofani, S.; Zografopoulos, D.C.; Baccarelli, P.; Burghignoli, P.; Beccherelli, R.; Galli, A. Tunable Fabry-Perot cavity THz antenna based on leaky-wave propagation in nematic liquid crystals. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2046–2049. [Google Scholar] [CrossRef]
- Murano, K.; Watanabe, I.; Kasamatsu, A.; Suzuki, S.; Asada, M.; Withayachumnankul, W.; Tanaka, T.; Monnai, Y. Demonstration of short-range terahertz radar using high-gain leaky-wave antenna. In Proceedings of the 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016; pp. 1–2. [Google Scholar]
- Murano, K.; Watanabe, I.; Kasamatsu, A.; Suzuki, S.; Asada, M.; Withayachumnankul, W.; Tanaka, T.; Monnai, Y. Low-profile terahertz radar based on broadband leaky-wave beam steering. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 60–69. [Google Scholar] [CrossRef]
- Chamberlain, J.M. Where optics meets electronics: Recent progress in decreasing the terahertz gap. Philos. Trans. R. Soc. A 2004, 362, 199–213. [Google Scholar] [CrossRef]
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Khoo, I.-C. Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena; John Wiley & Sons: Hoboken, NJ, USA, 2007; ISBN 978-0-470-08402-1. [Google Scholar]
- Chandrasekhar, S. Liquid Crystals; Cambridge University Press: Cambridge, UK, 1992; ISBN 978-0-521-42741-8. [Google Scholar]
- Berreman, D.W. Solid surface shape and the alignment of an adjacent nematic liquid crystal. Phys. Rev. Lett. 1972, 28, 1683–1686. [Google Scholar] [CrossRef]
- Yaroshchuk, O.; Reznikov, Y. Photoalignment of liquid crystals: Basics and current trends. J. Mater. Chem. 2011, 22, 286–300. [Google Scholar] [CrossRef]
- Fréedericksz, V.; Zolina, V. Forces causing the orientation of an anisotropic liquid. Trans. Faraday Soc. 1933, 29, 919–930. [Google Scholar] [CrossRef]
- Dąbrowski, R.; Kula, P.; Herman, J. High birefringence liquid crystals. Crystals 2013, 3, 443–482. [Google Scholar] [CrossRef]
- Reuter, M.; Vieweg, N.; Fischer, B.M.; Mikulicz, M.; Koch, M.; Garbat, K.; Dąbrowski, R. Highly birefringent, low-loss liquid crystals for terahertz applications. APL Mater. 2013, 1, 012107. [Google Scholar] [CrossRef]
- Jackson, D.R.; Oliner, A.A.; Ip, A. Leaky-wave propagation and radiation for a narrow-beam multiple-layer dielectric structure. IEEE Trans. Antennas Propag. 1993, 41, 344–348. [Google Scholar] [CrossRef]
- Fuscaldo, W. Advanced Radiating Systems Based on Leaky Waves and Nondiffracting Waves. Ph.D. thesis, 2017. [Google Scholar]
- Tofani, S. Static and reconfigurable devices for near-field and far-field terahertz applications. Ph.D. thesis, Sapienza University of Rome, Rome, Italy, 2018. [Google Scholar]
- Zografopoulos, D.C.; Beccherelli, R.; Kriezis, E.E. Beam-splitter switches based on zenithal bistable liquid-crystal gratings. Phys. Rev. E 2014, 90, 042503. [Google Scholar] [CrossRef] [PubMed]
- CST. Available online: https://www.cst.com/ (accessed on 9 May 2017).
- Tofani, S.; Fuscaldo, W.; Zografopoulos, D.C.; Burghignoli, P.; Baccarelli, P.; Beccherelli, R.; Galli, A. Terahertz modal analysis of a grounded liquid-crystal cell and its application as a tunable cavity antenna. In Proceedings of the 2019 41st Photonics and Electromagnetics Research Symposium (PIERS), Rome, Italy, 17–20 June 2019. [Google Scholar]
- Yakovlev, A.B.; Hanson, G.W. Fundamental modal phenomena on isotropic and anisotropic planar slab dielectric waveguides. IEEE Trans. Antennas Propag. 2003, 51, 888–897. [Google Scholar] [CrossRef]
- Pavone, S.C.; Martini, E.; Caminita, F.; Albani, M.; Maci, S. Surface Wave Dispersion for a Tunable Grounded Liquid Crystal Substrate Without and With Metasurface on Top. IEEE Trans. Antennas Propag. 2017, 65, 3540–3548. [Google Scholar] [CrossRef]
- Wang, X.-C.; Zhao, W.-S.; Hu, J.; Yin, W.-Y. Reconfigurable Terahertz Leaky-Wave Antenna Using Graphene-Based High-Impedance Surface. IEEE Trans. Nanotechnol. 2015, 14, 62–69. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Burghignoli, P.; Baccarelli, P.; Galli, A. Graphene Fabry-Perot cavity leaky-wave antennas: Plasmonic versus nonplasmonic solutions. IEEE Trans. Antennas Propag. 2017, 65, 1651–1660. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Tofani, S.; Burghignoli, P.; Baccarelli, P.; Notargiacomo, A.; Cibella, S.; Pea, M.; Carelli, P.; Mishra, N.; Coletti, C.; et al. Graphene-Based Fabry-Perot Cavity Leaky-Wave Antennas: Towards an Experimental Validation. In Proceedings of the 2018 48th European Microwave Conference (EuMC), Madrid, Spain, 25–27 September 2018; pp. 276–279. [Google Scholar]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Hanson, G.W. Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans. Antennas Propag. 2008, 56, 747–757. [Google Scholar] [CrossRef]
- Lovat, G.; Hanson, G.W.; Araneo, R.; Burghignoli, P. Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of graphene. Phys. Rev. B 2013, 87, 115429. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Burghignoli, P.; Baccarelli, P.; Galli, A. Complex mode spectra of graphene-based planar structures for THz applications. J. Infrared Milli. Terahz Waves 2015, 36, 720–733. [Google Scholar] [CrossRef] [Green Version]
- Fuscaldo, W.; Burghignoli, P.; Baccarelli, P.; Galli, A. A Reconfigurable Substrate-Superstrate Graphene-Based Leaky-Wave THz Antenna. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1545–1548. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Tofani, S.; Burghignoli, P.; Baccarelli, P.; Galli, A. Terahertz Fabry-Perot cavity leaky-wave antennas. In Proceedings of the 2019 41st Photonics and Electromagnetics Research Symposium (PIERS), Rome, Italy, 17–20 June 2019. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tofani, S.; Fuscaldo, W. Fabry-Perot Cavity Leaky Wave Antennas with Tunable Features for Terahertz Applications. Condens. Matter 2020, 5, 11. https://doi.org/10.3390/condmat5010011
Tofani S, Fuscaldo W. Fabry-Perot Cavity Leaky Wave Antennas with Tunable Features for Terahertz Applications. Condensed Matter. 2020; 5(1):11. https://doi.org/10.3390/condmat5010011
Chicago/Turabian StyleTofani, Silvia, and Walter Fuscaldo. 2020. "Fabry-Perot Cavity Leaky Wave Antennas with Tunable Features for Terahertz Applications" Condensed Matter 5, no. 1: 11. https://doi.org/10.3390/condmat5010011
APA StyleTofani, S., & Fuscaldo, W. (2020). Fabry-Perot Cavity Leaky Wave Antennas with Tunable Features for Terahertz Applications. Condensed Matter, 5(1), 11. https://doi.org/10.3390/condmat5010011