Assessment of Fish Species in Wanlv Lake, the Largest Drinking Water Source in South China, by Environmental DNA Metabarcoding Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Locations and Environmental DNA Sample Collection
2.2. DNA Extraction and PCR Amplification
2.3. High throughput Sequencing and Bioinformatics Analysis
2.4. Fish Abundance and Biodiversity Analysis
3. Results
3.1. High throughput Sequencing Results
3.2. Wanlv Lake eDNA Species Annotation
3.3. Fish Distribution in Wanlv Lake
3.4. Analysis of Alpha Diversity of Fish in Wanlv Lake
3.4.1. Alpha Diversity Indexes
3.4.2. Species Accumulation Curve Analysis
3.5. Analysis of Beta Diversity of Fish in Wanlv Lake
3.6. Analysis of Fish Diversity in Wanlv Lake
4. Discussion
4.1. Status of Fish Diversity in Lake Wanlv
4.2. Analysis of Alpha and Beta Diversity of Fish in Wanlv Lake
4.3. Monitoring and Protection of Invasive Species in Wanv Lake
4.4. eDNA Method Can Be Used as the First Choice for Long-Term Monitoring of Important Water Sources
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Yang, F.; Zhang, R.; Liu, S.; Yang, Z.; Lin, L.; Ye, S. Environmental DNA metabarcoding of fish communities in a small hydropower dam reservoir: A comparison between the eDNA approach and established fishing methods. J. Freshw. Ecol. 2022, 37, 341–362. [Google Scholar] [CrossRef]
- Rahat, M.A.R.; Roy, N.; Manon, M.R.K.; Ullah, M.R.; Islam, M.M.; Rashid, M.T.; Hasan, K.R.; Chakma, S.; Rahman, M.A. Temporal distribution of fishery resources in Payra river: Relationship with climatological changes, ecological assessment, and threat assessment. Heliyon 2022, 8, e10584. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, J.; Yao, M. A comprehensive and comparative evaluation of primers for metabarcoding edna from fish. Methods Ecol. Evol. 2020, 11, 1609–1625. [Google Scholar] [CrossRef]
- Wang, X.; Lu, G.; Zhao, L.; Yang, Q.; Gao, T. Assessment of fishery resources using environmental DNA: Small yellow croaker (Larimichthys polyactis) in east China sea. PLoS ONE 2020, 15, e244495. [Google Scholar] [CrossRef]
- Miya, M.; Gotoh, R.O.; Sado, T. MiFish metabarcoding: A high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples. Fish. Sci. 2020, 86, 939–970. [Google Scholar] [CrossRef]
- Coble, A.A.; Flinders, C.A.; Homyack, J.A.; Penaluna, B.E.; Cronn, R.C.; Weitemier, K. eDNA as a tool for identifying freshwater species in sustainable forestry: A critical review and potential future applications. Sci. Total Environ. 2019, 649, 1157–1170. [Google Scholar] [CrossRef]
- Ruppert, K.M.; Kline, R.J.; Rahman, M.S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 2019, 17, e00547. [Google Scholar] [CrossRef]
- Xie, Z.G.; Ruan, G. Assessment of sensitivity and effectiveness of environmental DNA macro barcoding for monitoring fish species diversity in streams and reservoirs. Chin. Agric. Sci. Bull. 2023, 39, 157–164. (In Chinese) [Google Scholar]
- Colmenares GM, G.; Montes AJ, G.; Harms-Tuohy, C.A.; Schizas, N.V. Using eDNA sampling for species—Specific fish detection in tropical oceanic samples: Limitations and recommendations for future use. PeerJ 2023, 11, e14810. [Google Scholar] [CrossRef]
- Tillotson, M.D.; Kelly, R.P.; Duda, J.J.; Hoy, M.; Kralj, J.; Quinn, T.P. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales. Biol. Conserv. 2018, 220, 1–11. [Google Scholar] [CrossRef]
