The Impact of Thermal Treatments up to 140 °C on Amino Acid Digestibility of Fish Meal in Rainbow Trout (Oncorhynchus mykiss)
Abstract
:1. Introduction
2. Material and Methods
2.1. Diet Formulation and Preparation
2.2. Experimental Setup
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022.
- Oliva-Teles, A.; Enes, P.; Peres, H. Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish. In Feed and Feeding Practices in Aquaculture; Allen, D., Ed.; Woodhead Publishing: Sawston, UK, 2015; pp. 203–233. ISBN 9780081005064. [Google Scholar] [CrossRef]
- Tacon, A.G.; Metian, M. Feed matters: Satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquac. 2015, 23, 1–10. [Google Scholar] [CrossRef]
- Lee, M.J.; Kim, J.; Baek, S.I.; Cho, S.H. Substitution effect of fish meal with meat meal in diet on growth performance, feed consumption, feed utilization, chemical composition, hematology, and innate immune responses of rockfish (Sebastes schlegeli). Aquaculture 2023, 571, 739467. [Google Scholar] [CrossRef]
- Mason, V.C.; Weidner, K. The effect of heat on the amino acid, fatty acid and b-vitamin composition of fish meal. Acta Agric. Scand. 1964, 14, 87–95. [Google Scholar] [CrossRef]
- Ljøkjel, K.; Harstad, O.M.; Skrede, A. Effect of heat treatment of soybean meal and fish meal on amino acid digestibility in mink and dairy cows. Anim. Feed Sci. Technol. 2000, 84, 83–95. [Google Scholar] [CrossRef]
- European Council. Regulation (EC). N° 1774/2002 of the European Parliament and of the Council of 3 October 2002 laying down health rules concerning animal by-products not intended for human consumption. Official J. 2002, L 273, 0001–0095.
- Fournier, V.; Destaillats, F.; Juanédaa, P.; Dionisi, F.; Lambelet, P.; Sébédio, J.L.; Berdeaux, O. Thermal degradation of long-chain polyunsaturated fatty acids during deodorization of fish oil. Eur. J. Lipid Sci. Technol. 2006, 108, 33–42. [Google Scholar] [CrossRef]
- Sebedio, J.L. Concentration d’acides gras polyinsaturés en oméga-3 à partir d’huiles de poissons. Transformation de l’EPA (20:5n-3) et du DHA(22:6n-3) au cours des traitements thermiques. Ichtyo. Acta. 1989, 12, 49–59. [Google Scholar]
- Guimarães, I.G.; Pezzato, L.E.; Barros, M.M. Amino acid availability and protein digestibility of several protein sources for Nile tilapia, Oreochromis niloticus. Aquac. Nutr. 2008, 14, 396–404. [Google Scholar] [CrossRef]
- Lu, F.; Haga, Y.; Satoh, S. Effects of replacing fish meal with rendered animal protein and plant protein sources on growth response, biological indices, and amino acid availability for rainbow trout Oncorhynchus mykiss. Fish Sci. 2015, 81, 95–105. [Google Scholar] [CrossRef]
- Csapó, J.; Varga-Visi, É.; Lóki, K.; Albert, C.S.; Salamon, S.Z. The influence of extrusion on loss and racemization of amino acids. Amino Acids. 2008, 34, 287–292. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Fish and Shrimps; National Academy Press: Washington DC, USA, 2011.
