Effect of a Monoglyceride Blend in Nile Tilapia Growth Performance, Immunity, Gut Microbiota, and Resistance to Challenge against Streptoccocosis and Francisellosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Inhibition Tests
2.1.1. Solid Media Inhibition Test
2.1.2. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration (MBC)
2.2. Fish
2.3. Diet
2.4. Experimental Design and Challenge
2.5. Growth Performance
2.6. Measured Immune Parameters
2.6.1. Serum Lysozyme Concentration
2.6.2. Complement System Hemolytic Activity
2.6.3. Antibacterial Activity of the Serum
2.7. Tissues Histology
2.8. Fecal Metagenomic Analysis
3. Results
3.1. Inhibition Bacterial Growth
3.2. Disease Challenge
3.3. Growth Performance
3.4. Innate Immune Analysis
3.5. Histopathological Analysis
3.6. Metagenomic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of Word Fishiries and Aquaculture; FAO: Rome, Italy, 2022; Volume 15. [Google Scholar]
- Peixe, B.R. Anuário 2024 Peixe Br Da Piscicultura. Anuário Bras. Da Piscic. PEIXE BR 2024, 63, 7. [Google Scholar]
- Otoni, C.J. Linhagens de Tilápia do nilo sob Diferentes Densidades de Estocagem; Universidade Federal dos Vales do Jequitinhonha e Mucuri: Diamantina, MG, Brazil, 2015. [Google Scholar]
- Heckman, T.I.; Shahin, K.; Henderson, E.E.; Griffin, M.J.; Soto, E. Development and Efficacy of Streptococcus Iniae Live-Attenuated Vaccines in Nile Tilapia, Oreochromis Niloticus. Fish Shellfish Immunol. 2022, 121, 152–162. [Google Scholar] [CrossRef] [PubMed]
- da Costa, A.R.; Chideroli, R.T.; Chicoski, L.M.; de Abreu, D.C.; Favero, L.M.; Ferrari, N.A.; Mainardi, R.M.; da Silva, V.G.; Pereira, U.P. Frequency of Pathogens in Routine Bacteriological Diagnosis in Fish and Their Antimicrobial Resistance. Semin. Agrar. 2021, 42, 3259–3272. [Google Scholar] [CrossRef]
- Egger, R.C.; Rosa, J.C.C.; Resende, L.F.L.; de Pádua, S.B.; de Oliveira Barbosa, F.; Zerbini, M.T.; Tavares, G.C.; Figueiredo, H.C.P. Emerging Fish Pathogens Lactococcus petauri and L. garvieae in Nile Tilapia (Oreochromis niloticus) Farmed in Brazil. Aquaculture 2023, 565, 739093. [Google Scholar] [CrossRef]
- Leal, C.A.G.; Tavares, G.C.; Figueiredo, H.C.P. Outbreaks and Genetic Diversity of Francisella Noatunensis Subsp Orientalis Isolated from Farm-Raised Nile Tilapia (Oreochromis niloticus) in Brazil. Genet. Mol. Res. 2014, 13, 5704–5712. [Google Scholar] [CrossRef] [PubMed]
- Eto, S.F.; Fernandes, D.C.; de Moraes, A.C.; Alecrim, J.V.d.C.; de Souza, P.G.; de Carvalho, F.C.A.; Charlie-Silva, I.; Belo, M.A.d.A.; Pizauro, J.M. Meningitis Caused by Streptococcus agalactiae in Nile Tilapia (Oreochromis niloticus): Infection and Inflammatory Response. Animals 2020, 10, 2166. [Google Scholar] [CrossRef] [PubMed]