- Doi, H.; Inui, R.; Akamatsu, Y.; Kanno, K.; Yamanaka, H.; Takahara, T.; Minamoto, T. Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshw. Biol. 2017, 62, 30–39. [Google Scholar] [CrossRef]
- Westhoff, J.T.; Berkman, L.K.; Klymus, K.E.; Thompson, N.L.; Richter, C.A. A comparison of eDNA and visual survey methods for detection of longnose darter Percina nasuta in Missouri. Fishes 2022, 7, 70. [Google Scholar] [CrossRef]
- Harper, L.R.; Handley, L.L.; Hahn, C.; Boonham, N.; Rees, H.C.; Gough, K.C.; Lewis, E.; Adams, I.P.; Brotherton, P.; Phillips, S.; et al. Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus). Ecol. Evol. 2018, 8, 6330–6341. [Google Scholar] [CrossRef] [PubMed]
- Lacoursière-Roussel, A.; Dubois, Y.; Normandeau, E.; Bernatchez, L. Improving herpetological surveys in eastern north America using the environmental DNA method. Genome 2016, 59, 991–1007. [Google Scholar] [CrossRef] [PubMed]
- Kuroki, M.; Miller, M.J.; Feunteun, E.; Sasal, P.; Pikering, T.; Han, Y.-S.; Faliex, E.; Acou, A.; Dessier, A.; Schabetsberger, R.; et al. Distribution of anguillid leptocephali and possible spawning are as in the south Pacific Ocean. Prog. Oceanogr. 2020, 180, 102234. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, A.; Watanabe, S.; Yamamoto, S.; Miller, M.; Fukuba, T.; Miwa, T.; Okino, T.; Minamoto, T.; Tsukamoto, K. First use of oceanic environmental DNA to study the spawning ecology of the Japanese eel Anguilla japonica. Mar. Ecol. Prog. Ser. 2019, 609, 187–196. [Google Scholar] [CrossRef]
- Valentini, A.; Taberlet, P.; Miaud, C.; Civade, R.; Herder, J.; Thomsen, P.F.; Bellemain, E.; Besnard, A.; Coissac, E.; Boyer, F.; et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 2016, 25, 929–942. [Google Scholar] [CrossRef]
- Shu, L.; Chen, S.; Li, P.; Peng, Z. Environmental DNA metabarcoding reflects fish DNA dynamics in lentic ecosystems: A case study of freshwater ponds. Fishes 2022, 7, 257. [Google Scholar] [CrossRef]
- Milhau, T.; Valentini, A.; Poulet, N.; Roset, N.; Jean, P.; Gaboriaud, C.; Dejean, T. Seasonal dynamics of riverine fish communities using eDNA. J. Fish Biol. 2021, 98, 387–398. [Google Scholar] [CrossRef]
- Sigsgaard, E.E.; Nielsen, I.B.; Carl, H.; Krag, M.A.; Knudsen, S.W.; Xing, Y.; Holm-Hansen, T.H.; Møller, P.R.; Thomsen, P.F. Seawater environmental DNA reflects seasonality of a coastal fish community. Mar. Biol. 2017, 164, 128. [Google Scholar] [CrossRef]
- Stoeckle, M.Y.; Soboleva, L.; Charlop-Powers, Z. Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLoS ONE 2017, 12, e0175186. [Google Scholar] [CrossRef]
- Zhang, H.; Yoshizawa, S.; Iwasaki, W.; Xian, W. Seasonal fish assemblage structure using environmental DNA in the Yangtze estuary and its adjacent waters. Front. Mar. Sci. 2019, 6, 515. [Google Scholar] [CrossRef]
- Stat, M.; Huggett, M.J.; Bernasconi, R.; DiBattista, J.D.; Berry, T.E.; Newman, S.J.; Harvey, E.S.; Bunce, M. Ecosystem biomonitoring with eDNA: Metabarcoding across the tree of life in a tropical marine environment. Sci. Rep. 2017, 7, 12240. [Google Scholar] [CrossRef]
- Jerde, C.L.; Chadderton, W.L.; Mahon, A.R.; Renshaw, M.A.; Corush, J.; Budny, M.L.; Mysorekar, S.; Lodge, D.M. Detection of Asian carp DNA as part of a great lakes basin-wide surveillance program. Can. J. Fish. Aquat. Sci. 2013, 70, 522–526. [Google Scholar] [CrossRef]
