Next Article in Journal
Possible Superconductivity in Very Thin Magnesium Films
Previous Article in Journal
Edelstein Effect in Isotropic and Anisotropic Rashba Models
Previous Article in Special Issue
The Multi-Detectors System of the PANDORA Facility: Focus on the Full-Field Pin-Hole CCD System for X-ray Imaging and Spectroscopy
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

High-Precision X-Ray Measurements 2023

by
Fabrizio Napolitano
* and
Alessandro Scordo
Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati (INFN-LNF), 00044 Frascati, Italy
*
Author to whom correspondence should be addressed.
Condens. Matter 2025, 10(1), 16; https://doi.org/10.3390/condmat10010016
Submission received: 16 January 2025 / Accepted: 2 March 2025 / Published: 6 March 2025
(This article belongs to the Special Issue High Precision X-ray Measurements 2023)
High-Precision X-ray Measurements 2023 is a Special Issue of the journal Condensed Matter enclosing the scientific content of the 2023 High-Precision X-ray Measurements (HPXRM) conference. The conference is a biennial event that brings together experts from all over the world to discuss the latest developments in the field of X-ray precision detection, covering a wide range of topics, including X-ray sources, detectors, optics, and applications in various fields such as materials science, biology, and medicine. The conference also provides a forum for researchers to exchange ideas and collaborate on new projects. This Special Issue provides an overview of current state-of-the-art developments in X-ray measurements and highlights the most exciting developments presented.
This Special Issue’s contributions start with a detailed report on the PANDORA facility [1,2], an INFN project designed to study the β -decay lifetimes of isotopes in plasma environments that mimic stellar conditions. The paper focuses on a multi-detector system featuring a full-field pinhole CCD for high-resolution X-ray imaging and spectroscopy, enabling spatially resolved measurements of plasma density and temperature. The system’s capabilities in transient, stable, and turbulent plasma regimes are demonstrated, alongside the development of advanced plasma emission models and fast X-ray shutters for time-resolved analysis [3]. In [4], a combined spectroscopy system utilizing a Gas Electron Multiplier (GEM) and Timepix3 (TPX3) technology (developed by the Medipix collaboration [5]) is introduced for laser plasma experiments. The system’s ability to measure X-rays and gamma rays across a wide energy range is demonstrated, showcasing its suitability for high-precision plasma diagnostics [6].
Innovative approaches in data analysis are explored in [7], where differentiable programming is applied to improve the calibration of spectroscopic experiments (differentiable programming is used with great success in Particle Physics; see, e.g., [8,9,10]). This method enhances energy resolution and reduces uncertainty, demonstrating robustness and efficiency through synthetic data and Kernel Density Estimation. This computational advancement exemplifies how modern programming techniques can optimize experimental accuracy without extensive manual adjustments. Further applications of this method for underground detectors can be found in [11].
A focus on quantum mechanics and foundational physics is evident in several studies. The use of a broad-energy germanium detector (BEGe) prototype for low-energy threshold measurements in an underground LNGS laboratory is detailed in [12]. The setup is optimized to detect signals below 10 keV, enhancing sensitivity to potential new physics phenomena, demonstrating significant improvements in detection thresholds. An overview of the underground fundamental tests of quantum mechanics is provided in [13,14,15,16]. A novel approach to X-ray detection using lithium fluoride (LiF) films (see, e.g., [17,18,19,20] for some applications of this technique) is discussed in [21], presenting the characterization of LiF films through fluorescence and Raman micro-spectroscopy and demonstrating their potential in extreme ultraviolet and X-ray detection. Additionally, the improvement of time resolution in LaBr3:Ce detectors with SiPM array readouts is explored in [22]. The development of hybrid ganging techniques and customized electronics addresses timing challenges, enhancing the detectors’ performance for low-energy X-ray applications in various fields, ranging from medical imaging to gamma-ray astronomy.
