Molecular Mechanisms of Growth Differences in Gymnocypris przewalskii and Gymnocypris eckloni through a Comparative Transcriptome Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish
2.2. Sampling
2.3. RNA Extraction, Library Construction, and High-Throughput Sequencing
2.4. RNA Sequencing Analysis
2.5. Quantitative Real-Time PCR (qRT–PCR) Analysis
2.6. Statistical Analyses
3. Results
3.1. Growth Trait Analysis
3.2. Analysis of DEGs between Groups
3.3. KEGG Pathway Analysis of DEGs
3.4. Validation of DEGs by RT–PCR
4. Discussion
4.1. Differences in the Growth Rate
4.2. Differences in the Metabolism Pathways
4.3. Differences in the Relative Growth Pathways
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, X.; Liao, X.P.; Xu, Z.S.; Liang, W.L.; Su, Y.L.; Lin, L.; Xie, J.G.; Lin, W.Q. Transcriptome analysis of the muscle of fast-and slow-growing phoenix barb (Spinibarbus denticulatus denticulatus). J. Fish Biol. 2023, 102, 504–515. [Google Scholar] [CrossRef]
- Chandhini, S.; Rejish, K.V.J. Transcriptomics in aquaculture: Current status and applications. Rev. Aquac. 2019, 11, 1379–1397. [Google Scholar] [CrossRef]
- Waiho, K.; Ikhwanuddin, M.; Afiqah-Aleng, N.; Shu-Chien, A.C.; Wang, Y.J.; Ma, H.Y.; Fazhan, H. Transcriptomics in advancing portunid aquaculture: A systematic review. Rev. Aquac. 2022, 14, 2064–2088. [Google Scholar] [CrossRef]
- Lu, X.; Chen, H.M.; Qian, X.Q.; Gui, J.F. Transcriptome analysis of grass carp (Ctenopharyngodon idella) between fast- and slow-growing fish. Comp. Biochem. 2020, 35, 100688. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.J.; Zhang, Z.Y.; Solberg, M.F.; Chen, Z.Q.; Wei, M.L.; Zhu, F.; Jia, C.F.; Meng, Q.; Zhang, Z.W. Comparative transcriptome analysis of mixed tissues of black porgy (Acanthopagrus schlegelii) with differing growth rates. Aquac. Res. 2021, 52, 5800–5813. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, C.Y.; Wang, D.D.; Li, X.F.; Shi, Q.; Hu, G.J.; Fang, C.; Lin, H.R.; Zhang, Y. Transcriptome analysis reveals the molecular mechanisms underlying growth superiority in a novel grouper hybrid (Epinephelus fuscogutatus♀ × Epinephelus lanceolatus♂). BMC Genet. 2016, 17, 24. [Google Scholar] [CrossRef]
- Gomes, F.; Watanabe, L.; Vianez, J.; Nunes, M.; Cardoso, J.; Lima, C.; Schneider, H.; Sampaio, I. Comparative analysis of the transcriptome of the Amazonian fish species Colossoma macropomum (tambaqui) and hybrid tambacu by next generation sequencing. PLoS ONE 2019, 14, e0212755. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.D.; Yao, J.J.; Liao, A.M.; Tan, H.F.; Luo, Y.X.; Wu, P.; Wang, S.; Zhang, C.; Qin, Q.B.; Tao, M.; et al. The formation of hybrid fish derived from hybridization of Megalobrama amblycephala (♀) × Siniperca chuatsi (♂). Aquaculture 2022, 548, 737547. [Google Scholar] [CrossRef]
