High-Precision X-Ray Measurements 2023
Author Contributions
Conflicts of Interest
References
- Mascali, D.; Santonocito, D.; de Angelis, G.; Kratz, K.L.; Palmerini, S.; Torrisi, G. Nuclear physics and astrophysics in plasma traps. Front. Astron. Space Sci. 2022, 9, 1087543. [Google Scholar] [CrossRef]
- Mascali, D.; Santonocito, D.; Amaducci, S.; Andò, L.; Antonuccio, V.; Biri, S.; Bonanno, A.; Bonanno, V.P.; Briefi, S.; Busso, M.; et al. A novel approach to β-decay: Pandora, a new experimental setup for future in-plasma measurements. Universe 2022, 8, 80. [Google Scholar] [CrossRef]
- Mascali, D.; Naselli, E.; Biri, S.; Finocchiaro, G.; Galatà, A.; Mauro, G.S.; Mazzaglia, M.; Mishra, B.; Passarello, S.; Pidatella, A.; et al. The Multi-Detectors System of the PANDORA Facility: Focus on the Full-Field Pin-Hole CCD System for X-ray Imaging and Spectroscopy. Condens. Matter 2024, 9, 28. [Google Scholar] [CrossRef]
- De Leo, V.; Claps, G.; Cordella, F.; Cristoforetti, G.; Gizzi, L.A.; Koester, P.; Pacella, D.; Tamburrino, A. Combined Spectroscopy System Utilizing Gas Electron Multiplier and Timepix3 Technology for Laser Plasma Experiments. Condens. Matter 2023, 8, 98. [Google Scholar] [CrossRef]
- A Family of Pixel Detector Read-Out Chips for Particle Imaging and Detection Developed by the Medipix Collaborations. Available online: https://medipix.web.cern.ch (accessed on 28 January 2025).
- Claps, G.; Pacella, D.; Murtas, F.; Jakubowska, K.; Boutoux, G.; Burgy, F.; Ducret, J.; Batani, D. The GEMpix detector as new soft X-rays diagnostic tool for laser produced plasmas. Rev. Sci. Instrum. 2016, 87, 103505. [Google Scholar] [CrossRef]
- Napolitano, F. Enhancing Spectroscopic Experiment Calibration through Differentiable Programming. Condens. Matter 2024, 9, 26. [Google Scholar] [CrossRef]
- De Castro, P.; Dorigo, T. INFERNO: Inference-aware neural optimisation. Comput. Phys. Commun. 2019, 244, 170–179. [Google Scholar] [CrossRef]
- Dorigo, T.; Giammanco, A.; Vischia, P.; Aehle, M.; Bawaj, M.; Boldyrev, A.; de Castro Manzano, P.; Derkach, D.; Donini, J.; Edelen, A.; et al. Toward the end-to-end optimization of particle physics instruments with differentiable programming. Rev. Phys. 2023, 10, 100085. [Google Scholar] [CrossRef]
- Simpson, N.; Heinrich, L. neos: End-to-end-optimised summary statistics for high energy physics. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2023; Volume 2438, p. 012105. [Google Scholar]
- Napolitano, F.; Bazzi, M.; Bragadireanu, M.; Cargnelli, M.; Clozza, A.; De Paolis, L.; Del Grande, R.; Fiorini, C.; Guaraldo, C.; Iliescu, M.; et al. Novel machine learning and differentiable programming techniques applied to the VIP-2 underground experiment. Meas. Sci. Technol. 2023, 35, 025501. [Google Scholar] [CrossRef]
- Piscicchia, K.; Clozza, A.; Sirghi, D.; Bazzi, M.; Bortolotti, N.; Bragadireanu, M.; Cargnelli, M.; De Paolis, L.; Del Grande, R.; Guaraldo, C.; et al. Optimization of a BEGe Detector Setup for Testing Quantum Foundations in the Underground LNGS Laboratory. Condens. Matter 2024, 9, 22. [Google Scholar] [CrossRef]
- Napolitano, F.; Addazi, A.; Bassi, A.; Bazzi, M.; Bragadireanu, M.; Cargnelli, M.; Clozza, A.; De Paolis, L.; Del Grande, R.; Derakhshani, M.; et al. Underground tests of quantum mechanics by the VIP collaboration at Gran Sasso. Symmetry 2023, 15, 480. [Google Scholar] [CrossRef]
- Buompane, R.; Cavanna, F.; Curceanu, C.; D’Onofrio, A.; Di Leva, A.; Formicola, A.; Gialanella, L.; Gustavino, C.; Imbriani, G.; Junker, M.; et al. Nuclear Physics Mid Term Plan at LNGS. Eur. Phys. J. Plus 2024, 139, 224. [Google Scholar] [CrossRef]