In [23,24], the potential of precise X-ray measurements in kaonic atoms is discussed. The SIDDHARTA-2 experiment (see, e.g., [25,26] for an overview of the experimental apparatus and measurements so far) is characterized through measurements of kaonic helium, which is essential for determining kaonic deuterium transitions (previous measurements were performed using E570 [27] and SIDDHARTA [28]). The importance of helium-4 as a calibration target, due to its high X-ray yield, is emphasized, revealing enhancements in the experimental setup that improve resolution and support challenging measurements of kaonic atoms. Advancements in detector technology allow for the determination of sub-threshold kaon-nucleon amplitudes, underscoring the need for future precise measurements to investigate nuclear states and quasi-bound states.
Contributions related to space missions and astrophysics are presented in [29,30], highlighting the role of the Italian Space Agency in supporting X-ray technologies for space exploration. The papers discuss advancements achieved over the past two decades, focusing on key collaborations that have provided insights into the universe’s origins and evolution. An overview of the Cryogenic Anticoincidence Detector (CryoAC) for the NewAthena [31] mission is provided, illustrating how the CryoAC, a key component of the X-IFU instrument, ensures sensitivity by minimizing background noise and enhancing detection capabilities. The mission’s collaboration with other large observatories and facilities is highlighted, emphasizing its role in future astrophysical discoveries.
The importance of X-ray fluorescence (XRF) techniques in cultural heritage is discussed in [32,33], where methods for evaluating quantitative data in copper-based artefacts are compared. The studies explore the performance of handheld XRF devices [34] and describe the design and use of portable XRF devices specifically tailored for analyzing heritage materials. These devices incorporate focusing optics and high-voltage X-ray tubes to enhance elemental analysis capabilities, emphasizing the need for a thorough understanding of X-ray spectrometry principles to achieve optimal results.
The VOXES X-ray emission spectrometer (XES), located at the INFN Frascati, is a mosaic crystal-based Von Hamos spectrometer [35,36] that offers a significant improvement in energy resolution. It is particularly suitable for studying metals as it can provide insight into their electronic structure and chemical environment. The system’s capabilities are demonstrated in [37], where the XES spectra of CuNiZn alloys are analyzed, revealing the potential of VOXES for high-precision X-ray measurements in fields ranging from materials science to the in situ monitoring of edible liquids.
Finally, an implementation of the MuDirac simulation in Geant4 is presented in [38]. This preliminary approach aims to improve the simulation of the muonic atom cascade process, which is crucial for muonic atom X-ray emission spectroscopy ( μ -XES), a novel method developed in past decades in several facilities, e.g., PSI [39], JPARC [40], and ISIS [41]. The study highlights the increasing demand for this technique in material characterization, driven by advancements in hardware and simulation capabilities.
The contributions to this Special Issue collectively provide a comprehensive overview of the latest advancements in X-ray detection and spectroscopy. Readers are invited to explore the individual papers to gain insights into cutting-edge research and innovative technologies that continue to shape the field of X-ray precision measurements.