- Fuentes, E.N.; Valdés, J.A.; Molina, A.; Björnsson, B.T. Regulation of skeletal muscle growth in fish by the growth hormone–insulin-like growth factor system. Gen. Comp. Endocrinol. 2013, 192, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Valente, L.; Moutou, K.; Conceição, L.; Engrola, S.; Jmo, F.; Johnston, I. What determines growth potential and juvenile quality of farmed fish species? Rev. Aquac. 2013, 5, S168–S193. [Google Scholar] [CrossRef]
- Yang, S.Y.; Liu, Z.; Yang, Z.Z.; Zhao, Z.M.; Zhang, C.Y.; Gong, Q.; Du, X.G.; Wu, J.Y.; Feng, Y.; Du, J.; et al. Improvement of skeletal muscle growth by GH/IGF growth-axis contributes to growth performance in commercial fleshy sturgeon. Aquaculture 2021, 543, 736929. [Google Scholar] [CrossRef]
- Elia, D.; Madhala, D.; Ardon, E.; Reshef, R.; Halevy, O. Sonic hedgehog promotes proliferation and differentiation of adult muscle cells: Involvement of MAPK/ERK and PI3K/Akt pathways. Biochim. Biophys. Acta Mol. Cell Res. 2007, 1773, 1438–1446. [Google Scholar] [CrossRef]
- Fuentes, E.; Björnsson, B.T.; Valdés, J.; Einarsdottir, I.; Lorca, B.; Alvarez, M.; Molina, A. IGF-i/PI3K/AKT and IGF-I/MAPK/ERK pathways in vivo in skeletal muscle are regulated by nutrition and contribute to somatic growth in the fine flounder. Am. J. Physiol. Regul. 2011, 300, 1532–1542. [Google Scholar] [CrossRef]
- Gahr, S.A.; Vallejo, R.L.; Weber, G.M.; Shepherd, B.S.; Silverstein, J.T.; Rexroad, C.E., 3rd. Effects of short-term growth hormone treatment on liver and muscle transcriptomes in rainbow trout (Oncorhynchus mykiss). Physiol. Genom. 2008, 32, 380–392. [Google Scholar] [CrossRef]
- Qi, D.L.; Chao, Y.; Wu, R.R.; Xia, M.Z.; Chen, Q.C.; Zheng, Z.Q. Transcriptome analysis provides insights into the adaptive responses to hypoxia of a Schizothoracine fish (Gymnocypris eckloni). Front. Physiol. 2018, 9, 1326. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.S.; Gonzalez, R.J.; Patrick, M.L.; Grosell, M.; Wood, C.M. Unusual physiology of scale-less carp, Gymnocypris przewalskii, in Lake Qinghai: A high altitude alkaline saline lake. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2003, 134, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.Z.; Deng, S.H.; Xiao, W.Y. Artificial propagation of Gymnocypris eckloni herzenstein. Anim. Husb. Feed Sci. 2016, 37, 8–9. (In Chinese) [Google Scholar] [CrossRef]
- Sun, W.C.; Shen, Z.X.; Luo, Y.H.; Wang, G.J. Physical and chemical muscle characteristics by comparative Gymncypris eckloni and Qinghai Lake naked carp (Gymnocypris przewalskii). Food Res. Dev. 2013, 34, 14–17. (In Chinese) [Google Scholar] [CrossRef]