- Soto, E.; Shahin, K.; Johnny Talhami, J.; Griffin, M.J.; Adams, A.; Gustavo Ramírez-Paredes, J. Characterization of Francisella noatunensis Subsp. orientalis Isolated from Nile Tilapia Oreochromis niloticus Farmed in Lake Yojoa, Honduras. Dis. Aquat. Organ. 2019, 133, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Lulijwa, R.; Rupia, E.J.; Alfaro, A.C. Antibiotic Use in Aquaculture, Policies and Regulation, Health and Environmental Risks: A Review of the Top 15 Major Producers. Rev. Aquac. 2020, 12, 640–663. [Google Scholar] [CrossRef]
- Chideroli, R.T.; Amoroso, N.; Mainardi, R.M.; Suphoronski, S.A.; de Padua, S.B.; Alfieri, A.F.; Alfieri, A.A.; Mosela, M.; Moralez, A.T.P.; de Oliveira, A.G.; et al. Emergence of a New Multidrug-Resistant and Highly Virulent Serotype of Streptococcus agalactiae in Fish Farms from Brazil. Aquaculture 2017, 479, 45–51. [Google Scholar] [CrossRef]
- Miller, R.A.; Harbottle, H. Antimicrobial Drug Resistance in Fish Pathogens. Microbiol. Spectr. 2018, 6, 213–238. [Google Scholar] [CrossRef]
- Monteiro, S.H.; Andrade, G.C.R.M.; Garcia, F.; Pilarski, F. Antibiotic Residues and Resistant Bacteria in Aquaculture. Pharm. Chem. J. 2018, 5, 127–147. [Google Scholar]
- da Silva, V.G.; Favero, L.M.; Mainardi, R.M.; Ferrari, N.A.; Chideroli, R.T.; Di Santis, G.W.; de Souza, F.P.; da Costa, A.R.; Gonçalves, D.D.; Nuez-Ortin, W.G.; et al. Effect of an Organic Acid Blend in Nile Tilapia Growth Performance, Immunity, Gut Microbiota, and Resistance to Challenge against Francisellosis. Res. Vet. Sci. 2023, 159, 214–224. [Google Scholar] [CrossRef]
- Suphoronski, S.A.; de Souza, F.P.; Chideroli, R.T.; Mantovani Favero, L.; Ferrari, N.A.; Ziemniczak, H.M.; Gonçalves, D.D.; Lopera Barrero, N.M.; Pereira, U.d.P. Effect of Enterococcus faecium as a Water and/or Feed Additive on the Gut Microbiota, Hematologic and Immunological Parameters, and Resistance Against Francisellosis and Streptococcosis in Nile Tilapia (Oreochromis niloticus). Front. Microbiol. 2021, 12, 743957. [Google Scholar] [CrossRef]
- Kovanda, L.; Park, J.; Park, S.; Kim, K.; Li, X.; Liu, Y. Dietary Butyrate and Valerate Glycerides Impact Diarrhea Severity and Immune Response of Weaned Piglets under ETEC F4-ETEC F18 Coinfection Conditions. J. Anim. Sci. 2023, 101, skad401. [Google Scholar] [CrossRef] [PubMed]
- Zarei, S.; Badzohreh, G.; Davoodi, R.; Nafisi Bahabadi, M.; Salehi, F. Effects of Dietary Butyric Acid Glycerides on Growth Performance, Haemato-Immunological and Antioxidant Status of Yellowfin Seabream (Acanthopagrus latus) Fingerlings. Aquac. Res. 2021, 52, 5840–5848. [Google Scholar] [CrossRef]
- CLSI M07: Clinical and Laboratory Standards Institute Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; Volume 91.