- Civade, R.; Dejean, T.; Valentini, A.; Roset, N.; Raymond, J.-C.; Bonin, A.; Taberlet, P.; Pont, D. Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system. PLoS ONE 2016, 11, e0157366. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Ludwig, A.; Peng, Z. Environmental DNA metabarcoding primers for freshwater fish detection and quantification: In silico and in tanks. Ecol. Evol. 2021, 11, 8281–8294. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Ludwig, A.; Peng, Z. Standards for Methods Utilizing Environmental DNA for Detection of Fish Species. Genes 2020, 11, 296. [Google Scholar] [CrossRef] [PubMed]
- Taberlet, P.; Bonin, A.; Coissac, E.; Zinger, L. Environmental DNA: For Biodiversity Research and Monitoring; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Guillerault, N.; Bouletreau, S.; Iribar, A.; Valentini, A.; Santoul, F. Application of DNA metabarcoding on faeces to identify European cat fish Silurus glanis diet. J. Fish Biol. 2017, 90, 2214–2219. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K.; Doi, H.; Matsuoka, S.; Nagano, M.; Sato, H.; Yamanaka, H. Environmental DNA metabarcoding for fish community analysis in backwater lakes: A comparison of capture methods. PLoS ONE 2019, 14, e0210357. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Pirrung, M.; Mccue, L.A. FQC dashboard: Integrates fastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics 2017, 33, 3137–3139. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.; Mante, J.; Myers, C.J. Sequence-based searching for SynBioHub using VSEARCH. ACS Synth. Biol. 2022, 11, 990–995. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Rijin, J.; Leonard, L.J.; Yongjiu, C. High-throughput DNA metabarcoding as an approach for ichthyoplankton survey in Oujiang river estuary, China. Diversity 2022, 14, 1111. [Google Scholar]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Schnell, I.B.; Bohmann, K.; Gilbert, M.T. Tag jumps illuminated—Reducing sequence-to-sample misidentifications in metabarcoding studies. Mol. Ecol. Resour. 2015, 15, 1289–1303. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Shannon, C.E.; Weaver, W.J. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949; p. 117. [Google Scholar]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Supriadi, D.; Widayaka, R.; Saputra, A.; Hakim, M.L. Demersal fish diversity index in cirebon waters, west Java. Asian J. Fish. Aquat. Res. 2021, 12, 22–28. [Google Scholar] [CrossRef]
- Weigand, H.; Beermann, A.J.; Čiampor, F.; Costa, F.O.; Csabai, Z.; Duarte, S.; Geigerg, M.F.; Grabowski, M.; Rimet, F.; Rulik, B.; et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Sci. Total Environ. 2019, 678, 499–524. [Google Scholar] [CrossRef]
- Tzafesta, E.; Saccomanno, B.; Zangaro, F.; Vadrucci, M.R.; Specchia, V.; Pinna, M. DNA barcode gap analysis for multiple marker genes for phytoplankton species biodiversity in mediterranean aquatic ecosystems. Biology 2022, 11, 1277. [Google Scholar] [CrossRef]
- Miya, M. Environmental DNA metabarcoding: A novel method for biodiversity monitoring of marine fish communities. Annu. Rev. Mar. Sci. 2022, 14, 161–185. [Google Scholar] [CrossRef]
- Chan, F.T.; Beatty, S.J.; Gilles, A.S., Jr.; Hill, J.E.; Kozic, S.; Luo, D.; Morgan, D.L.; Pavia, R.T.B., Jr.; Therriault, T.W.; Verreycken, H.; et al. Leaving the fish bowl: The ornamental trade as a global vector for freshwater fish invasions. Aquat. Ecosyst. Health Manag. 2019, 22, 23. [Google Scholar] [CrossRef]
- Di, J.; Zhang, S.; Huang, J.; Du, H.; Zhou, Y.; Zhou, Q.; Wei, Q. Isolation and identification of pathogens causing Haemorrhagic septicaemia in cultured Chinese sturgeon (acipensersinensis). Aquac. Res. 2018, 49, 3624–3633. [Google Scholar] [CrossRef]
