The Structure Analysis and mRNA Expression of CaV2 Gene Responding to Hypoxia Stress in Anadara granosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Prediction of the Three-Dimensional Conformation of the CaV2 Domain
2.2. Phylogenetic Analysis and Motif Analysis of CaV2 Characteristic Sequences of Bivalves
2.3. Prediction of Transcription Factor Regulation of CaV2
2.4. Hypoxia Experiment
2.5. Quantitative Real-Time PCR
2.6. Experiment for Detecting Changes in Intracellular and Extracellular Calcium Ion Signaling
2.6.1. Extracellular (Plasma) Calcium Ion Signal Change Detection
2.6.2. Intracellular Calcium Ion Signal Change Detection
2.7. RNA Interference (RNAi) Experiments Targeting NFAT
3. Results
3.1. Explore the Domain of CaV2 Protein Sequence
3.2. Phylogenetic and Motif Analysis of Calcium Ion Transport Domain Sequences in Bivalves
3.3. Prediction of the Three-Dimensional Conformation of the Domain
3.4. The Validation of CaV2 and NFAT Gene Expression Trends in the Transcriptome
3.5. Results of Intracellular and Extracellular Calcium Signal Changes after Hypoxia Stress
3.5.1. Evaluate Results of Extracellular (Plasma) Calcium Ion Signal Changes of Hemocytes
3.5.2. Detection Results of Alterations in Intracellular Calcium Ion Signals of Hemocytes
3.6. Transcriptional Regulation of CaV2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bao, Y.; Wang, J.; Li, C.; Li, P.; Wang, S.; Lin, Z. A preliminary study on the antibacterial mechanism of Tegillarca granosa hemoglobin by derived peptides and peroxidase activity. Fish Shellfish Immunol. 2016, 51, 9–16. [Google Scholar] [CrossRef]
- Zhan, Y.; Zha, S.; Peng, Z.; Lin, Z.; Bao, Y. Hypoxia-mediated immunotoxicity in the blood clam Tegillarca granosa. Mar. Environ. Res. 2022, 177, 105632. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y. Rational utilization of monomonas alga during high density cultivation of Tegillarca granosa larvae. Aquaculture 2018, 39, 30–32. (In Chinese) [Google Scholar]
- Zang, Y.; Sun, Y.; Yang, L.; Li, Y.; Luo, T.; Mu, F. Spatiotemporal distribution pattern of meiofauna and its influencing factors in the jinshatan beach, Dalian. Mar. Sci. 2020, 44, 76–89. [Google Scholar]
- Peng, Z.; Liu, X.; Jin, M.; Zhan, Y.; Zhang, X.; Bao, Y.; Liu, M. Hypoxia activates HIF-1α and affects gene expression and transcriptional regulation of phd in Tegillarca granosa. Fishes 2023, 8, 359. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, Y.; Qiao, S. Study on damage of cultured cardiomyocytes induced by low calcium in external environment. Chin. J. Endem. Dis. Control 2000, 6, 341–342. (In Chinese) [Google Scholar]
- Kou, T.; Zhang, Y. Effects of salidroside on calcium ion content, calcium activated neutral protease and calcium channel protein expression in hippocampal neurons cultured in vitro by physical hypoxia. J. Xinxiang Med. Coll. 2012, 29, 260–264. (In Chinese) [Google Scholar]
- Kwong, J.C.; Schwartz, K.L.; Campitelli, M.A.; Chung, H.; Crowcroft, N.S.; Karnauchow, T.; Katz, K.; Ko, D.T.; Mcgeer, A.J.; Mcnally, D.; et al. Acute myocardial infarction after laboratory-confirmed influenza infection. N. Engl. J. Med. 2018, 378, 345–353. [Google Scholar] [CrossRef]
- Arnould, T.; Michiels, C.; Alexandre, I.; Remacle, J. Effect of hypoxia upon intracellular calcium concentration of human endothelial cells. J. Cell. Physiol. 1992, 152, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Orrenius, S.; Zhivotovsky, B.; Nicotera, P. Regulation of cell death: The calcium–apoptosis link. Nat. Rev. Mol. Cell Biol. 2003, 4, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Sui, Y.; Kong, H.; Shang, Y.; Huang, X.; Wu, F.; Hu, M.; Lin, D.; Lu, W.; Wang, Y. Effects of short-term hypoxia and seawater acidification on hemocyte responses of the mussel Mytilus coruscus. Mar. Pollut. Bull. 2016, 108, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Brookes, P.; Yoon, Y.; Robotham, J.; Anders, M.; Sheu, S. Calcium, ATP, and ROS: A mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol. 2004, 287, C817–C833. [Google Scholar] [CrossRef] [PubMed]