- Dong, H.T.; Siriroob, S.; Meemetta, W.; Santimanawong, W.; Gangnonngiw, W.; Pirarat, N.; Khunrae, P.; Rattanarojpong, T.; Vanichviriyakit, R.; Senapin, S. Emergence of Tilapia Lake Virus in Thailand and an Alternative Semi-Nested RT-PCR for Detection. Aquaculture 2017, 476, 111–118. [Google Scholar] [CrossRef]
- Rimmer, A.E.; Becker, J.A.; Tweedie, A.; Whittington, R.J. Development of a Quantitative Polymerase Chain Reaction (QPCR) Assay for the Detection of Dwarf Gourami Iridovirus (DGIV) and Other Megalocytiviruses and Comparison with the Office International Des Epizooties (OIE) Reference PCR Protocol. Aquaculture 2012, 358–359, 155–163. [Google Scholar] [CrossRef]
- Van Doan, H.; Hoseinifar, S.H.; Tapingkae, W.; Khamtavee, P. The Effects of Dietary Kefir and Low Molecular Weight Sodium Alginate on Serum Immune Parameters, Resistance against Streptococcus agalactiae and Growth Performance in Nile Tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2017, 62, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Demers, N.E.; Bayne, C.J. The Immediate Effects of Stress on Hormones and Plasma Lysozyme in Rainbow Trout. Dev. Comp. Immunol. 1997, 21, 363–373. [Google Scholar] [CrossRef]
- Kumari, J.; Sahoo, P.K. Effects of Cyclophosphamide on the Immune System and Disease Resistance of Asian Catfish Clarias Batrachus. Fish Shellfish Immunol. 2005, 19, 307–316. [Google Scholar] [CrossRef]
- Silva, B.C.; Martins, M.L.; Jatobá, A.; Buglione, C.C.; Vieira, F.N.; Pereira, G.V.; Jerônimo, G.T.; Seiffert, Q.; Mouriño, J.L.P. Hematological and Immunological Responses of Nile Tilapia after Polyvalent Vaccine Administration by Different Routes. Pesqui. Veterinária Bras. 2009, 29, 874–880. [Google Scholar] [CrossRef]
- de Souza, F.P.; de Lima, E.C.S.; Urrea-Rojas, A.M.; Suphoronski, S.A.; Facimoto, C.T.; da Silva Bezerra, J.; de Oliveira, T.E.S.; Pereira, U.d.P.; Di Santis, G.W.; de Oliveira, C.A.L.; et al. Effects of Dietary Supplementation with a Microalga (Schizochytrium sp.) on the Hemato-Immunological, and Intestinal Histological Parameters and Gut Microbiota of Nile Tilapia in Net Cages. PLoS ONE 2020, 15, e0226977. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of General 16S Ribosomal RNA Gene PCR Primers for Classical and Next-Generation Sequencing-Based Diversity Studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- Souza, F.P.d.; Lima, E.C.S.d.; Pandolfi, V.C.F.; Leite, N.G.; Furlan-Murari, P.J.; Leal, C.N.S.; Mainardi, R.M.; Suphoronski, S.A.; Favero, L.M.; Koch, J.F.A.; et al. Effect of β-Glucan in Water on Growth Performance, Blood Status and Intestinal Microbiota in Tilapia under Hypoxia. Aquac. Rep. 2020, 17, 100369. [Google Scholar] [CrossRef]
- He, W.; Rahimnejad, S.; Wang, L.; Song, K.; Lu, K.; Zhang, C. Effects of Organic Acids and Essential Oils Blend on Growth, Gut Microbiota, Immune Response and Disease Resistance of Pacific White Shrimp (Litopenaeus vannamei) against Vibrio Parahaemolyticus. Fish Shellfish Immunol. 2017, 70, 164–173. [Google Scholar] [CrossRef]
- Liliana, P.C.; Dumitrescu, G.; McCleery, D.; Pet, I.; Iancu, T.; Stef, L.; Corcionivoschi, N.; Balta, I. Organic Acids Mitigate Streptococcus agalactiae Virulence in Tilapia Fish Gut Primary Cells and in a Gut Infection Model. Ir. Vet. J. 2024, 77, 10. [Google Scholar] [CrossRef] [PubMed]
