Potential Effects of Dietary Cabanin® CSD on Growth Performance and Biochemical and Antioxidant Responses of Nile Tilapia (Oreochromis niloticus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Diets
2.2. Fish and Feeding Trial
2.3. Ammonia Challenge Test
2.4. Sample Collection and Analysis
2.5. Thiobarbituric Acid Reactive Substances (TBARS) Analysis
2.6. Data Calculation
2.7. Statistical Analysis
3. Results
3.1. Water Quality
3.2. Growth Performance
3.3. Evaluation of SOD and TBARs Activity
3.4. Survival Rate of Tilapia after Ammonia Exposure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdel-Aziz, M.F.A.; Hassan, H.U.; Yones, A.M.; Abdel-Tawwab, Y.A.; Metwalli, T. Assessing the effect of different feeding frequencies combined with stocking density, initial weight, and dietary protein ratio on the growth performance of tilapia, catfish and carp. Sci. Afr. 2021, 12, 00806. [Google Scholar] [CrossRef]
- Wang, M.; Lu, M. Tilapia polyculture: A global review. Aquac. Res. 2016, 47, 2363–2374. [Google Scholar] [CrossRef]
- Lim, S.J.; Jang, E.; Lee, S.H.; Yoo, B.H.; Kim, S.K. Antibiotic resistance in bacteria isolated from freshwater aquacultures and prediction of the persistence and toxicity of antimicrobials in the aquatic environment. J. Environ. Sci. Health B 2013, 48, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Song, S.K.; Beck, B.R.; Kim, D.; Park, J.; Kim, J. Prebiotics as immunostimulants in aquaculture: A review. Fish Shellfish Immunol. 2014, 40, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Bustamam, M.S.A.; Pantami, H.A.; Azam, A.A.; Shaari, K.; Min, C.C.; Ismail, I.S. The immunostimulant effects of Isochrysis galbana supplemented diet on the spleen of red hydrid tilapia (Oreochromis spp.) evaluated by nuclear magnetic resonance metabolomics. Aquac. Nutr. 2022, 2022, 1154558. [Google Scholar] [CrossRef]
- Sîrbu, E.; Dima, M.F.; Tenciu, M.; Cretu, M.; Coada, M.T.; Totoiu, A.; Cristea, V.; Patriche, N. Effects of dietary supplementation with probiotics and prebiotics on growth, physiological condition, and resistance to pathogens challenge in Nile tilapia (Oreochromis niloticus). Fishes 2022, 7, 273. [Google Scholar] [CrossRef]
- Yilmaz, S.; Yilmaz, E.; Dawood, M.A.O.; Ringo, E.; Ahmadifar, E.; Abdel-Latif, H.M.R. Probiotic, prebiotic, and synbiotics used to control Vibriosis in fish: A review. Aquaculture 2022, 547, 737514. [Google Scholar] [CrossRef]
- Almarri, S.H.; Khalil, A.A.; Mansour, A.T.; El-Houseiny, W. Antioxidant, immunostimulant, and growth-promoting effects of dietary Annona squamosal leaf extract on Nile tilapia, Oreochromis niloticus, and its tolerance to thermal stress and Aeromonas sobria infection. Animals 2023, 13, 746. [Google Scholar] [CrossRef]
- Kao, T.T.; Tu, H.C.; Chang, W.N.; Chen, B.H.; Shi, Y.Y.; Chang, T.C.; Fu, T.F. Grape seed extract inhibits the growth and pathogenicity of Staphylococcus aureus by interfering with dihydrofolate reductase activity and folate-mediated one-carbon metabolism. Int. J. Food Microbiol. 2010, 14, 17–27. [Google Scholar] [CrossRef]
- Zhai, S.W.; Lu, J.J.; Chen, X.H. Effects of dietary grape seed proanthocyanidins on growth performance, some serum biochemical parameters and body composition of tilapia (Orechromis niloticus) fingerlings. Ital. J. Anim. Sci. 2014, 13, 3357. [Google Scholar] [CrossRef]