Author Contributions

Conceptualization, F.N. and A.S.; methodology, F.N. and A.S.; formal analysis, F.N. and A.S.; investigation, F.N. and A.S.; resources, F.N. and A.S.; writing—original draft preparation, F.N. and A.S.; writing—review and editing, F.N. and A.S.; supervision, F.N. and A.S.; project administration, A.S.; funding acquisition, A.S. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Mascali, D.; Santonocito, D.; de Angelis, G.; Kratz, K.L.; Palmerini, S.; Torrisi, G. Nuclear physics and astrophysics in plasma traps. Front. Astron. Space Sci. 2022, 9, 1087543. [Google Scholar] [CrossRef]
  2. Mascali, D.; Santonocito, D.; Amaducci, S.; Andò, L.; Antonuccio, V.; Biri, S.; Bonanno, A.; Bonanno, V.P.; Briefi, S.; Busso, M.; et al. A novel approach to β-decay: Pandora, a new experimental setup for future in-plasma measurements. Universe 2022, 8, 80. [Google Scholar] [CrossRef]
  3. Mascali, D.; Naselli, E.; Biri, S.; Finocchiaro, G.; Galatà, A.; Mauro, G.S.; Mazzaglia, M.; Mishra, B.; Passarello, S.; Pidatella, A.; et al. The Multi-Detectors System of the PANDORA Facility: Focus on the Full-Field Pin-Hole CCD System for X-ray Imaging and Spectroscopy. Condens. Matter 2024, 9, 28. [Google Scholar] [CrossRef]
  4. De Leo, V.; Claps, G.; Cordella, F.; Cristoforetti, G.; Gizzi, L.A.; Koester, P.; Pacella, D.; Tamburrino, A. Combined Spectroscopy System Utilizing Gas Electron Multiplier and Timepix3 Technology for Laser Plasma Experiments. Condens. Matter 2023, 8, 98. [Google Scholar] [CrossRef]
  5. A Family of Pixel Detector Read-Out Chips for Particle Imaging and Detection Developed by the Medipix Collaborations. Available online: https://medipix.web.cern.ch (accessed on 28 January 2025).
  6. Claps, G.; Pacella, D.; Murtas, F.; Jakubowska, K.; Boutoux, G.; Burgy, F.; Ducret, J.; Batani, D. The GEMpix detector as new soft X-rays diagnostic tool for laser produced plasmas. Rev. Sci. Instrum. 2016, 87, 103505. [Google Scholar] [CrossRef]
  7. Napolitano, F. Enhancing Spectroscopic Experiment Calibration through Differentiable Programming. Condens. Matter 2024, 9, 26. [Google Scholar] [CrossRef]
  8. De Castro, P.; Dorigo, T. INFERNO: Inference-aware neural optimisation. Comput. Phys. Commun. 2019, 244, 170–179. [Google Scholar] [CrossRef]
  9. Dorigo, T.; Giammanco, A.; Vischia, P.; Aehle, M.; Bawaj, M.; Boldyrev, A.; de Castro Manzano, P.; Derkach, D.; Donini, J.; Edelen, A.; et al. Toward the end-to-end optimization of particle physics instruments with differentiable programming. Rev. Phys. 2023, 10, 100085. [Google Scholar] [CrossRef]
  10. Simpson, N.; Heinrich, L. neos: End-to-end-optimised summary statistics for high energy physics. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2023; Volume 2438, p. 012105. [Google Scholar]
  11. Napolitano, F.; Bazzi, M.; Bragadireanu, M.; Cargnelli, M.; Clozza, A.; De Paolis, L.; Del Grande, R.; Fiorini, C.; Guaraldo, C.; Iliescu, M.; et al. Novel machine learning and differentiable programming techniques applied to the VIP-2 underground experiment. Meas. Sci. Technol. 2023, 35, 025501. [Google Scholar] [CrossRef]
  12. Piscicchia, K.; Clozza, A.; Sirghi, D.; Bazzi, M.; Bortolotti, N.; Bragadireanu, M.; Cargnelli, M.; De Paolis, L.; Del Grande, R.; Guaraldo, C.; et al. Optimization of a BEGe Detector Setup for Testing Quantum Foundations in the Underground LNGS Laboratory. Condens. Matter 2024, 9, 22. [Google Scholar] [CrossRef]
  13. Napolitano, F.; Addazi, A.; Bassi, A.; Bazzi, M.; Bragadireanu, M.; Cargnelli, M.; Clozza, A.; De Paolis, L.; Del Grande, R.; Derakhshani, M.; et al. Underground tests of quantum mechanics by the VIP collaboration at Gran Sasso. Symmetry 2023, 15, 480. [Google Scholar] [CrossRef]