- Napolitano, F.; Bartalucci, S.; Bertolucci, S.; Bazzi, M.; Bragadireanu, M.; Capoccia, C.; Cargnelli, M.; Clozza, A.; De Paolis, L.; Del Grande, R.; et al. Testing the Pauli exclusion principle with the VIP-2 experiment. Symmetry 2022, 14, 893. [Google Scholar] [CrossRef]
- Piscicchia, K.; Addazi, A.; Marcianò, A.; Bazzi, M.; Cargnelli, M.; Clozza, A.; De Paolis, L.; Del Grande, R.; Guaraldo, C.; Iliescu, M.A.; et al. Strongest atomic physics bounds on noncommutative quantum gravity models. Phys. Rev. Lett. 2022, 129, 131301. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, A.; Madhusoodanan, U.; Natarajan, A.; Panigrahi, B. Photoluminescence of F-aggregate centers in thermal neutron irradiated LiF TLD-100 single crystals. Phys. Status Solidi (a) 1996, 153, 265–273. [Google Scholar] [CrossRef]
- Montereali, R.; Bonfigli, F.; Vincenti, M.; Nichelatti, E. Versatile lithium fluoride thin-film solid-state detectors for nanoscale radiation imaging. Nuovo Cimento C 2013, 36, 35. [Google Scholar]
- Kurobori, T.; Matoba, A. Development of accurate two-dimensional dose-imaging detectors using atomic-scale color centers in Ag-activated phosphate glass and LiF thin films. Jpn. J. Appl. Phys. 2014, 53, 02BD14. [Google Scholar] [CrossRef]
- Bilski, P.; Marczewska, B.; Gieszczyk, W.; Kłosowski, M.; Nowak, T.; Naruszewicz, M. Lithium fluoride crystals as fluorescent nuclear track detectors. Radiat. Prot. Dosim. 2018, 178, 337–340. [Google Scholar] [CrossRef]
- Bonfigli, F.; Botti, S.; Vincenti, M.A.; Montereali, R.M.; Rufoloni, A.; Gaudio, P.; Rossi, R. Fluorescence and Raman Micro-Spectroscopy of LiF Films Containing Radiation-Induced Defects for X-ray Detection. Condens. Matter 2023, 8, 103. [Google Scholar] [CrossRef]
- Bonesini, M.; Bertoni, R.; Abba, A.; Caponio, F.; Prata, M.; Rossella, M. Improving the Time Resolution of Large-Area LaBr3:Ce Detectors with SiPM Array Readout. Condens. Matter 2023, 8, 99. [Google Scholar] [CrossRef]
- Sgaramella, F.; Clozza, F.; Abbene, L.; Artibani, F.; Bazzi, M.; Borghi, G.; Bragadireanu, M.; Buttacavoli, A.; Cargnelli, M.; Carminati, M.; et al. Characterization of the SIDDHARTA-2 Setup via the Kaonic Helium Measurement. Condens. Matter 2024, 9, 16. [Google Scholar] [CrossRef]
- Wycech, S.; Piscicchia, K. On the Importance of Future, Precise, X-Ray Measurements in Kaonic Atoms. Condens. Matter 2024, 9, 4. [Google Scholar] [CrossRef]
- Napolitano, F.; Abbene, L.; Artibani, F.; Bazzi, M.; Borghi, G.; Bosnar, D.; Bragadireanu, M.; Buttacavoli, A.; Carminati, M.; Cargnelli, M.; et al. Kaonic atoms with the SIDDHARTA-2 experiment at DAΦNE. Acta Phys. Pol. A 2024, 146, 669–673. [Google Scholar] [CrossRef]
- Napolitano, F.; Sgaramella, F.; Bazzi, M.; Bosnar, D.; Bragadireanu, M.; Carminati, M.; Cargnelli, M.; Clozza, A.; Deda, G.; De Paolis, L.; et al. Kaonic atoms at the DAΦNE collider with the SIDDHARTA-2 experiment. Phys. Scr. 2022, 97, 084006. [Google Scholar] [CrossRef]
- Okada, S.; Beer, G.; Bhang, H.; Cargnelli, M.; Chiba, J.; Choi, S.; Curceanu, C.; Fukuda, Y.; Hanaki, T.; Hayano, R.; et al. Precision measurement of the 3d→ 2p X-ray energy in kaonic 4He. Phys. Lett. B 2007, 653, 387–391. [Google Scholar] [CrossRef]
- Bazzi, M.; Beer, G.; Bombelli, L.; Bragadireanu, A.; Cargnelli, M.; Corradi, G.; Curceanu, C.; d’Uffizi, A.; Fiorini, C.; Frizzi, T.; et al. Kaonic helium-4 X-ray measurement in SIDDHARTA. Phys. Lett. B 2009, 681, 310–314. [Google Scholar] [CrossRef]
- Miliucci, M.; Volpe, A.; Fabiani, S.; Feroci, M.; Latronico, L.; Macculi, C.; Piro, L.; D’Andrea, M.; Gatti, F.; Puccetti, S.; et al. X-ray Technologies for Astrophysics Missions Supported by the Italian Space Agency. Condens. Matter 2024, 9, 11. [Google Scholar] [CrossRef]