- Penglase, S.; Ackery, T.; Kitchen, B.; Flavel, M.; Condon, K. The effects of a natural polyphenol extract from sugarcane (Saccharum offcinarum) on the growth, survival, and feed conversion efficiency of juvenile black tiger shrimp (Penaeus monodon). Appl. Sci. 2022, 12, 8090. [Google Scholar] [CrossRef]
- Doan, H.V.; Hoseinifar, S.H.; Hung, T.Q.; Lumsangkul, C.; Jaturasitha, S.; El-Haroun, E.; Paolucci, M. Diatery inclusion of chesnut (Castanea sativa) polyphenols to Nile tilapia reared in biofloc technology: Impacts on growth, immunity, and disease resistance against Streptococcus agalactiae. Fish Shellfish Immunol. 2020, 105, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Elumalai, P.; Kurian, A.; Lakshmi, S.; Faggio, C.; Esteban, M.A.; Ringo, E. Herbal immunomodulators in aquaculture. Rev. Fish. Sci. Aquac. 2021, 29, 33–57. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington DC, USA, 1995. [Google Scholar]
- Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 1995, 64, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Thiansilakul, Y.; Benjakul, S.; Richards, M.P. Effect of myoglobin from Eastern little tuna muscle on lipid oxidation of washed Asian seabass mince at different pH conditions. J. Food Sci. 2011, 76, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Azaza, M.S.; Dhraief, M.N.; Kraiem, M.M. Effect of water temperature on growth and sex ratio of juvenile Nile tilapia Oreochromis niloticus reared in geothermal waters in southern Tunisia. J. Therm. Biol. 2008, 33, 98–105. [Google Scholar] [CrossRef]
- El-Sherif, M.S.; El-Feky, A.M.I. Performance of Nile tilapia (Oreochromis niloticus) fingerlings. I. Effect of pH. Int. J. Agric. Biol. 2009, 11, 297–300. [Google Scholar]
- Dandruff, P.; Dean, L.S. Dissolved oxygen criteria for the protection of fish. Am. Fish. Soc. 1967, 4, 13–19. [Google Scholar]
- Tamil Nadu Agricultural University (TNAU). Water Quality Management; Tamil Nadu Agricultural University (TNAU): Tamil, India, 2008. [Google Scholar]
- Chainark, S.; Boyd, C.E. Water and sediment quality, phytoplankton communities and channel catfish production in sodium nitrate-treated ponds. J. Appl. Aquac. 2010, 22, 171–185. [Google Scholar] [CrossRef]
- Kumar, N.; Krishnani, K.K.; Singh, N.P. Effect of dietary zinc-nanoparticles on growth performance, anti-oxidative and immunological status of fish reared under multiple stressors. Biol. Trace Elem. Res. 2018, 186, 267–278. [Google Scholar] [CrossRef]
- Goda, M.N.; Shaheen, A.A.M.; Hamed, H.S. Potential role of dietary parsley and/or parsley nanoparticles against zinc oxide nanoparticles toxicity induced physiological, and histological alterations in Nile tilapia, Oreochromis Niloticus. Aquac. Rep. 2023, 28, 101425. [Google Scholar] [CrossRef]
- Abirami, A.; Nagarani, G.; Siddhuraju, P. Hepatoprotective effect of leaf extracts from Citrus hystrix and C. maxima against paracetamol induced liver injury in rats. Food Sci. Hum. Wellness 2015, 4, 35–41. [Google Scholar] [CrossRef]
- Baba, E.; Acar, U.; Ontas, C.; Kesbiç, O.S.; Yilmaz, S. Evaluation of Citrus limon peels essential oil on growth performance, immune response of Mozambique tilapia Oreochromis mossambicus challenged with Edwardsiella tarda. Aquaculture 2016, 465, 13–18. [Google Scholar] [CrossRef]