- Andolina, C.; Signa, G.; Cilluffo, G.; Iannucci, S.; Mazzola, A.; Vizzini, S. Coexisting with the alien: Evidence for environmental control on trophic interactions between a native (Atherina boyeri) and a non-indigenous fish species (Gambusia holbrooki) in a mediterranean coastal ecosystem. Front. Ecol. Evol. 2022, 10, 958467. [Google Scholar] [CrossRef]
- David, P.; Thebault, E.; Anneville, O.; Duyck, P.F.; Chapuis, E.; Loeuille, N. Impacts of invasive species on food webs: A review of empirical data. Netw. Invasion Synth. Concepts 2017, 56, 1. [Google Scholar]
- Bernery, C.; Bellard, C.; Courchamp, F.; Brosse, S.; Gozlan, R.E.; Jarić, I.; Teletchea, F.; Leroy, B. Freshwater fish invasions: A comprehensive review. Annu. Rev. Ecol. Evol. Syst. 2022, 53, 427–456. [Google Scholar] [CrossRef]
- Ruiz-Navarro, A.; Torralva, M.; Oliva-Paterna, F.J. Trophic overlap between cohabiting populations of invasive mosquitofish and an endangered toothcarp at changing salinity conditions. Aquat. Biol. 2013, 19, 1–11. [Google Scholar] [CrossRef]
- Carmona-Catot, G.; Magellan, K.; Garcia-Berthou, E. Temperature-specific competition between invasive mosquitofish and an endangered cyprinodontid fish. PLoS ONE 2013, 8, e54734. [Google Scholar] [CrossRef]
- Zhan, A.; Macisaac, H.J. Rare biosphere exploration using high-throughput sequencing: Research progress and perspectives. Conserv. Genet. 2015, 16, 513–522. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, Q.; Wang, Y.; Wang, X.; Zhao, J.; Yao, M. Assessment of fish communities using environmental DNA: Effect of spatial sampling design in lentic systems of different sizes. Mol. Ecol. Resour. 2020, 20, 242–255. [Google Scholar] [CrossRef]
- Su, G.; Logez, M.; Xu, J.; Tao, S.; Villéger, S.; Brosse, S. Human impact son global freshwater fish biodiversity. Science 2021, 371, 835–838. [Google Scholar] [CrossRef]
- Yao, M.; Zhang, S.; Lu, Q.; Chen, X.; Zhang, S.Y.; Kong, Y.; Zhao, J. Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward. Mol. Ecol. 2022, 31, 5132–5164. [Google Scholar] [CrossRef]
- McCarthy, A.; Rajabi, H.; McClenaghan, B.; Fahner, N.A.; Porter, E.; Singer, G.A.C.; Hajibabaei, M. Comparative analysis of fish eDNA reveals higher sensitivity achieved through targeted sequence-based metabarcoding. Mol. Ecol. Resour. 2022, 23, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.Y.; Zhao, Z. Application of environmental DNA technologies in monitoring aquatic invasive species. Asian J. Ecotoxicol. 2021, 16, 1–12. (In Chinese) [Google Scholar]
- Wu, Y.S.; Tang, Y.K.; Li, J.L.; Liu, K.; Li, H.X.; Wang, Q.; Yu, J.H.; Xu, P. The application of environmental DNA in the monitoring of the Yangtze finless porpoise, Neophocaena phocaenoides asaeorientalis. J. Fish. Sci. China 2019, 26, 124–132. (In Chinese) [Google Scholar] [CrossRef]
Sample | Input | Merged | Filtered | Non-Chimeric | Non-Singleton |
---|---|---|---|---|---|
1 | 96,862 | 81,288 | 79,538 | 74,130 | 73,979 |
2 | 91,078 | 69,598 | 67,006 | 60,969 | 60,803 |
3 | 90,951 | 82,293 | 81,000 | 79,009 | 78,910 |
4 | 110,313 | 91,375 | 88,325 | 78,244 | 77,857 |
5 | 85,417 | 80,750 | 78,125 | 76,399 | 76,362 |
6 | 92,474 | 81,288 | 80,103 | 77,798 | 77,744 |
7 | 91,385 | 65,884 | 64,406 | 51,212 | 50,643 |
8 | 93,885 | 73,837 | 72,519 | 65,531 | 65,264 |
9 | 85,852 | 82,070 | 80,476 | 76,691 | 76,516 |
10 | 98,233 | 95,671 | 92,226 | 84,840 | 84,460 |