- Xiong, F.; Chen, D.Q.; Duan, X.B. Threatened fishes of the world: Gymnocypris przewalskii (Kessler, 1876) (Cyprinidae: Schizothoracinae). Environ. Biol. Fishes 2010, 87, 351–352. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Ludwig, A.; Zhang, C.F.; Tong, C.; Li, G.G.; Tang, Y.T.; Peng, Z.G.; Zhao, K. Local adaptation of Gymnocypris przewalskii (Cyprinidae) on the Tibetan Plateau. Sci. Rep. 2015, 5, 9780. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Li, J.B.; Yang, G.S.; Duan, Z.Y.; He, S.P.; Chen, Y.Y. Molecular phylogeny of endemic Gymnocyprinus in Qinghai lake and its adjacent water systems. Chin. Sci. Bull. 2005, 50, 1348–1355. (In Chinese) [Google Scholar] [CrossRef]
- Wood, C.M.; Du, J.Z.; Rogers, J.; Brauner, C.J.; Richards, J.G.; Semple, J.W.; Murray, B.W.; Chen, X.Q.; Wang, Y.X. Przewalski’s naked carp (Gymnocypris przewalskii): An Endangered species taking a metabolic holiday in Lake Qinghai, China. Physiol. Biochem. Zool. 2007, 80, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 2013, 29, 644–652. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.; Pachter, L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat. Methods 2013, 10, 71–73. [Google Scholar] [CrossRef]
- Anders, S.; Huber, W. Differential expression of RNA-Seq data at the gene level—The DESeq package. Eur. Mol. Biol. Lab. (EMBL) 2013, 10, f1000research. [Google Scholar]
- Zhang, H.C.; Xu, B.K.; A, L.L.; Ma, Q.H.; Gao, Q.; Tian, W.G.; Yu, L.X.; Liang, J. Cloning, tissue expression and polymorphism of MHCⅡ gene of Gymnocypris. J. Fish China 2023, 1–18. [Google Scholar] [CrossRef]
- Cao, X.L.; Cui, H.; Ji, X.Y.; Li, B.H.; Ji, X.Y.; Lu, R.H.; Zhang, Y.R.; Chen, J.J. Determining the potential roles of branched-chain amino acids in the regulation of muscle growth in common carp (Cyprinus carpio) Based on transcriptome and microRNA sequencing. Aquac. Nutr. 2023, 7965735. [Google Scholar] [CrossRef]
- Tixier, V.; Bataillé, L.; Etard, C.; Jaglaet, K. Glycolysis supports embryonic muscle growth by promoting myoblast fusion. Proc. Natl. Acad. Sci. USA 2013, 110, 18982–18987. [Google Scholar] [CrossRef]
- Wang, N.; Tian, Y.S.; Zhang, J.J.; Li, Z.T.; Cheng, M.L.; Wu, Y.P. Involvement of glycolysis activation in flatfish sexual size dimorphism: Insights from transcriptomic analyses of Platichthys stellatus and Cynoglossus semilaevis. Comp. Biochem. Phys. D Genom. Proteom. 2021, 39, 100832. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.L.; Wang, H.Z.; Yang, J.J.; Chen, J.M.; Jie, J.; Li, L.W.; Liu, Z.R. Reciprocal regulation of protein kinase and pyruvate kinase activities of pyruvate kinase M2 by growth signals. J. Biol. Chem. 2013, 288, 15971–15979. [Google Scholar] [CrossRef] [PubMed]
- Peterside, I.E.; Selak, M.A.; Simmons, R.A. Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E1258. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.C.; Xu, Z.; Ai, Q.H. Arginine metabolism and its functions in growth, nutrient utilization, and immunonutrition of fish. Anim. Nutr. 2021, 7, 716–727. [Google Scholar] [CrossRef]