- Doan, H.; Hoseinifar, S.H.; Elumalai, P.; Tongsiri, S.; Chitmanat, C.; Jaturasitha, S.; Doolgindachbaporn, S. Effects of orange peels derived pectin on innate immune response, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus) cultured under indoor biofloc system. Fish Shellfish Immunol. 2018, 80, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.K. Anthocyanins Increase Antioxidant Enzyme Activity in ht-29 Adenocarcinoma Cells. Ph.D. Thesis, The University of Georgia, Athens, GA, USA, 2009. [Google Scholar]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr. 2018, 4, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Coccia, E.; Siano, F.; Volpe, M.G.; Varricchio, E.; Eroldogan, T.; Paolucci, M. Chestnut shell extract modulates immune parameters in the rainbow trout Oncorhynchus mykiss. Fishes 2019, 4, 36218. [Google Scholar] [CrossRef]
- Jahazi, M.A.; Hoseinifar, S.H.; Jafari, V.; Hajimoradloo, A.; Doan, H.V.; Paolucci, M. Dietary supplementation of polyphenols positively affects the innate immune response, oxidative status, and growth performance of common carp, Cyprinus carpio L. Aquaculture 2020, 517, 734709. [Google Scholar] [CrossRef]
- Laein, S.S.; Salari, A.; Shahsavani, D.; Baghshani, H. Effect of supplementation with lemon (Citrus lemon) pomace powder on the growth performance and antioxidant response in common carp (Cyprinus carpio). J. Biol. Environ. Sci. 2021, 15, 47–54. [Google Scholar]
- Ahmadi, A.; Bagheri, D.; Hoseinifar, S.H.; Morshedi, V.; Paolucci, M. Beneficial role of polyphenols as feed additives on growth performances, immune response and antioxidant status of Lates calcarifer (Bloch, 1790) juveniles. Aquaculture 2022, 552, 737955. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Bhavan, P.; Seenivasan, C.; Shanthi, R.; Muralisankar, T. Replacement of fish meal with Spirulina platensis, Chorella vulgaris and Azolla pinnata on nonenzymatic and enzymatic antioxidant activities of Macrobrachium rosenbergii. J. Basic Appl. Zool. 2014, 67, 25–33. [Google Scholar] [CrossRef]
- Mirvaghefi, A.; Ali, M.; Sadi, F. Effects of vitamin E, selenium and vitamin C on various biomarkers following oxidative stress caused by diazinon exposure in rainbow trout. J. Aquac. Mar. Biol. 2015, 2, 00035. [Google Scholar]
- Doba, T.; Burton, G.W.; Ingold, K.U. Antioxidant and co-antioxidant activity of vitamin C. The effect of vitamin C, either alone or in the presence of vitamin E or a water-soluble vitamin E analogue, upon the peroxidation of aqueous multi lamellar phospholipid liposomes. Biochim. Biophys. Acta 1985, 835, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, C.W.; Quinhones, E.B.; Jung, E.A.C.; Zeni, G.; Rocha, J.B.T. Anti-inflammatory and antiociceptive activity of biphenyl diselenide. Inflamm. Res. 2003, 52, 56–63. [Google Scholar] [CrossRef]
- Ahmad, I.; Pacheco, M.; Santos, M.A. Enzymatic and non-enzymatic antioxidants as an adaptation to phagocyte-induced damage in Anguilla anguilla L. following in situ harbor water exposure. Ecotoxicol. Environ. Saf. 2004, 57, 290. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, F.; Cairang, Z.; Zhou, Z.; Du, Q.; Wang, J.; Zhao, F.; Wang, Q.; Li, Z.; Zhang, X. Role of dietary tea polyphenols on growth performance and gut health benefits in juvenile hybrid sturgeon (Acipenser baerii × A. schrenckii). Fish Shellfish Immunol. 2023, 139, 108911. [Google Scholar] [CrossRef]