- Wilson, R.P. Protein and amino acids. In Fish Nutrition, 3rd ed.; Halver, J.E., Hardy, R.W., Eds.; Elsevier Science: San Diego, CA, USA, 2002; pp. 144–179. [Google Scholar]
- Glencross, B.D.; Sweetingham, M.W.; Hawkins, W. A digestibility assessment of pearl lupin (Lupinus mutabilis) meals and protein concentrates when fed to rainbow trout (Oncorhynchus mykiss). Aquaculture 2010, 303, 59–64. [Google Scholar] [CrossRef]
- Naumann, C.; Bassler, R. Die chemische Untersuchung von Futtermitteln; VDLUFA-Verlag: Darmstadt, Germany, 2012. [Google Scholar]
- Jagger, S.; Wiseman, J.; Cole, D.J.A.; Craigon, J. Evaluation of Inert Markers for the Determination of Ileal and Fecal Apparent Digestibility Values in the Pig. Br. J. Nutri. 1992, 68, 729–739. [Google Scholar] [CrossRef]
- Sukhija, P.S.; Palmquist, D.L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- Maynard, L.A.; Loosli, J.K. Animal Nutrition, 6th ed.; McGraw-Hill Book Co.: New York, NY, USA, 1979. [Google Scholar]
- Bureau, D.P.; Hua, K. Letter to the Editor of Aquaculture. Aquaculture 2006, 2, 103–105. [Google Scholar] [CrossRef]
- Ilo, S.; Berghofer, E. Kinetics of colour changes during extrusion cooking of maize grits. J. Food Eng. 1999, 39, 73–80. [Google Scholar] [CrossRef]
- Guy, R. (Ed.) Raw Materials for Extrusion Cooking; Woodhead Publishing: Sawston, UK, 2001; pp. 5–28. ISBN 9781855735590. [Google Scholar] [CrossRef]
- Sørensen, M.; Stjepanovic, N.; Romarheim, O.H.; Krekling, T.; Storebakken, T. Soybean meal improves the physical quality of extruded fish feed. Anim. Feed Sci. Technol. 2009, 149, 149–161. [Google Scholar] [CrossRef]
- Opstvedt, J.; Nygård, E.; Samuelsen, T.A.; Venturini, G.; Luzzana, U.; Mundheim, H. Effect on protein digestibility of different processing conditions in the production of fish meal and fish feed. J. Sci. Food Agric. 2003, 83, 775–782. [Google Scholar] [CrossRef]
- Krogdahl, A.; Hemre, G.I.; Mommsen, T.P. Carbohydrates in fish nutrition: Digestion and absorption in post larval stages. Aquac. Nutri. 2005, 11, 103–122. [Google Scholar] [CrossRef]
- Venou, B.; Alexis, M.N.; Fountoulaki, E.; Haralabous, J. Performance factors, body composition and digestion characteristics of gilthead sea bream (Sparus aurata) fed pelleted or extruded diets. Aquac. Nutri. 2009, 15, 390–401. [Google Scholar] [CrossRef]
- Skrede, A.; Berge, G.M.; Storebakken, T.; Herstad, O.; Aarstad, K.G.; Sundstøl, F. Digestibility of bacterial protein grown on natural gas in mink, pigs, chicken and Atlantic salmon. Anim. Feed Sci. Technol. 1998, 76, 103–116. [Google Scholar] [CrossRef]