- Suphoronski, S.A.; Chideroli, R.T.; Facimoto, C.T.; Mainardi, R.M.; de Souza, F.P.; Lopera-Barrero, N.M.; Jesus, G.F.A.; Martins, M.L.; Santis, G.W.D.; De Oliveira, A.; et al. Effects of a Phytogenic, Alone and Associated with Potassium Diformate, on Tilapia Growth, Immunity, Gut Microbiome and Resistance against Francisellosis. Sci. Rep. 2019, 9, 6045. [Google Scholar] [CrossRef] [PubMed]
- Furevik, A.; Pettersen, E.F.; Colquhoun, D.; Wergeland, H.I. The Intracellular Lifestyle of Francisella Noatunensis in Atlantic Cod (Gadus morhua L.) Leucocytes. Fish Shellfish Immunol. 2011, 30, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Volatiana, J.A.; Sagada, G.; Xu, B.; Zhang, J.; Ng, W.K.; Shao, Q. Effects of Butyrate Glycerides Supplementation in High Soybean Meal Diet on Growth Performance, Intestinal Morphology and Antioxidative Status of Juvenile Black Sea Bream, Acanthopagrus schlegelii. Aquac. Nutr. 2020, 26, 15–25. [Google Scholar] [CrossRef]
- Huan, D.; Li, X.; Chowdhury, M.A.K.; Yang, H.; Liang, G.; Leng, X. Organic Acid Salts, Protease and Their Combination in Fish Meal-Free Diets Improved Growth, Nutrient Retention and Digestibility of Tilapia (Oreochromis niloticus × O. Aureus). Aquac. Nutr. 2018, 24, 1813–1821. [Google Scholar] [CrossRef]
- Ragland, S.A.; Criss, A.K. From Bacterial Killing to Immune Modulation: Recent Insights into the Functions of Lysozyme. PLoS Pathog. 2017, 13, e1006512. [Google Scholar] [CrossRef] [PubMed]
- Bavia, L.; Santiesteban-Lores, L.E.; Carneiro, M.C.; Prodocimo, M.M. Advances in the Complement System of a Teleost Fish, Oreochromis niloticus. Fish Shellfish Immunol. 2022, 123, 61–74. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Rajabiesterabadi, H.; Abbasi, M.; Khosraviani, K.; Hoseinifar, S.H.; Van Doan, H. Modulation of Humoral Immunological and Antioxidant Responses and Gut Bacterial Community and Gene Expression in Rainbow Trout, Oncorhynchus mykiss, by Dietary Lactic Acid Supplementation. Fish Shellfish Immunol. 2022, 125, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, H.; Chang, W.T.H.; Li, X.; Leng, X. The Combined Supplementation of AZOMITE and Citric Acid Promoted the Growth, Intestinal Health, Antioxidant, and Resistance against Aeromonas hydrophila for Largemouth Bass, Micropterus salmoides. Aquac. Nutr. 2023, 1, 5022456. [Google Scholar] [CrossRef]
- Reda, R.M.; Mahmoud, R.; Selim, K.M.; El-Araby, I.E. Effects of Dietary Acidifiers on Growth, Hematology, Immune Response and Disease Resistance of Nile Tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2016, 50, 255–262. [Google Scholar] [CrossRef]
- Dias Junior, W.; Baviera, A.M.; Zanon, N.M.; Galban, V.D.; Garófalo, M.A.R.; Machado, C.R.; Bailão, E.F.L.C.; Kettelhut, I.C. Lipolytic Response of Adipose Tissue and Metabolic Adaptations to Long Periods of Fasting in Red Tilapia (Oreochromis sp., Teleostei: Cichlidae). An. Acad. Bras. Cienc. 2016, 88, 1743–1754. [Google Scholar] [CrossRef]