- Banerjee, B.; Koner, D.; Lal, P.; Sahaet, N. Unique mitochondrial localization of arginase 1 and 2 in hepatocytes of air-breathing walking catfish, Clarias batrachus and their differential expression patterns under hyper-ammonia stress. Gene 2017, 622, 13. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wu, L.J.; Chen, J.; Dong, L.L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther. 2021, 6, 94. [Google Scholar] [CrossRef] [PubMed]
- Rubin, P.; Mollison, K.W. Pharmacotherapy of diseases mediated by 5-lipoxygenase pathway eicosanoids. Prostaglandins Other Lipid Mediat. 2007, 83, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.G.; Douglas-Jones, A.; Mansel, R.E. Levels of expression of lipoxygenases and cyclooxygenase-2 in human breast cancer. Prostaglandins Leukot. Essent. Fat. Acids 2003, 69, 275–281. [Google Scholar] [CrossRef]
- Siafakas, A.R.; Richardson, D.R. Growth arrest and DNA damage-45 alpha (GADD45α). Int. J. Biochem. Cell B 2009, 41, 986–989. [Google Scholar] [CrossRef]
- Montserrat, N.; Capilla, E.; Navarro, I.; Gutiérrez, J. Metabolic effects of insulin and IGFs on gilthead sea bream (Sparus aurata) muscle cells. Front. Endocrinol. 2012, 3, 55. [Google Scholar] [CrossRef]
- Codina, M.; García de la Serrana, D.; Sánchez-Gurmaches, J.; Montserrat, N.; Chistyakova, O.; Navarro, I.; Gutiérrez, J. Metabolic and mitogenic effects of IGF-II in rainbow trout (Oncorhynchus mykiss) myocytes in culture and the role of IGF-II in the PI3K/Akt and MAPK signalling pathways. Gen. Comp. Endocrinol. 2008, 157, 116–124. [Google Scholar] [CrossRef]
- Rius-Francino, M.; Acerete, L.; Jiménez-Amilburu, V.; Capilla, E.; Navarro, I.; Gutiérrez, J. Differential effects on proliferation of GH and IGFs in sea bream (Sparus aurata) cultured myocytes. Gen. Comp. Endocrinol. 2011, 172, 44–49. [Google Scholar] [CrossRef]
- Tang, Y. The Study of mTOR Signal Pathway in the Regulation of the Rapid Growth of Fish Species. Master’s Thesis, Hunan Normal University, Changsha, China, 2020. [Google Scholar]
- Ren, S.X.; Huang, Z.Y.; Jiang, Y.Q.; Wang, T. dTBC1D7 regulates systemic growth independently of TSC through insulin signaling. J. Cell Biol. 2018, 217, 517–526. [Google Scholar] [CrossRef]
- Zhang, J.H.; Shen, Y.B.; Xu, X.Y.; Dai, Y.F.; Li, J.L. Transcriptome Analysis of the liver and muscle tissues of black carp (Mylopharyngodon piceus) of different growth rates. Mar. Biotechnol. 2020, 22, 706–716. [Google Scholar] [CrossRef]
- Xie, N.N.; Tian, J.; Meng, X.L.; Dong, L.X.; Jiang, M.; Wen, H.; Lu, X. DNA methylation profiling and transcriptome sequencing reveal the molecular mechanism of the high-carbohydrate diet on muscle growth of grass carp (Ctenopharyngodon idella). Aquac. Rep. 2023, 30, 101545. [Google Scholar] [CrossRef]