  14. Buompane, R.; Cavanna, F.; Curceanu, C.; D’Onofrio, A.; Di Leva, A.; Formicola, A.; Gialanella, L.; Gustavino, C.; Imbriani, G.; Junker, M.; et al. Nuclear Physics Mid Term Plan at LNGS. Eur. Phys. J. Plus 2024, 139, 224. [Google Scholar] [CrossRef]
  15. Napolitano, F.; Bartalucci, S.; Bertolucci, S.; Bazzi, M.; Bragadireanu, M.; Capoccia, C.; Cargnelli, M.; Clozza, A.; De Paolis, L.; Del Grande, R.; et al. Testing the Pauli exclusion principle with the VIP-2 experiment. Symmetry 2022, 14, 893. [Google Scholar] [CrossRef]
  16. Piscicchia, K.; Addazi, A.; Marcianò, A.; Bazzi, M.; Cargnelli, M.; Clozza, A.; De Paolis, L.; Del Grande, R.; Guaraldo, C.; Iliescu, M.A.; et al. Strongest atomic physics bounds on noncommutative quantum gravity models. Phys. Rev. Lett. 2022, 129, 131301. [Google Scholar] [CrossRef] [PubMed]
  17. Lakshmanan, A.; Madhusoodanan, U.; Natarajan, A.; Panigrahi, B. Photoluminescence of F-aggregate centers in thermal neutron irradiated LiF TLD-100 single crystals. Phys. Status Solidi (a) 1996, 153, 265–273. [Google Scholar] [CrossRef]
  18. Montereali, R.; Bonfigli, F.; Vincenti, M.; Nichelatti, E. Versatile lithium fluoride thin-film solid-state detectors for nanoscale radiation imaging. Nuovo Cimento C 2013, 36, 35. [Google Scholar]
  19. Kurobori, T.; Matoba, A. Development of accurate two-dimensional dose-imaging detectors using atomic-scale color centers in Ag-activated phosphate glass and LiF thin films. Jpn. J. Appl. Phys. 2014, 53, 02BD14. [Google Scholar] [CrossRef]
  20. Bilski, P.; Marczewska, B.; Gieszczyk, W.; Kłosowski, M.; Nowak, T.; Naruszewicz, M. Lithium fluoride crystals as fluorescent nuclear track detectors. Radiat. Prot. Dosim. 2018, 178, 337–340. [Google Scholar] [CrossRef]
  21. Bonfigli, F.; Botti, S.; Vincenti, M.A.; Montereali, R.M.; Rufoloni, A.; Gaudio, P.; Rossi, R. Fluorescence and Raman Micro-Spectroscopy of LiF Films Containing Radiation-Induced Defects for X-ray Detection. Condens. Matter 2023, 8, 103. [Google Scholar] [CrossRef]
  22. Bonesini, M.; Bertoni, R.; Abba, A.; Caponio, F.; Prata, M.; Rossella, M. Improving the Time Resolution of Large-Area LaBr3:Ce Detectors with SiPM Array Readout. Condens. Matter 2023, 8, 99. [Google Scholar] [CrossRef]
  23. Sgaramella, F.; Clozza, F.; Abbene, L.; Artibani, F.; Bazzi, M.; Borghi, G.; Bragadireanu, M.; Buttacavoli, A.; Cargnelli, M.; Carminati, M.; et al. Characterization of the SIDDHARTA-2 Setup via the Kaonic Helium Measurement. Condens. Matter 2024, 9, 16. [Google Scholar] [CrossRef]
  24. Wycech, S.; Piscicchia, K. On the Importance of Future, Precise, X-Ray Measurements in Kaonic Atoms. Condens. Matter 2024, 9, 4. [Google Scholar] [CrossRef]
  25. Napolitano, F.; Abbene, L.; Artibani, F.; Bazzi, M.; Borghi, G.; Bosnar, D.; Bragadireanu, M.; Buttacavoli, A.; Carminati, M.; Cargnelli, M.; et al. Kaonic atoms with the SIDDHARTA-2 experiment at DAΦNE. Acta Phys. Pol. A 2024, 146, 669–673. [Google Scholar] [CrossRef]
  26. Napolitano, F.; Sgaramella, F.; Bazzi, M.; Bosnar, D.; Bragadireanu, M.; Carminati, M.; Cargnelli, M.; Clozza, A.; Deda, G.; De Paolis, L.; et al. Kaonic atoms at the DAΦNE collider with the SIDDHARTA-2 experiment. Phys. Scr. 2022, 97, 084006. [Google Scholar] [CrossRef]
  27. Okada, S.; Beer, G.; Bhang, H.; Cargnelli, M.; Chiba, J.; Choi, S.; Curceanu, C.; Fukuda, Y.; Hanaki, T.; Hayano, R.; et al. Precision measurement of the 3d→ 2p X-ray energy in kaonic 4He. Phys. Lett. B 2007, 653, 387–391. [Google Scholar] [CrossRef]
  28. Bazzi, M.; Beer, G.; Bombelli, L.; Bragadireanu, A.; Cargnelli, M.; Corradi, G.; Curceanu, C.; d’Uffizi, A.; Fiorini, C.; Frizzi, T.; et al. Kaonic helium-4 X-ray measurement in SIDDHARTA. Phys. Lett. B 2009, 681, 310–314. [Google Scholar] [CrossRef]
  29. Miliucci, M.; Volpe, A.; Fabiani, S.; Feroci, M.; Latronico, L.; Macculi, C.; Piro, L.; D’Andrea, M.; Gatti, F.; Puccetti, S.; et al. X-ray Technologies for Astrophysics Missions Supported by the Italian Space Agency. Condens. Matter 2024, 9, 11. [Google Scholar] [CrossRef]