- Macculi, C.; Argan, A.; D’Andrea, M.; Lotti, S.; Minervini, G.; Piro, L.; Ferrari Barusso, L.; Boragno, C.; Celasco, E.; Gallucci, G.; et al. The Cryogenic Anticoincidence Detector for the NewAthena X-IFU Instrument: A Program Overview. Condens. Matter 2023, 8, 108. [Google Scholar] [CrossRef]
- Barcons, X.; Barret, D.; Decourchelle, A.; den Herder, J.; Fabian, A.C.; Matsumoto, H.; Lumb, D.; Nandra, K.; Piro, L.; Smith, R.; et al. Athena: ESA’s X-ray observatory for the late 2020s. Astron. Nachrichten 2017, 338, 153–158. [Google Scholar] [CrossRef]
- Konstantakopoulou, E.; Casanova Municchia, A.; Luvidi, L.; Ferretti, M. Comparison of Different Methods for Evaluating Quantitative X-ray Fluorescence Data in Copper-Based Artefacts. Condens. Matter 2024, 9, 5. [Google Scholar] [CrossRef]
- Chiti, M.; Chiti, D.; Chiarelli, F.; Donghia, R.; Esposito, A.; Ferretti, M.; Gorghinian, A. Design and Use of Portable X-ray Fluorescence Devices for the Analysis of Heritage Materials. Condens. Matter 2024, 9, 1. [Google Scholar] [CrossRef]
- Piorek, S. Handheld X-Ray Fluorescence (HHXRF). In Portable Spectroscopy and Spectrometry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 423–453. [Google Scholar]
- Scordo, A.; De Leo, V.; Curceanu, C.; Miliucci, M.; Sirghi, F. Efficiency measurements and simulations of a HAPG based Von Hamos spectrometer for large sources. J. Anal. At. Spectrom. 2021, 36, 2485–2491. [Google Scholar] [CrossRef]
- Scordo, A.; Breschi, L.; Curceanu, C.; Miliucci, M.; Sirghi, F.; Zmeskal, J. Correction: High resolution multielement XRF spectroscopy of extended and diffused sources with a graphite mosaic crystal based Von Hamos spectrometer. J. Anal. At. Spectrom. 2022, 37, 2194. [Google Scholar] [CrossRef]
- Manti, S.; Napolitano, F.; Clozza, A.; Curceanu, C.; Moskal, G.; Piscicchia, K.; Sirghi, D.; Scordo, A. Enhancing Performances of the VOXES Bragg Spectrometer for XES Investigations. Condens. Matter 2024, 9, 19. [Google Scholar] [CrossRef]
- Cataldo, M.; Cremonesi, O.; Pozzi, S.; Mocchiutti, E.; Sarkar, R.; Hillier, A.D.; Clemenza, M. The Implementation of MuDirac in Geant4: A Preliminary Approach to the Improvement of the Simulation of the Muonic Atom Cascade Process. Condens. Matter 2023, 8, 101. [Google Scholar] [CrossRef]
- Biswas, S.; Gerchow, L.; Luetkens, H.; Prokscha, T.; Antognini, A.; Berger, N.; Cocolios, T.E.; Dressler, R.; Indelicato, P.; Jungmann, K.; et al. Characterization of a continuous muon source for the non-destructive and depth-selective elemental composition analysis by muon induced X- and gamma-rays. Appl. Sci. 2022, 12, 2541. [Google Scholar] [CrossRef]
- Miyake, Y.; Shimomura, K.; Kawamura, N.; Strasser, P.; Makimura, S.; Koda, A.; Fujimori, H.; Nakahara, K.; Takeshita, S.; Kobayashi, Y.; et al. J-parc muon facility, muse. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2010; Volume 225, p. 012036. [Google Scholar]
- Hillier, A.; Lord, J.; Ishida, K.; Rogers, C. Muons at ISIS. Philos. Trans. R. Soc. A 2019, 377, 20180064. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napolitano, F.; Scordo, A. High-Precision X-Ray Measurements 2023. Condens. Matter 2025, 10, 16. https://doi.org/10.3390/condmat10010016
Napolitano F, Scordo A. High-Precision X-Ray Measurements 2023. Condensed Matter. 2025; 10(1):16. https://doi.org/10.3390/condmat10010016
Chicago/Turabian StyleNapolitano, Fabrizio, and Alessandro Scordo. 2025. "High-Precision X-Ray Measurements 2023" Condensed Matter 10, no. 1: 16. https://doi.org/10.3390/condmat10010016
APA StyleNapolitano, F., & Scordo, A. (2025). High-Precision X-Ray Measurements 2023. Condensed Matter, 10(1), 16. https://doi.org/10.3390/condmat10010016