- Portz, D.E.; Woodley, C.M.; Cech, J.J. Stress-associated impacts of short-term holding on fishes. Rev. Fish Biol. Fish. 2006, 16, 125–170. [Google Scholar] [CrossRef]
- Frances, J.; Nowak, B.F.; Allan, G.L. Effects of ammonia on juvenile silver perch (Bidyanus bidyanus). Aquaculture 2000, 183, 95–103. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Saha, R.K.; Saha, H. Muli bamboo (Melocanna baccifera) leaves ethanolic extract a non-toxic phyto-prophylactic against low pH stress and saprolegniasis in Labeo rohita fingerlings. Fish Shellfish Immunol. 2018, 74, 609–619. [Google Scholar] [CrossRef]
- Soares, M.P.; Cardoso, I.L.; Ishikawa, M.M.; de Oliveira, A.D.S.S.; Sartoratto, A.; Jonsson, C.M.; de Queiroz, S.C.D.N.; Duarte, M.C.T.; Rantin, F.T.; Sampaio, F.G. Effects of Artemisia annua alcohol extract on physiological and innate immunity of Nile tilapia (Oreochromis niloticus) to improve health status. Fish Shellfish Immunol. 2020, 105, 369–377. [Google Scholar] [CrossRef]
- Hossain, M.S.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Sony, N.M. Dietary effects of adenosine monophosphate to enhance growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream, Pagrus major. Fish Shellfish Immunol. 2016, 56, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Cnaani, C.; Tinman, S.; Ron, Y.; Hulata, G. Comparative study of biochemical parameters in response to stress in Oreochromis aureus, O. mossambicus and two strains of O. niloticus. Aquac. Res. 2004, 35, 1434–1440. [Google Scholar] [CrossRef]
- Iwama, G.K.; Afonso, L.O.B.; Vijayan, M.M. Stress in fishes. In The Physiology of Fishes, 3rd ed.; Evans, D.H., Claiborne, J.B., Eds.; CRC Press: New York, NY, USA, 2006; pp. 319–342. [Google Scholar]
- Kubokawa, K.; Watanabe, T.; Yoshioka, M.; Iwata, M. Effects of acute stress on plasma cortisol, sex steroid hormone and glucose levels in male and female sockeye salmon during the breeding season. Aquaculture 1999, 172, 335–349. [Google Scholar] [CrossRef]
- Dobsikova, R.B.; Modra, J.; Skoric, H.; Svobodova, M.Z. The effect of acute exposure to herbicide Gardoprim Plus Gold 500 SC on hematological & biochemical indicators and histopathological changes in common carp (Cyprinus carpio L.). J. Vet. Pharm. Sci. 2011, 80, 359–363. [Google Scholar]
- Metwally, M.A.A.; Wafeek, M. Effect of ammonia toxicity on carbohydrate metabolism in Nile tilapia (Oreochromis niloticus). World J. Fish Mar. Sci. 2014, 6, 252–261. [Google Scholar]
Ingredients (g/kg) | Experimental Diet | |||
---|---|---|---|---|
Control LOW | Control High | 40% Cabanin® Replacement | 80% Cabanin® Replacement | |
Soybean meal | 521.4 | 521.4 | 521.4 | 521.4 |
Cassava | 179.5 | 179.1 | 179.1 | 178.5 |
Ricebran | 143.0 | 143.0 | 143.0 | 143.0 |
Wheatbran | 50.0 | 50.0 | 50.0 | 50.0 |
Fishmeal | 73.8 | 73.8 | 73.8 | 73.8 |
Soy oil | 17.9 | 17.9 | 17.9 | 17.9 |
Methionine | 2.0 | 2.0 | 2.0 | 2.0 |
Dicalcium phosphate | 11.3 | 11.3 | 11.3 | 11.3 |
Choline chloride | 1.0 | 1.0 | 1.0 | 1.0 |
Vitamin E | 0.05 | 0.25 | 0.15 | 0.05 |
Vitamin C | 0.05 | 0.25 | 0.15 | 0.05 |
Cabanin® | 0.00 | 0.00 | 0.20 | 0.40 |
Nutrient level | ||||
Crude protein, % | 30.5 | 31.1 | 30.9 | 30.5 |
Crude lipid, % | 4.7 | 4.8 | 4.7 | 4.9 |