- Sabatelli, P.; Gualandi, F.; Gara, S.K.; Grumati, P.; Zamparelli, A.; Martoni, E.; Pellegrini, C.; Merlini, L.; Ferlini, A.; Bonaldo, P.; et al. Expression of collagen VI α5 and α6 chains in human muscle and in Duchenne muscular dystrophy-related muscle fibrosis. Matrix Biol. 2012, 31, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.L.; Mörgelin, M.; Rachel, P.; Nathalie, G.; North, K.N.; Bateman, J.F.; Lamandé, S.R. Dominant collagen VI mutations are a common cause of Ullrich congenital muscular dystrophy. Hum. Mol. Genet. 2005, 14, 279–293. [Google Scholar] [CrossRef]
- Bahl, N.; Stone, G.; Mclean, M.; Ho, K.K.Y.; Vita Birzniece, V. Decorin, a growth hormone-regulated protein in humans. Eur. J. Endocrinol. 2018, 178, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Kim, J.H.; Cheng, C.; Rawlins, B.A.; Boachie-Adjei, O.; Crystal, R.G.; Hidaka, C. Noggin regulation of bone morphogenetic protein (BMP) 2/7 heterodimer activity in vitro. Bone 2006, 39, 61–71. [Google Scholar] [CrossRef]
- De Luca, A.; Santra, M.; Baldi, A.; Giordano, A.; Iozzo, R.V. Decorin-induced growth suppression is associated with up-regulation of p21, an inhibitor of cyclin-dependent kinases. J. Biol. Chem. 1996, 271, 18961–18965. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Primer Name | Primer (5′-3′) |
---|---|---|
FBP1 | FBP1 F | AGCATGGTATGATGAAGCACAGTAC |
FBP1 R | GCAGTTGAAGACGGTCCTTAGGT | |
GAPDH | GAPDH F | GGCGTCGTTCGTGGTCTTCA |
GAPDH R | CGTCCTCGGATCAGCAGAACTC | |
PFKl | PFKl F | CTCCTCATCCTCCTCATCCTCATCC |
PFKl R | CGAAGCACGAGCACGACATCTATT | |
IGF2 | IGF2 F | GTGCTCACACGCTCTTCCAGTT |
IGF2 R | CGTTCGGCGGCTTCTTTGTTCT | |
PKM | PKM F | ATGATGAGGAGGAGCGTGAAGAGT |
PKM R | CGAACAGACAGGCGTCCAGAAC | |
ODC | ODC F | TGGACCAATCTCAAGTTCAGGAAGT |
ODC R | GCAGAGAACCAGAATCACATCACAG | |
ARG2 | ARG2 F | GGAGACCTGACCTTCAAGCATCTG |
ARG2 R | AGCGTGACCTTCTACTGAACCAATC | |
GADD45G | GADD45G F | CAAGCCTCCTGTGCCACTCAA |
GADD45G R | AGACTCTTCTTCGCCTTCAATCTCA | |
LOG5 | LOG5 F | AAGGCTAATGGCATCGGTGGAA |
LOG5 R | TCCTCGTCCTCCTGAACTGTCTC | |
LTBP1 | LTBP1 F | CAGGATTCAAGGACTCTCAGGATGG |
LTBP1 R | CCTCTGGTGTGACTGGTGGTGTA | |
EF1α | EF1α F | GTATTACCATTGACATTGC |
EF1α R | CTGAGAAGTACCAGTGAT |
Day | Group | Length (cm) | Weight (g) | Weight Gain Rate (%, Month) | Survival Rate (%) |
---|---|---|---|---|---|
3 | GP | 1.32 ± 0.14 | 0.40 ± 0.05 | - | - |
CE | 1.41 ± 0.17 | 0.41 ± 0.05 | - | - | |
90 | GP | 4.81 ± 0.49 | 1.71 ± 0.51 | 115.95 ± 32.30 b | 92.80 |
CE | 5.92 ± 0.72 | 2.80 ± 0.61 | 228.90 ± 51.30 a | 94.30 | |
180 | GP | 7.60 ± 0.83 b | 6.82 ± 1.43 b | 107.28 ± 31.16 b | 94.29 |
CE | 11.58 ± 1.35 a | 17.83 ± 3.39 a | 182.61 ± 33.99 a | 95.86 | |
270 | GP | 11.18 ± 1.56 b | 16.33 ± 3.17 b | 45.79 ± 10.07 | 95.77 |
CE | 16.94 ± 1.95 a | 36.39 ± 8.40 a | 34.42 ± 7.27 | 97.12 | |
3–270 | GP | - | - | 425.44 ± 65.30 b | 83.80 |
CE | - | - | 964.45 ± 150.53 a | 87.80 |
Swiss-Prot Annotation | Swiss-Prot Id | log2FC | p-Value |
---|---|---|---|
Metabolism | |||
Glycolysis/gluconeogenesis (ko00010) | |||