Sampling Site | Class | Order | Family | Genus | Species | Unclassified |
---|---|---|---|---|---|---|
1 | 5 | 0 | 17 | 14 | 29 | 644 |
2 | 4 | 0 | 13 | 11 | 30 | 933 |
3 | 5 | 0 | 8 | 14 | 31 | 823 |
4 | 4 | 1 | 16 | 27 | 48 | 1146 |
5 | 3 | 0 | 10 | 19 | 41 | 2187 |
6 | 1 | 0 | 13 | 18 | 51 | 1302 |
7 | 2 | 0 | 10 | 10 | 42 | 538 |
8 | 7 | 1 | 17 | 35 | 53 | 2977 |
9 | 3 | 3 | 9 | 17 | 29 | 2445 |
10 | 4 | 4 | 7 | 23 | 26 | 1127 |
Sampling Site | Chao 1 | Shannon | Simpson |
---|---|---|---|
1 | 1013.34 | 6.73 | 0.93 |
2 | 1007.79 | 6.94 | 0.67 |
3 | 1152.89 | 6.48 | 0.96 |
4 | 1189.63 | 6.89 | 0.82 |
5 | 1002.53 | 6.93 | 0.71 |
6 | 1201.55 | 5.78 | 0.98 |
7 | 1031.51 | 6.79 | 0.92 |
8 | 1005.41 | 6.83 | 0.89 |
9 | 1163.61 | 6.46 | 0.97 |
10 | 1013.34 | 7.03 | 0.61 |
Serial Number | Order | Family | Species |
---|---|---|---|
1 | Synbranchiformes | Synbranchidae | Monopterus albus |
2 | Perciformes | Percichthyidae | Siniperca chuatsi |
3 | Serranidae | Epinephelus | |
4 | Cichlidae | Oreochromis | |
5 | Gobiidae | Rhinogobius filamentosus | |
6 | Carangidae | Decapterus | |
7 | Carangidae | Trachurus japonicus | |
8 | Percidae | Acerina cernua | |
9 | Gerreidae | Gerres decacanthus | |
10 | Sciaenidae | Larimichthys crocea | |
11 | Lobotidae | Lobotes surinamensis | |
12 | Clupeiformes | Clupeidae | Clupanodon thrissa |
13 | Cypriniformes | Cyprinidae | Megalobrama terminalis |
14 | Cyprinidae | Culte alburnus | |
15 | Cyprinidae | Opsariichthys bidens | |
16 | Cyprinidae | Acrossocheilus fasciatus | |
17 | Cyprinidae | Xenocypris davidi | |
18 | Cyprinidae | Metzia lineata | |
19 | Cyprinidae | Rhodeus spinalis | |
20 | Cyprinidae | Hypophthalmichthys molitrix | |
21 | Cyprinidae | Squaliobarbus curriculus | |
22 | Cyprinidae | Cyprinus carpio | |
23 | Cyprinidae | Hemiculter leucisculus | |
24 | Cyprinidae | Ptychidio jordani | |
25 | Cyprinidae | Cirrhina molitorella | |
26 | Cyprinidae | Ctenopharyngodon idella | |
27 | Cyprinidae | Sinocyclocheilus | |
28 | Cyprinidae | Hypophthalmichthys molitrix | |
29 | Cyprinidae | Sarcocheilichthys parvus | |
30 | Cyprinidae | Microphysogobio | |
31 | Cyprinidae | Carassius auratus | |
32 | Cyprinidae | Osteochilus salsburyi | |
33 | Siluriformes | Siluridae | Silurus asotus |
34 | Plotosidae | Plotosus | |
35 | Siluridae | Hypostomus plecostomus | |
36 | Myctophiformes | Myctophidae | Stenobrachius leucopsarus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Fu, J.; Zhou, D.; Huang, J.; Xu, M. Assessment of Fish Species in Wanlv Lake, the Largest Drinking Water Source in South China, by Environmental DNA Metabarcoding Technology. Fishes 2024, 9, 86. https://doi.org/10.3390/fishes9030086
Wu J, Fu J, Zhou D, Huang J, Xu M. Assessment of Fish Species in Wanlv Lake, the Largest Drinking Water Source in South China, by Environmental DNA Metabarcoding Technology. Fishes. 2024; 9(3):86. https://doi.org/10.3390/fishes9030086
Chicago/Turabian StyleWu, Jingjing, Jinghua Fu, Dingkang Zhou, Jiasen Huang, and Minjun Xu. 2024. "Assessment of Fish Species in Wanlv Lake, the Largest Drinking Water Source in South China, by Environmental DNA Metabarcoding Technology" Fishes 9, no. 3: 86. https://doi.org/10.3390/fishes9030086
APA StyleWu, J., Fu, J., Zhou, D., Huang, J., & Xu, M. (2024). Assessment of Fish Species in Wanlv Lake, the Largest Drinking Water Source in South China, by Environmental DNA Metabarcoding Technology. Fishes, 9(3), 86. https://doi.org/10.3390/fishes9030086