Ash, % | 8.9 | 8.5 | 8.7 | 8.7 |
Moisture, % | 8.5 | 8.7 | 8.3 | 8.9 |
Water Quality Parameters | |||||
---|---|---|---|---|---|
Temperature (°C) | pH | Dissolved Oxygen (mg L−1) | NH3 (mg L−1) | ||
Morning | Afternoon | Morning | Afternoon | ||
28.4 ± 0.4 a | 29.3 ± 0.8 a | 7.0 ± 0.1 a | 7.3 ± 0.2 a | 5.9 ± 0.3 | 0.02 ± 0.01 |
Parameters | Experimental Diets | |||
---|---|---|---|---|
Control Low | Control High | 40% Cabanin® Replacement | 80% Cabanin® Replacement | |
IBW (g/fish) | 9.73 ± 0.20 a | 9.81 ± 0.08 a | 9.77 ± 0.12 a | 9.85 ± 0.06 a |
FBW (g/fish) | 97.49 ± 2.0 a | 92.98 ± 5.28 a | 109.91 ± 4.97 b | 105.45 ± 2.73 b |
SGR (%/day) | 3.60 ± 0.05 ab | 3.50 ± 0.07 a | 3.78 ± 0.05 c | 3.70 ± 0.05 bc |
WG (g/fish) | 87.76 ± 2.03 a | 83.16 ± 5.23 a | 100.14 ± 4.58 b | 95.59 ± 2.74 b |
Parameters | Experimental Diets | |||
---|---|---|---|---|
Control Low | Control High | 40% Cabanin® Replacement | 80% Cabanin® Replacement | |
Feed intake (g/fish/day) | 1.55 ± 0.09 a | 1.44 ± 0.10 a | 1.58 ± 0.12 a | 1.47 ± 0.15 a |
FCR | 1.34 ± 0.07 a | 1.22 ± 0.11 ab | 1.07 ± 0.10 b | 1.09 ± 0.06 b |
SR (%) | 87.33 ± 8.08 ab | 89.33 ± 2.31 a | 94.0 ± 2.0 b | 89.33 ± 7.57 ab |
Treatment | SOD (Units/mL) | TBARs (nmol/mL) |
---|---|---|
Control low | 0.36 ± 0.01 a | 0.23 ± 0.03 a |
Control high | 0.34 ± 0.04 a | 0.22 ± 0.01 a |
40% Cabanin® replacement | 0.45 ± 0.02 b | 0.17 ± 0.01 b |
80% Cabanin® replacement | 0.51 ± 0.07 b | 0.17 ± 0.00 b |
Treatment | TBARS (nmol/mg Protein) | |
---|---|---|
Day 1 of Refrigeration | Day 7 of Refrigeration | |
Control low | 0.25 ± 0.04 a | 0.37 ± 0.02 a |
Control high | 0.23 ± 0.04 a | 0.36 ± 0.05 ab |
40% Cabanin® replacement | 0.17 ± 0.01 b | 0.30 ± 0.03 b |
80% Cabanin® replacement | 0.15 ± 0.01 b | 0.27 ± 0.04 b |
Treatment | Glucose (mmol/L) | Cortisol (ng/mL) | ||
---|---|---|---|---|
Before | After | Before | After | |
Control low | 3.01 ± 0.39 a | 3.11 ± 0.61 a | 42.1 ± 6.0 a | 148.6 ± 18.3 a |
Control high | 3.20 ± 0.31 a | 3.55 ± 0.26 a | 45.8 ± 11.2 a | 140.9 ± 10.6 a |
40% Cabanin® replacement | 3.25 ± 0.29 a | 4.46 ± 0.42 b | 70.4 ± 6.5 b | 201.2 ± 31.1 b |
80% Cabanin® replacement | 3.31 ± 0.22 a | 4.33 ± 0.35 b | 79.3 ± 4.4 b | 165.3 ± 24.9 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuan, V.V.; Binh, V.T.T.; Hung, L.T. Potential Effects of Dietary Cabanin® CSD on Growth Performance and Biochemical and Antioxidant Responses of Nile Tilapia (Oreochromis niloticus). Fishes 2024, 9, 45. https://doi.org/10.3390/fishes9020045
Tuan VV, Binh VTT, Hung LT. Potential Effects of Dietary Cabanin® CSD on Growth Performance and Biochemical and Antioxidant Responses of Nile Tilapia (Oreochromis niloticus). Fishes. 2024; 9(2):45. https://doi.org/10.3390/fishes9020045
Chicago/Turabian StyleTuan, Vo Van, Vo Thi Thanh Binh, and Le Thanh Hung. 2024. "Potential Effects of Dietary Cabanin® CSD on Growth Performance and Biochemical and Antioxidant Responses of Nile Tilapia (Oreochromis niloticus)" Fishes 9, no. 2: 45. https://doi.org/10.3390/fishes9020045
APA StyleTuan, V. V., Binh, V. T. T., & Hung, L. T. (2024). Potential Effects of Dietary Cabanin® CSD on Growth Performance and Biochemical and Antioxidant Responses of Nile Tilapia (Oreochromis niloticus). Fishes, 9(2), 45. https://doi.org/10.3390/fishes9020045