- Jaconi, M. Cytosolic free calcium elevation mediates the phagosome-lysosome fusion during phagocytosis in human neutrophils. J. Cell Biol. 1990, 110, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Sellak, H.; Liu, B.; Zhou, C.; Chen, H.; Wu, S. Mechanism of hypoxia-induced α1h (cav3.2) gene expression: Examining the transcriptional regulation. FASEB J. 2008, 22, 920–960. [Google Scholar] [CrossRef]
- Green, K.N.; Boyle, J.P.; Peers, C. Hypoxia potentiates exocytosis and Ca2+ channels in pc12 cells via increased amyloid beta peptide formation and reactive oxygen species generation. J. Physiol. Lond. 2002, 541, 1013–1023. [Google Scholar] [CrossRef]
- Kuklina, E.M.; Shirshev, S.V. Role of transcription factor NFAT in the immune response. Biochem. Mosc. 2001, 66, 467–475. [Google Scholar] [CrossRef]
- Chen, C.Y.; Del Gatto-Konczak, F.; Wu, Z.; Karin, M. Stabilization of interleukin-2 mRNA by the c-jun NH2-terminal kinase pathway. Science 1998, 280, 1945–1949. [Google Scholar] [CrossRef]
- An, H.Y.; Park, J.Y. Ten new highly polymorphic microsatellite loci in the blood clam Scapharca broughtonii. Mol. Ecol. Notes 2005, 5, 896–898. [Google Scholar] [CrossRef]
- Nishida, K.; Ishimura, T.; Suzuki, A.; Sasaki, T. Seasonal changes in the shell microstructure of the bloody clam, Scapharca broughtonii (mollusca: Bivalvia: Arcidae). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 363, 99–108. [Google Scholar]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.; Rempfer, C.; Bordoli, L.; et al. Swiss-model: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI taxonomy: A comprehensive update on curation, resources and tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef] [PubMed]
- Schrodinger, L. The PYMOL Molecular Graphics System, version 1.8; Science and Education Publisher: Newark, De, USA, 2015. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. Mega x: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, Y.; Yu, H.; Zhang, L.; Hu, J.; Bao, Z.; Wang, S. Molluscdb: An integrated functional and evolutionary genomics database for the hyper-diverse animal phylum mollusca. Nucleic Acids Res. 2021, 49, D988–D997. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1994, 2, 28–36. [Google Scholar] [PubMed]
- Rao, A.; Luo, C.; Hogan, P.G. Transcription factors of the NFAT family: Regulation and function. Annu. Rev. Immunol. 1997, 15, 707–747. [Google Scholar] [CrossRef]
- Evans, A.M.; Mustard, K.J.; Wyatt, C.N.; Peers, C.; Dipp, M.; Kumar, P.; Kinnear, N.P.; Hardie, D.G. Does amp-activated protein kinase couple inhibition of mitochondrial oxidative phosphorylation by hypoxia to calcium signaling in O2-sensing cells? J. Biol. Chem. 2005, 280, 41504–41511. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, J.; Tan, Y.; Qiu, J.; Chen, D.; Liu, J. Effects of 8 hz 90 db infrasonic on the expression of calcium ion and endoplasmic reticulum calcium channel protein ryrs in rat hippocampus cells. J. Fourth Mil. Med. Univ. 2005, 2, 185–188. (In Chinese) [Google Scholar]
- CNCB-NGDC, M.A.P. Database resources of the national genomics data center, China national center for bioinformation in 2024. Nucleic Acids Res. 2024, 52, D18–D32. [Google Scholar] [CrossRef]
- Few, A.P.; Lautermilch, N.J.; Westenbroek, R.E.; Scheuer, T.; Catterall, W.A. Differential regulation of cav2.1 channels by calcium-binding protein 1 and visinin-like protein-2 requires N-terminal myristoylation. J. Neurosci. 2005, 25, 7071–7080. [Google Scholar] [CrossRef]
- Hans, M.; Urrutia, A.; Deal, C.; Brust, P.F.; Stauderman, K.; Ellis, S.B.; Harpold, M.M.; Johnson, E.C.; Williams, M.E. Structural elements in domain iv that influence biophysical and pharmacological properties of human alpha1a-containing high-voltage-activated calcium channels. Biophys. J. 1999, 76, 1384–1400. [Google Scholar] [CrossRef]
- Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36, D480–D484. [Google Scholar] [CrossRef] [PubMed]
- Necci, M.; Piovesan, D.; Dosztányi, Z.; Tosatto, S.C.E. Mobidb-lite: Fast and highly specific consensus prediction of intrinsic disorder in proteins. Bioinformatics 2017, 33, 1402–1404. [Google Scholar] [CrossRef] [PubMed]
- Consortium, T.U. Uniprot: The universal protein knowledgebase in 2023. Nucleic Acids Res. 2022, 51, D523–D531. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y. Immune Response to Hypoxia Stress and the Mechanism of hif-1α Regulation in Blood Clam Tegillarca granosa; Shanghai Ocean University: Shanghai, China, 2022. [Google Scholar]
- Zhang, G.W. Effects of Hypoxia Stress and Molecular Response in Scapharca broughtonii; Shanghai Ocean University: Shanghai, China, 2019. [Google Scholar]
- Zhao, Q. Molecular Cloning and Functional Analysis of Hemoglobin Genes from Ark Shell Scapharca broughtonii; Shanghai Ocean University: Shanghai, China, 2018. [Google Scholar]
- Chan, H.S.; Dill, K.A. Origins of structure in globular proteins. Proc. Natl. Acad. Sci. USA 1990, 87, 6388–6392. [Google Scholar] [CrossRef] [PubMed]
- Gadkari, R.A.; Varughese, D.; Srinivasan, N. Recognition of interaction interface residues in low-resolution structures of protein assemblies solely from the positions of c (alpha) atoms. PLoS ONE 2009, 4, e4476. [Google Scholar] [CrossRef]
- Liu, X.; Taylor, R.D.; Griffin, L.; Coker, S.F.; Adams, R.; Ceska, T.; Shi, J.; Lawson, A.D.; Baker, T. Computational design of an epitope-specific keap1 binding antibody using hotspot residues grafting and cdr loop swapping. Sci. Rep. 2017, 7, 41306. [Google Scholar] [CrossRef]
- Wieczorek, R.; Dannenberg, J.J. Hydrogen-bond cooperativity, vibrational coupling, and dependence of helix stability on changes in amino acid sequence in small 310-helical peptides. A density functional theory study. J. Am. Chem. Soc. 2003, 125, 14065–14071. [Google Scholar] [CrossRef]
- Hsieh, A.H.; Kuo, C.F.; Chou, I.J.; Tseng, W.Y.; Chen, Y.F.; Yu, K.H.; Luo, S.F. Human cytomegalovirus pp65 peptide-induced autoantibodies cross-reacts with taf9 protein and induces lupus-like autoimmunity in BALB/c mice. Sci. Rep. 2020, 10, 9662. [Google Scholar] [CrossRef]
- Blom, N.; Sicheritz-Pontén, T.; Gupta, R.; Gammeltoft, S.; Brunak, S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 2004, 4, 1633–1649. [Google Scholar] [CrossRef]
- Koch, C.A.; Anderson, D.; Moran, M.F.; Ellis, C.; Pawson, T. SH2 and SH3 domains: Elements that control interactions of cytoplasmic signaling proteins. Science 1991, 252, 668–674. [Google Scholar] [CrossRef]
- Loh, C.; Shaw, K.T.Y.; Carew, J.; Viola, J.P.B.; Luo, C.; Perrino, B.A.; Rao, A. Calcineurin binds the transcription factor NFAT1 and reversibly regulates its activity (*). J. Biol. Chem. 1996, 271, 10884–10891. [Google Scholar] [CrossRef] [PubMed]
- Castro-Mondragon, J.A.; Riudavets-Puig, R.; Rauluseviciute, I.; Berhanu Lemma, R.; Turchi, L.; Blanc-Mathieu, R.; Lucas, J.; Boddie, P.; Khan, A.; Manosalva Pérez, N.; et al. JASPAR 2022: The 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2021, 50, D165–D173. [Google Scholar] [CrossRef] [PubMed]
- Hogan, P.; Chen, L.; Nardone, J.; Rao, A. Transcriptional regulation by calcium, calcineurin, and nfat. Genes dev 17: 2205–2232. Genes Dev. 2003, 17, 2205–2232. [Google Scholar] [CrossRef] [PubMed]
- Okamura, H.; Aramburu, J.; García-Rodríguez, C.; Viola, J.P.B.; Raghavan, A.; Tahiliani, M.; Zhang, X.; Qin, J.; Hogan, P.G.; Rao, A. Concerted dephosphorylation of the transcription factor nfat1 induces a conformational switch that regulates transcriptional activity. Mol. Cell 2000, 6, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Baksh, S.; Widlund, H.R.; Frazer-Abel, A.A.; Du, J.; Fosmire, S.; Fisher, D.E.; Decaprio, J.A.; Modiano, J.F.; Burakoff, S.J. NFATc2-mediated repression of cyclin-dependent kinase 4 expression. Mol. Cell 2002, 10, 1071–1081. [Google Scholar] [CrossRef]