- Øverland, M.; Romarheim, O.H.; Hovin, M.; Storebakken, T.; Skrede, A. Apparent total tract digestibility of unprocessed and extruded diets containing basic and autolyzed bacterial protein meal grown on natural gas in mink and rainbow trout. Anim. Feed Sci. Technol. 2005, 129, 237–251. [Google Scholar] [CrossRef]
- Romarheim, O.H.; Aslaksen, M.A.; Storebakken, T.; Krogdahl, Å.; Skrede, A. Effect of extrusion on trypsin inhibitor activity and nutrient digestibility of diets based on fish meal, soybean meal and white flakes. Arch. Anim. Nutri. 2005, 59, 365–375. [Google Scholar] [CrossRef]
- Žilić, S.; Božović, I.; Savić, S.; Šobajić, S. Heat processing of soybean kernel and its effect on lysine availability and protein solubility. Open Life Sci. 2006, 1, 572–583. [Google Scholar] [CrossRef]
- Salazar-Villanea, S.; Bruininx, E.M.A.M.; Gruppen, H.; Hendriks, W.H.; Carré, P.; Quinsac, A.; van der Poel, A.F.B. Physical and chemical changes of rapeseed meal proteins during toasting and their effects on in vitro digestibility. J. Anim. Sci Biotechnol. 2016, 7, 62. [Google Scholar] [CrossRef]
- Hendriks, W.H. Amino acid availability in heat-damaged ingredients. J. Anim. Sci. 2018, 96, 25. [Google Scholar] [CrossRef]
- Shukla, D.; Trout, B.L. Interaction of arginine with proteins and the mechanism by which it inhibits aggregation. J. Phys. Chem. 2010, 114, 13426–13438. [Google Scholar] [CrossRef] [PubMed]
- Ieniştea, C. Bacterial production and destruction of histamine in foods, and food poisoning caused by histamine. Die Nahrung. 1971, 15, 109–113. [Google Scholar] [CrossRef] [PubMed]
Basal | FM Control | FM 70 °C | FM 140 °C | |
---|---|---|---|---|
Ingredients | ||||
Fish meal | 572.4 | 400.7 | 400.7 | 400.7 |
Corn gluten meal (60% CP) | 197.6 | 138.4 | 138.4 | 138.4 |
Wheat starch | 130 | 91 | 91 | 91 |
Wheat bran | 80 | 56 | 56 | 56 |
Fish meal Control | 0 | 300 | 0 | 0 |
Fish meal 70 °C | 0 | 0 | 300 | 0 |
Fish meal 140 °C | 0 | 0 | 0 | 300 |
Vit./Min. mix 1 | 10 | 7 | 7 | 7 |
TiO2 | 10 | 7 | 7 | 7 |
Proximate composition | ||||
Dry matter | 905.5 | 947.0 | 938.0 | 978.9 |
Crude protein | 490.5 | 492.9 | 491.6 | 508.0 |
Ether extract 2 | 60.0 | 180.0 | 190.0 | 190.0 |
Ash | 97.0 | 97.9 | 94.3 | 96.8 |
Gross energy (MJ kg−1) | 17.6 | 22.4 | 21. | 22.4 |
Essential amino acids | ||||
Arginine | 27.7 | 28.9 | 29.1 | 30.3 |
Histidine | 10.2 | 15.9 | 12.6 | 12.9 |
Isoleucine | 18.5 | 19.6 | 20.0 | 20.9 |
Leucine | 39.9 | 39.3 | 40.4 | 42.1 |
Lysine | 24.7 | 28.8 | 29.9 | 30.4 |
Methionine | 12.7 | 13.0 | 13.8 | 14.3 |
Phenylalanine | 20.7 | 20.8 | 21.1 | 22.0 |
Threonine | 17.2 | 18.6 | 18.8 | 19.9 |
Valine | 20.8 | 22.0 | 22.5 | 23.5 |