Fructose-1,6-bisphosphatase 1, FBP1 | Q3SZB7 | 2.9663 | 0.0022 |
ATP-dependent 6-phosphofructokinase, PFK-l | P12382 | 1.5851 | 3.00 × 10−18 |
Fructose-bisphosphate aldolase C, ALDOC | P53448 | 1.1698 | 1.73 × 10−26 |
Fructose-1,6-bisphosphatase isozyme 2, FBP2 | Q9N0J6 | −1.0720 | 1.87 × 10−43 |
Beta-enolase, ENO3 | B5DGQ7 | −1.1410 | 3.87 × 10−60 |
Pyruvate kinase, PKM | Q92122 | −1.3675 | 4.19 × 10−29 |
Glyceraldehyde-3-phosphate dehydrogenase, GAPDH | Q5XJ10 | −1.3808 | 1.06 × 10−63 |
Phosphoglycerate mutase 2, PGAM2 | P15259 | −1.3868 | 4.98 × 10−73 |
Phosphoglucomutase-1, PGM-1 | Q08DP0 | −2.9078 | 1.56 × 10−7 |
Fatty acid biosynthesis (ko00061) | |||
Long-chain-fatty-acid-CoA ligase 4, ACSL4 | Q9QUJ7 | 2.3333 | 1.93 × 10−45 |
Enoyl-[acyl-carrier-protein] reductase, MECR | Q28GQ2 | 1.9786 | 0.0047 |
Glutaryl-CoA dehydrogenase, GCDH | Q2KHZ9 | 1.6638 | 3.80 × 10−124 |
Long-chain-fatty-acid-CoA ligase 1, ACSL1 | Q9JID6 | −1.0999 | 2.52 × 10−9 |
Long-chain-fatty-acid-CoA ligase, ACBG2 | Q7ZYC4 | −1.3741 | 1.14 × 10−6 |
Oxidative phosphorylation (ko00190) | |||
Cytochrome c oxidase subunit 1, COX1 | O78681 | 1.3706 | 7.66 × 10−70 |
V-type proton ATPase 16 kDa proteolipid subunit, ATP6C | P27449 | 1.3687 | 2.71 × 10−20 |
V-type proton ATPase subunit S1, ATP6IP1 | P40682 | 1.0171 | 3.27 × 10−5 |
Arginine biosynthesis (ko00220) | |||
Arginase, non-hepatic 2, ARG2 | Q91554 | 3.0893 | 7.09 × 10−188 |
Glutamine synthetase, GS | Q4R7U3 | 2.8844 | 0.0002 |
Argininosuccinate synthase, ASS | Q66I24 | 1.3530 | 2.09 × 10−18 |
Alanine aminotransferase 2-like, ALAT2 | Q6NYL5 | 1.0654 | 8.87 × 10−5 |
Glycine, serine, and threonine metabolism (ko00260) | |||
Glycine cleavage system H protein, GCSH | P11183 | 1.9057 | 1.25 × 10−7 |
Glycine dehydrogenase (decarboxylating), GLDC | P23378 | 1.8935 | 9.32 × 10−43 |
L-threonine 3-dehydrogenase, TDH | Q2KIR8 | 1.5801 | 4.53 × 10−42 |
2-Amino-3-ketobutyrate coenzyme A ligase, KBL | O75600 | 1.0194 | 2.34 × 10−12 |
Guanidinoacetate N-methyltransferase, GAMT | Q71N41 | −1.0939 | 2.06 × 10−38 |
5-Aminolevulinate synthase, erythroid-specific, ALAS-E | Q9YHT4 | −1.3104 | 4.77 × 10−55 |
Phosphoserine phosphatase, PSPH | P78330 | −1.4583 | 1.82 × 10−8 |
Arginine and proline metabolism (ko00330) | |||
Ornithine decarboxylase, ODC | P09057 | 2.1095 | 1.96 × 10−102 |
Creatine kinase S-type, CKS | P11009 | 1.2791 | 0.0054 |
Prolyl 4-hydroxylase subunit alpha-1, P4HA1 | Q1RMU3 | 1.0175 | 4.95 × 10−8 |
Spermine oxidase, SMO | Q70LA7 | −1.0509 | 5.59 × 10−11 |
Creatine kinase B-type, CKB | P05122 | −1.1671 | 2.80 × 10−17 |
Arachidonic acid metabolism (ko00590) | |||
Prostacyclin synthase, PTGIS | F1RE08 | 2.0229 | 2.97 × 10−35 |
Prostaglandin G/H synthase 2, COX2 | P70682 | 1.7387 | 6.57 × 10−94 |
Prostaglandin E synthase, PTGES | Q95L14 | 1.7151 | 1.04 × 10−62 |