- Abdullah, S.; Omar, N.; Yusoff, S.M.; Obukwho, E.B.; Nwunuji, T.P.; Hanan, L.; Samad, J. Clinicopathological Features and Immunohistochemical Detection of Antigens in Acute Experimental Streptococcus agalactiae Infection in Red Tilapia (Oreochromis spp.). Springerplus 2013, 2, 286. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lathrop, K.L.; Kuwajima, T.; Gross, J.M. Retinal Ganglion Cell Survival after Severe Optic Nerve Injury Is Modulated by Crosstalk between Jak/Stat Signaling and Innate Immune Responses in the Zebrafish Retina. Development 2022, 149, dev199694. [Google Scholar] [CrossRef]
- Cao, J.; Liu, Z.; Zhang, D.; Guo, F.; Gao, F.; Wang, M.; Yi, M.; Lu, M. Distribution and Localization of Streptococcus agalactiae in Different Tissues of Artificially Infected Tilapia (Oreochromis niloticus). Aquaculture 2022, 546, 737370. [Google Scholar] [CrossRef]
- Ramírez, C.; Coronado, J.; Silva, A.; Romero, J. Cetobacterium Is a Major Component of the Microbiome of Giant Amazonian Fish (Arapaima gigas) in Ecuador. Animals 2018, 8, 189. [Google Scholar] [CrossRef] [PubMed]
- van Kessel, M.A.H.J.; Dutilh, B.E.; Neveling, K.; Kwint, M.P.; Veltman, J.A.; Flik, G.; Jetten, M.S.M.; Klaren, P.H.M.; Op den Camp, H.J.M. Pyrosequencing of 16s RRNA Gene Amplicons to Study the Microbiota in the Gastrointestinal Tract of Carp (Cyprinus carpio L.). AMB Express 2011, 1, 41. [Google Scholar] [CrossRef]
- Tsuchiya, C.; Sakata, T.; Sugita, H. Novel Ecological Niche of Cetobacterium somerae, an Anaerobic Bacterium in the Intestinal Tracts of Freshwater Fish. Lett. Appl. Microbiol. 2008, 46, 43–48. [Google Scholar] [CrossRef]
- Hao, Y.T.; Wu, S.G.; Xiong, F.; Tran, N.T.; Jakovlić, I.; Zou, H.; Li, W.X.; Wang, G.T. Succession and Fermentation Products of Grass Carp (Ctenopharyngodon idellus) Hindgut Microbiota in Response to an Extreme Dietary Shift. Front. Microbiol. 2017, 8, 01585. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Zhang, Y.; Zhang, Y.; Luo, F.; Song, K.; Wang, G.; Ling, F. Vitamin B12 Produced by Cetobacterium somerae Improves Host Resistance against Pathogen Infection through Strengthening the Interactions within Gut Microbiota. Microbiome 2023, 11, 135. [Google Scholar] [CrossRef] [PubMed]
- Sherif, A.H.; Kassab, A.S. Multidrug-Resistant Aeromonas Bacteria Prevalence in Nile Tilapia Broodstock. BMC Microbiol. 2023, 23, 80. [Google Scholar] [CrossRef] [PubMed]
Group | MGL Dose (%) | Challenge | Group | MGL Dose (%) | Challenge |
---|---|---|---|---|---|
SAGA Ib PC | 0 | Streptococcus agalactiae serotype Ib | SAGA III 0.25% (G5) | 0.25 | Streptococcus agalactiae serotype III |
SAGA Ib 0.15% (G1) | 0.15 | Streptococcus agalactiae serotype Ib | SAGA III 0.50% (G6) | 0.5 | Streptococcus agalactiae serotype III |
SAGA Ib 0.25% (G2) | 0.25 | Streptococcus agalactiae serotype Ib | NPC | 0.5 | No |
SAGA Ib 0.50% (G3) | 0.50 | Streptococcus agalactiae serotype Ib | FRAN PC | 0.0 | Francisella orientalis |
NC | 0 | No | FRAN 0.15% (G7) | 0.15 | Francisella orientalis |
SAGA III PC | 0 | Streptococcus agalactiae serotype III | FRAN 0.25% (G8) | 0.25 | Francisella orientalis |
SAGA III 0.15% (G4) | 0.15 | Streptococcus agalactiae serotype III | FRAN 0.50% (G9) | 0.50 | Francisella orientalis |
Bacteria | MIC (Product %) | MBC (Product %) |
---|---|---|
Streptococcus agalactiae Ib | 0.16 | 0.62 |