Non- and semi-essential AAs | ||||
Alanine | 35.3 | 35.0 | 35.2 | 37.1 |
Aspartic acid | 37.7 | 40.0 | 50.6 | 41.3 |
Cysteine | 5.7 | 2.9 | 3.9 | 5.2 |
Glutamic acid | 72.7 | 74.0 | 74.0 | 76.6 |
Glycine | 46.2 | 42.6 | 44.3 | 45.5 |
Proline | 40.8 | 35.6 | 36.5 | 39.7 |
Serine | 22.1 | 24.5 | 22.9 | 23.4 |
FM Control | FM 70 °C | FM 140 °C | |
---|---|---|---|
Proximate composition | |||
Dry matter | 945.5 | 932.9 | 946.2 |
Crude protein | 498.7 | 516.8 | 507.9 |
Ether extract 1 | 292.6 | 294.8 | 297.4 |
Ash | 110.4 | 108.4 | 117.4 |
Gross energy (MJ kg−1) | 26.4 | 25.8 | 26.3 |
Essential amino acids | |||
Arginine | 26.1 | 26.9 | 26.5 |
Histidine | 16.1 | 16.1 | 14.9 |
Isoleucine | 17.4 | 17.5 | 17.6 |
Leucine | 31.7 | 32.1 | 31.9 |
Lysine | 35.7 | 36.3 | 34.7 |
Methionine | 11.3 | 11.9 | 11.3 |
Phenylalanine | 17.4 | 16.7 | 16.5 |
Threonine | 18.6 | 19.0 | 19.1 |
Valine | 22.0 | 22.0 | 21.2 |
Non- and semi-essential AAs | |||
Alanine | 26.8 | 26.8 | 26.8 |
Aspartic acid | 40.1 | 40.9 | 40.7 |
Cysteine + cystine | 4.8 | 5.0 | 4.6 |
Glutamic acid | 58.2 | 58.7 | 57.7 |
Glycine | 31.1 | 30.0 | 30.5 |
Proline | 20.0 | 19.4 | 18.7 |
Serine | 18.7 | 18.7 | 18.9 |
Fatty Acids | FM Control | FM 70 °C | FM 140 °C | |
---|---|---|---|---|
C 4:0 | Butyric acid | 0.08 | 0.04 | 0.03 |
C 6:0 | Caproic acid | 0.31 | 0.39 | 0.29 |
C 8:0 | Caprylic acid | n.d. | 0.09 | n.d. |
C 12:0 | Lauric acid | n.d. | n.d. | 0.02 |
C 13:0 | Tridecanoic acid | n.d. | 0.04 | n.d. |
C 14:0 | Myristic acid | 8.75 | 9.39 | 7.83 |
C 14:1 | Myristicoleic acid | 0.15 | 0.21 | 0.09 |
C 15:0 | Pentadecanoic acid | 0.70 | 0.74 | 0.59 |
C 16:0 | Hexadenoic acid | 20.16 | 21.70 | 17.96 |
C 16:1 | Palmitoleic acid | 4.86 | 4.40 | 4.62 |
C 17:0 | Margaric acid | 0.49 | 1.47 | 0.31 |
C 17:1 | Margoleic acid | 0.34 | 0.45 | 0.46 |
C 18:0 | Stearic acid | 4.20 | 4.19 | 3.61 |
C 18:1n9t | Elaidic acid | 0.19 | 0.17 | 0.08 |
C 18:1n9 | Oleic acid | 19.65 | 18.05 | 18.37 |
C 18:2n6t | Rumic acid | 0.40 | 0.74 | 0.26 |
C 18:2n6c | Linoleic acid | 0.97 | 0.61 | 1.53 |
C 20:0 | Arachidic acid | 0.34 | 0.31 | 0.30 |
C 18:3n6 | γ-Linolenic acid | 0.28 | 0.54 | 0.30 |
C 20:1n9 | Gadoleic acid | 13.87 | 13.20 | 13.22 |
C 21:0 | Heneicosanoic acid | 0.04 | 0.09 | n.d. |
C 20:2 | Eicosanedioic acid | 0.16 | 0.21 | 0.19 |
C 22:0 | Behenic acid | 0.14 | 0.09 | 0.10 |
C 20:3n6 | Dihomolinolenic acid | 0.14 | 0.26 | 0.17 |
C 20:3n3 | Dihomogamma-linolenic acid | 19.80 | 19.19 | 18.16 |
C 22:1n9 | Erucic acid | n.d. | n.d. | n.d. |
C 20:4n6 | Arachidonic acid | 0.09 | 0.09 | n.d. |
C 23:0 | Tricosanoic acid | 0.04 | n.d. | 0.38 |