- Kondo, R.P.; Apstein, C.S.; Eberli, F.R.; Tillotson, D.L.; Suter, T.M. Increased calcium loading and inotropy without greater cell death in hypoxic rat cardiomyocytes. Am. J. Physiol. 1998, 275, H2272–H2282. [Google Scholar] [CrossRef]
- Chandel, N.; Schumacker, P. Cellular oxygen sensing by mitochondria: Old questions, new insight. J. Appl. Physiol. 2000, 88, 1880–1889. [Google Scholar] [CrossRef]
- Chandel, N.S.; Maltepe, E.; Goldwasser, E.; Mathieu, C.E.; Simon, M.C.; Schumacker, P.T. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA 1998, 95, 11715–11720. [Google Scholar] [CrossRef]
- Green, K.; Peers, C. Amyloid β peptides mediate hypoxic augmentation of Ca2+ channels. J. Neurochem. 2001, 77, 953–956. [Google Scholar] [CrossRef]
- Taylor, S.; Batten, T.; Peers, C. Hypoxic enhancement of quantal catecholamine secretion. Evidence for the involvement of amyloid β-peptides. J. Biol. Chem. 1999, 274, 31217–31222. [Google Scholar] [CrossRef]
- Prempunpong, C.; Efanov, I.; Sant’Anna, G. Serum calcium concentrations and incidence of hypocalcemia in infants with moderate or severe hypoxic-ischemic encephalopathy: Effect of therapeutic hypothermia. Early Hum. Dev. 2015, 91, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Rimessi, A.; Bonora, M.; Marchi, S.; Patergnani, S.; Marobbio, C.M.; Lasorsa, F.M.; Pinton, P. Perturbed mitochondrial Ca2+ signals as causes or consequences of mitophagy induction. Autophagy 2013, 9, 1677–1686. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Zheng, S.; Leng, J.; Wang, S.; Zhao, T.; Liu, J. Inhibition of mitochondrial calcium uniporter protects neurocytes from ischemia/reperfusion injury via the inhibition of excessive mitophagy. Neurosci. Lett. 2016, 628, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Yamada, H.; Chen, Y.; Aihara, M.; Araie, M. Neuroprotective effect of calcium channel blocker against retinal ganglion cell damage under hypoxia. Brain Res. 2006, 1071, 75–80. [Google Scholar] [CrossRef]
Primer Name | Sequence (5′–3′) | Amplicon Length (bp) |
---|---|---|
18s-F | CTTTCAAATGTCTGCCCTATCAACT | 195 |
18s-R | TCCCGTATTGTTATTTTTCGTCACT | |
NFAT-F | GAATAGTGCCGCAGTGA | 149 |
NFAT-R | GCTCATTGTCCGAAGCT | |
CaV2-F | AGAACGACTATTACCCCG | 184 |
CaV2-R | TAAGTTGGCAAGACCTGA |
Change Site | Other Mollusca Residue | Residue of Arcidae Mollusca | Polarity of Other Mollusca Residue | Polarity of Residue in Arcidae Mollusca | Isoelectric Point of Other Bivalves Residues | Isoelectric Point of Arcidae Mollusca |
---|---|---|---|---|---|---|
10 | T threonine | I isoleucine | polar amino acid | nonpolar amino acid | 6.16 | 6.02 ↓ |
198 | A alanine | M methionine | nonpolar amino acid | nonpolar amino acid | 6.00 | 5.74 ↓ |
290 | L leucine | A alanine | nonpolar amino acid | nonpolar amino acid | 5.98 | 6.00 |
314 | Y tyrosine | F phenylalanine | polar amino acid | nonpolar amino acid | 5.66 | 5.48 ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, H.; Bao, Y.; Peng, Z. The Structure Analysis and mRNA Expression of CaV2 Gene Responding to Hypoxia Stress in Anadara granosa. Fishes 2024, 9, 409. https://doi.org/10.3390/fishes9100409
Zhang Y, Liu H, Bao Y, Peng Z. The Structure Analysis and mRNA Expression of CaV2 Gene Responding to Hypoxia Stress in Anadara granosa. Fishes. 2024; 9(10):409. https://doi.org/10.3390/fishes9100409
Chicago/Turabian StyleZhang, Yang, Hongxing Liu, Yongbo Bao, and Zhilan Peng. 2024. "The Structure Analysis and mRNA Expression of CaV2 Gene Responding to Hypoxia Stress in Anadara granosa" Fishes 9, no. 10: 409. https://doi.org/10.3390/fishes9100409
APA StyleZhang, Y., Liu, H., Bao, Y., & Peng, Z. (2024). The Structure Analysis and mRNA Expression of CaV2 Gene Responding to Hypoxia Stress in Anadara granosa. Fishes, 9(10), 409. https://doi.org/10.3390/fishes9100409