Streptococcus agalactiae III | 0.31 | 0.62 |
Francisella orientalis | <0.01 | <0.01 |
Treatment (% of Product) | Weight Gain/Day/Fish (g) | Feed Rate Conversion (FRC) | Specific Growth Rate (SGR) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Standard Deviation | ANOVA | Mean | Standard Deviation | ANOVA | Mean | Standard Deviation | ANOVA | |
NC | 0.9488 a | 0.0458 | p = 0.00177 | 1.299 a | 0.0667 | p = 0.0022 | 3.1482 | 0.167 | p = 0.57283 |
0.15 | 1.0548 b | 0.0383 | 1.1191 b | 0.0658 | 3.1894 | 0.111 | |||
0.25 | 1.0453 b | 0.0669 | 1.1295 b | 0.0685 | 3.2628 | 0.2323 | |||
0.5 | 1.0652 b | 0.0703 | 1.1418 b | 0.0485 | 3.2798 | 0.2644 |
Group | Lysozyme | AC50 (µL) | AAS | Group | Lysozyme | AC50 (µL) | AAS |
---|---|---|---|---|---|---|---|
(µg/mL) | (Title) | (µg/mL) | (Title) | ||||
SAGA Ib PC | 20.85 | 24.35 | 4 | SAGA III 0.25% | 22.07 | 17.22 | 4 |
SAGA Ib 0.15% | 20.40 | 22.27 | 4.3 | SAGA III 0.50% | 27.68 | 18.97 | 4 |
SAGA Ib 0.25% | 21.31 | 29.54 | 4 | NPC | 17.82 | 17.52 | 4 |
SAGA Ib 0.50% | 27.83 | 27.43 | 4 | FRAN PC | 15.09 | 27.02 | 4.3 |
NC | 17.37 | 21.33 | 4 | FRAN 0.15% | 16.31 | 23.39 | 4 |
SAGA III PC | 21.01 | 23.06 | 4.3 | FRAN 0.25% | 23.43 | 21.37 | 4 |
SAGA III 0.15% | 13.73 | 23.27 | 4 | FRAN 0.50% | 14.79 | 27.49 | 4 |
Group | Shanon | Group | Shanon |
---|---|---|---|
0.15 SIb | 1.29 a | 0.15 SIII | 0.85 ab |
0.25 SIb | 1.35 a | 0.25 SIII | 1.40 a |
0.50 SIb | 0.30 b | 0.50 SIII | 0.66 ab |
PC SIb | 1.66 a | PC SIII | 1.26 a |
NC | 0.75 ab | NPC | 1.06 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrari, N.A.; Mainardi, R.M.; Silva, M.B.d.; Guimarães, G.D.; Takashe, J.V.G.; de Oliveira Junior, A.G.; Hayashi, R.M.; Di Santis, G.W.; Pereira, U.d.P. Effect of a Monoglyceride Blend in Nile Tilapia Growth Performance, Immunity, Gut Microbiota, and Resistance to Challenge against Streptoccocosis and Francisellosis. Fishes 2024, 9, 351. https://doi.org/10.3390/fishes9090351
Ferrari NA, Mainardi RM, Silva MBd, Guimarães GD, Takashe JVG, de Oliveira Junior AG, Hayashi RM, Di Santis GW, Pereira UdP. Effect of a Monoglyceride Blend in Nile Tilapia Growth Performance, Immunity, Gut Microbiota, and Resistance to Challenge against Streptoccocosis and Francisellosis. Fishes. 2024; 9(9):351. https://doi.org/10.3390/fishes9090351
Chicago/Turabian StyleFerrari, Natália Amoroso, Raffaella Menegheti Mainardi, Mayza Brandão da Silva, Gabriel Diogo Guimarães, João Vitor Godoy Takashe, Admilton Gonçalves de Oliveira Junior, Ricardo Mitsuo Hayashi, Giovana Wingeter Di Santis, and Ulisses de Pádua Pereira. 2024. "Effect of a Monoglyceride Blend in Nile Tilapia Growth Performance, Immunity, Gut Microbiota, and Resistance to Challenge against Streptoccocosis and Francisellosis" Fishes 9, no. 9: 351. https://doi.org/10.3390/fishes9090351
APA StyleFerrari, N. A., Mainardi, R. M., Silva, M. B. d., Guimarães, G. D., Takashe, J. V. G., de Oliveira Junior, A. G., Hayashi, R. M., Di Santis, G. W., & Pereira, U. d. P. (2024). Effect of a Monoglyceride Blend in Nile Tilapia Growth Performance, Immunity, Gut Microbiota, and Resistance to Challenge against Streptoccocosis and Francisellosis. Fishes, 9(9), 351. https://doi.org/10.3390/fishes9090351