  30. Macculi, C.; Argan, A.; D’Andrea, M.; Lotti, S.; Minervini, G.; Piro, L.; Ferrari Barusso, L.; Boragno, C.; Celasco, E.; Gallucci, G.; et al. The Cryogenic Anticoincidence Detector for the NewAthena X-IFU Instrument: A Program Overview. Condens. Matter 2023, 8, 108. [Google Scholar] [CrossRef]
  31. Barcons, X.; Barret, D.; Decourchelle, A.; den Herder, J.; Fabian, A.C.; Matsumoto, H.; Lumb, D.; Nandra, K.; Piro, L.; Smith, R.; et al. Athena: ESA’s X-ray observatory for the late 2020s. Astron. Nachrichten 2017, 338, 153–158. [Google Scholar] [CrossRef]
  32. Konstantakopoulou, E.; Casanova Municchia, A.; Luvidi, L.; Ferretti, M. Comparison of Different Methods for Evaluating Quantitative X-ray Fluorescence Data in Copper-Based Artefacts. Condens. Matter 2024, 9, 5. [Google Scholar] [CrossRef]
  33. Chiti, M.; Chiti, D.; Chiarelli, F.; Donghia, R.; Esposito, A.; Ferretti, M.; Gorghinian, A. Design and Use of Portable X-ray Fluorescence Devices for the Analysis of Heritage Materials. Condens. Matter 2024, 9, 1. [Google Scholar] [CrossRef]
  34. Piorek, S. Handheld X-Ray Fluorescence (HHXRF). In Portable Spectroscopy and Spectrometry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 423–453. [Google Scholar]
  35. Scordo, A.; De Leo, V.; Curceanu, C.; Miliucci, M.; Sirghi, F. Efficiency measurements and simulations of a HAPG based Von Hamos spectrometer for large sources. J. Anal. At. Spectrom. 2021, 36, 2485–2491. [Google Scholar] [CrossRef]
  36. Scordo, A.; Breschi, L.; Curceanu, C.; Miliucci, M.; Sirghi, F.; Zmeskal, J. Correction: High resolution multielement XRF spectroscopy of extended and diffused sources with a graphite mosaic crystal based Von Hamos spectrometer. J. Anal. At. Spectrom. 2022, 37, 2194. [Google Scholar] [CrossRef]
  37. Manti, S.; Napolitano, F.; Clozza, A.; Curceanu, C.; Moskal, G.; Piscicchia, K.; Sirghi, D.; Scordo, A. Enhancing Performances of the VOXES Bragg Spectrometer for XES Investigations. Condens. Matter 2024, 9, 19. [Google Scholar] [CrossRef]
  38. Cataldo, M.; Cremonesi, O.; Pozzi, S.; Mocchiutti, E.; Sarkar, R.; Hillier, A.D.; Clemenza, M. The Implementation of MuDirac in Geant4: A Preliminary Approach to the Improvement of the Simulation of the Muonic Atom Cascade Process. Condens. Matter 2023, 8, 101. [Google Scholar] [CrossRef]
  39. Biswas, S.; Gerchow, L.; Luetkens, H.; Prokscha, T.; Antognini, A.; Berger, N.; Cocolios, T.E.; Dressler, R.; Indelicato, P.; Jungmann, K.; et al. Characterization of a continuous muon source for the non-destructive and depth-selective elemental composition analysis by muon induced X- and gamma-rays. Appl. Sci. 2022, 12, 2541. [Google Scholar] [CrossRef]
  40. Miyake, Y.; Shimomura, K.; Kawamura, N.; Strasser, P.; Makimura, S.; Koda, A.; Fujimori, H.; Nakahara, K.; Takeshita, S.; Kobayashi, Y.; et al. J-parc muon facility, muse. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2010; Volume 225, p. 012036. [Google Scholar]
  41. Hillier, A.; Lord, J.; Ishida, K.; Rogers, C. Muons at ISIS. Philos. Trans. R. Soc. A 2019, 377, 20180064. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Napolitano, F.; Scordo, A. High-Precision X-Ray Measurements 2023. Condens. Matter 2025, 10, 16. https://doi.org/10.3390/condmat10010016

AMA Style

Napolitano F, Scordo A. High-Precision X-Ray Measurements 2023. Condensed Matter. 2025; 10(1):16. https://doi.org/10.3390/condmat10010016

Chicago/Turabian Style

Napolitano, Fabrizio, and Alessandro Scordo. 2025. "High-Precision X-Ray Measurements 2023" Condensed Matter 10, no. 1: 16. https://doi.org/10.3390/condmat10010016

APA Style

Napolitano, F., & Scordo, A. (2025). High-Precision X-Ray Measurements 2023. Condensed Matter, 10(1), 16. https://doi.org/10.3390/condmat10010016

Article Metrics

Back to TopTop