C 22:2 | Docosadienoic acid | 0.15 | 0.19 | 0.76 |
C 20:5n3 | Eicosapentaenoic acid | 0.70 | 0.45 | 3.73 |
C 24:1n9 | Nervonic acid | 2.06 | 2.11 | 1.84 |
C 22:6n3 | Docosahexaenoic acid | 0.95 | 0.53 | 4.78 |
ƩSFA | 35.29 | 38.70 | 31.05 | |
ƩMUFA | 41.12 | 38.58 | 38.68 | |
ƩPUFA | 23.59 | 22.72 | 30.27 |
Dry Matter 1 | Energy 2 | Crude Protein 2 | Ether Extract 2 | |
---|---|---|---|---|
FM Control | 74.4 a | 93.6 a | 96.5 a | 90.9 |
FM 70 °C | 75.2 a | 93.5 a | 96.1 a | 92.6 |
FM 140 °C | 69.9 b | 85.9 b | 86.6 b | 87.3 |
SEM | 0.55 | 1.30 | 0.82 | 1.58 |
p-value | ||||
0.0002 | <0.001 | <0.001 | >0.05 |
Met | Lys | Arg | His | Val | Iso | Leu | Phe | Thr | |
---|---|---|---|---|---|---|---|---|---|
FM Control | 91.4 | 91.8 | 93.5 a | 92.5 a | 90.1 | 91.6 | 93.2 | 92.7 | 87.5 |
FM 70 °C | 91.8 | 91.3 | 93.1 a | 89.9 ab | 90.0 | 91.6 | 93.3 | 92.6 | 87.0 |
FM 140 °C | 88.5 | 91.5 | 91.7 b | 89.2 b | 89.2 | 90.9 | 92.7 | 92.0 | 86.2 |
SEM | 1.01 | 0.61 | 0.37 | 0.34 | 0.33 | 0.30 | 0.25 | 0.27 | 0.40 |
p-value | |||||||||
0.196 | 0.866 | 0.044 | 0.002 | 0.192 | 0.273 | 0.306 | 0.296 | 0.188 |
Ala | Asp | Gly | Glu | Ser | Tyr | Pro | |
---|---|---|---|---|---|---|---|
FM Control | 91.9 | 81.0 a | 86.6 | 92.6(a) | 90.3 | 92.2 | 97.7 |
FM 70 °C | 91.7 | 79.9 a | 86.1 | 92.2(a) | 89.1 | 92.1 | 97.6 |
FM 140 °C | 91.3 | 78.4 b | 85.0 | 91.6(b) | 88.5 | 91.6 | 97.1 |
SEM | 0.35 | 0.50 | 0.55 | 0.27 | 0.52 | 0.28 | 0.34 |
p-value | |||||||
0.525 | 0.044 | 0.221 | 0.090 | 0.123 | 0.375 | 0.438 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sessegolo Ferzola, P.H.; Ringel, J.; Schulz, C.; Gierus, M. The Impact of Thermal Treatments up to 140 °C on Amino Acid Digestibility of Fish Meal in Rainbow Trout (Oncorhynchus mykiss). Fishes 2024, 9, 403. https://doi.org/10.3390/fishes9100403
Sessegolo Ferzola PH, Ringel J, Schulz C, Gierus M. The Impact of Thermal Treatments up to 140 °C on Amino Acid Digestibility of Fish Meal in Rainbow Trout (Oncorhynchus mykiss). Fishes. 2024; 9(10):403. https://doi.org/10.3390/fishes9100403
Chicago/Turabian StyleSessegolo Ferzola, Pedro Henrique, Judith Ringel, Carsten Schulz, and Martin Gierus. 2024. "The Impact of Thermal Treatments up to 140 °C on Amino Acid Digestibility of Fish Meal in Rainbow Trout (Oncorhynchus mykiss)" Fishes 9, no. 10: 403. https://doi.org/10.3390/fishes9100403
APA StyleSessegolo Ferzola, P. H., Ringel, J., Schulz, C., & Gierus, M. (2024). The Impact of Thermal Treatments up to 140 °C on Amino Acid Digestibility of Fish Meal in Rainbow Trout (Oncorhynchus mykiss). Fishes, 9(10), 403. https://doi.org/10.3390/fishes9100403