Polyunsaturated fatty acid 5-lipoxygenase, LOG5 | P09917 | −2.4108 | 6.26 × 10−8 |
Growth-relative pathways | |||
MAPK signaling pathway (ko04013) | |||
Growth-arrest- and DNA-damage-inducible protein gamma, GADD45G | Q2KIX1 | 2.0844 | 2.02 × 10−55 |
Growth-arrest- and DNA-damage-inducible protein beta, GADD45B | O75293 | 1.7536 | 1.46 × 10−135 |
Dual-specificity protein phosphatase 1-A, DUSP1-A | Q91790 | 1.5648 | 1.18 × 10−174 |
Growth-arrest- and DNA-damage-inducible protein alpha, GADD45A | P24522 | 1.0219 | 2.70 × 10−7 |
Insulin-like growth factor II, IGF2 | Q02816 | −1.2402 | 5.33 × 10−11 |
Mast/stem cell growth factor receptor, KITA | Q8JFR5 | −1.2955 | 1.96 × 10−9 |
Ribosomal protein S6 kinase alpha-5, MSK1 | Q8C050 | −3.9579 | 0.0126 |
mTOR signaling pathway (ko04150) | |||
Large neutral amino acid transporter small subunit 5, SLC7A5 | Q7YQK4 | 1.5903 | 3.22 × 10−7 |
TBC1 domain family member 7, TBC1D7 | F1QRX7 | 1.2640 | 1.25 × 10−7 |
CAP-Gly domain-containing linker protein 1, CLIP1 | O42184 | 1.1088 | 3.60 × 10−31 |
Rapamycin-insensitive companion of mTOR Rictor, RICTR | Q6QI06 | 1.1008 | 3.20 × 10−11 |
E3 ubiquitin-protein ligase, RNF152 | Q58EC8 | −2.1847 | 0.0064 |
PI3K-Akt signaling pathway (ko04151) | |||
Integrin alpha-6 light chain, ITGA6 | P26007 | 1.8209 | 3.80 × 10−91 |
Integrin alpha-3 light chain, ITA3 | Q62470 | 1.8050 | 2.42 × 10−21 |
Collagen alpha-1(VI) chain, COL6A1 | P12109 | −1.5839 | 6.26 × 10−65 |
Collagen alpha-2(I) chain, COL1A2 | O93484 | −2.1801 | 3.16 × 10−151 |
Collagen alpha-1(I) chain, COL1A1 | P02457 | −2.3289 | 1.42 × 10−189 |
TGF-beta signaling pathway (ko04350) | |||
Latent-transforming growth factor beta-binding protein 1, LTBP1 | Q00918 | −1.0871 | 0.0030 |
Decorin | Q29393 | −1.3786 | 8.19 × 10−105 |
Repulsive guidance molecule A, RGMA | Q8JG54 | −1.6540 | 1.56 × 10−12 |
Noggin-2, NOGG2 | Q9W740 | −2.6002 | 0.0115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhou, J. Molecular Mechanisms of Growth Differences in Gymnocypris przewalskii and Gymnocypris eckloni through a Comparative Transcriptome Perspective. Fishes 2024, 9, 89. https://doi.org/10.3390/fishes9030089
Zhao Y, Zhou J. Molecular Mechanisms of Growth Differences in Gymnocypris przewalskii and Gymnocypris eckloni through a Comparative Transcriptome Perspective. Fishes. 2024; 9(3):89. https://doi.org/10.3390/fishes9030089
Chicago/Turabian StyleZhao, Yun, and Junming Zhou. 2024. "Molecular Mechanisms of Growth Differences in Gymnocypris przewalskii and Gymnocypris eckloni through a Comparative Transcriptome Perspective" Fishes 9, no. 3: 89. https://doi.org/10.3390/fishes9030089
APA StyleZhao, Y., & Zhou, J. (2024). Molecular Mechanisms of Growth Differences in Gymnocypris przewalskii and Gymnocypris eckloni through a Comparative Transcriptome Perspective. Fishes, 9(3), 89. https://doi.org/10.3390/fishes9030089