Role of Dietary Microalgae on Fish Health and Fillet Quality: Recent Insights and Future Prospects
Abstract
:1. Introduction
2. Commonly Used Microalgae in Aquaculture
3. Effects of Microalgae on Fish Fillet Proximate Composition
4. Effects of Microalgae on Organoleptic Parameters of Fish Fillet
5. Effects of Microalgae on Fish Fillet Biochemical and Microbiological Parameters
6. Conclusions and Future Prospective
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gephart, J.A.; Golden, C.D.; Asche, F.; Belton, B.; Brugere, C.; Froehlich, H.E.; Fry, J.P.; Halpern, B.S.; Hicks, C.C.; Jones, R.C.; et al. Scenarios for Global Aquaculture and Its Role in Human Nutrition. Rev. Fish. Sci. Aquac. 2021, 29, 122–138. [Google Scholar] [CrossRef]
- Freitas, J.; Vaz-Pires, P.; Câmara, J.S. From aquaculture production to consumption: Freshness, safety, traceability, and authentication, the four pillars of quality. Aquaculture 2020, 518, 734857. [Google Scholar] [CrossRef]
- Sutili, F.J.; Gatlin, D.M., III; Heinzmann, B.M.; Baldisserotto, B. Plant essential oils as fish diet additives: Benefits on fish health and stability in feed. Rev. Aquac. 2018, 10, 716–726. [Google Scholar] [CrossRef]
- Soliman, W.S.; Shaapan, R.M.; Mohamed, L.A.; Gayed, S.S. Recent biocontrol measures for fish bacterial diseases, in particular to probiotics, bio-encapsulated vaccines, and phage therapy. Open Vet. J. 2019, 9, 190–195. [Google Scholar] [CrossRef]
- Nathanailides, C.; Kolygas, M.; Choremi, K.; Mavraganis, T.; Gouva, E.; Vidalis, K.; Athanassopoulou, F. Probiotics have the potential to significantly mitigate the environmental impact of freshwater fish farms. Fishes 2021, 6, 76. [Google Scholar] [CrossRef]
- Wan-Mohtar, W.A.A.Q.I.; Ibrahim, M.F.; Rasdi, N.W.; Zainorahim, N.; Taufek, N.M. Microorganisms as a sustainable aquafeed ingredient: A review. Aquac. Res. 2022, 53, 746–766. [Google Scholar] [CrossRef]
- Hemaiswarya, S.; Raja, R.; Ravi Kumar, R.; Ganesan, V.; Anbazhagan, C. Microalgae: A sustainable feed source for aquaculture. World J. Microbiol. Biotechnol. 2011, 27, 1737–1746. [Google Scholar] [CrossRef]
- Roy, S.S.; Pal, R. Microalgae in aquaculture: A review with special references to nutritional value and fish dietetics. Proc. Zool. Soc. 2015, 68, 1–8. [Google Scholar] [CrossRef]
- Madeira, M.S.; Cardoso, C.; Lopes, P.A.; Coelho, D.; Afonso, C.; Bandarra, N.M.; Prates, J.A. Microalgae as feed ingredients for livestock production and meat quality: A review. Livest. Sci. 2017, 205, 111–121. [Google Scholar] [CrossRef]
- Shah, M.R.; Lutzu, G.A.; Alam, A.; Sarker, P.; Kabir Chowdhury, M.A.; Parsaeimehr, A.; Liang, Y.; Daroch, M. Microalgae in aquafeeds for a sustainable aquaculture industry. J. Appl. Phycol. 2018, 30, 197–213. [Google Scholar] [CrossRef]
- da Silva Vaz, B.; Moreira, J.B.; de Morais, M.G.; Costa, J.A.V. Microalgae as a new source of bioactive compounds in food supplements. Curr. Opin. Food Sci. 2016, 7, 73–77. [Google Scholar]
- Chen, J.; Wang, Y.; Benemann, J.R.; Zhang, X.; Hu, H.; Qin, S. Microalgal industry in China: Challenges and prospects. J. Appl. Phycol. 2016, 28, 715–725. [Google Scholar] [CrossRef]
- Ansari, F.A.; Guldhe, A.; Gupta, S.K.; Rawat, I.; Bux, F. Improving the feasibility of aquaculture feed by using microalgae. Environ. Sci. Pollut. Res. 2021, 28, 43234–43257. [Google Scholar] [CrossRef] [PubMed]
- Idenyi, J.N.; Eya, J.C.; Nwankwegu, A.S.; Nwoba, E.G. Aquaculture sustainability through alternative dietary ingredients: Microalgal value-added products. Eng. Microbiol. 2022, 2, 100049. [Google Scholar] [CrossRef]
- Markou, G.; Chentir, I.; Tzovenis, I. Chapter 9—Microalgae and cyanobacteria as food: Legislative and safety aspects. In Cultured Microalgae for the Food Industry; Lafarga, T., Acién, G., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 249–264. [Google Scholar]
- Nagappan, S.; Das, P.; Quadir, M.A.; Thaher, M.; Khan, S.; Mahata, C.; Al-Jabri, H.; Kristin Vatland, A.; Kumar, G. Potential of microalgae as a sustainable feed ingredient for aquaculture. J. Biotechnol. 2021, 341, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Levasseur, W.; Perré, P.; Pozzobon, V. A Review of High Value-added Molecules Production by Microalgae in Light of Classification. Biotechnol. Adv. 2020, 41, 107545. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; W Hassan, S.; Banat, F. An overview of microalgae biomass as a sustainable aquaculture feed ingredient: Food security and circular economy. Bioengineered 2022, 13, 9521–9547. [Google Scholar] [CrossRef]
- Fithriani, D.; Melanie, S. Vitamin, and mineral content of microalgae Phorpyridium and Chlorella and development prospects for food raw materials in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2022, 1034, 012043. [Google Scholar] [CrossRef]
- Shalaby, S.M.; Yasin, N.M.N. Quality characteristics of croissant stuffed with imitation processed cheese containing microalgae chlorella vulgaris biomass. World J. Dairy Food Sci. 2013, 8, 58–66. [Google Scholar]
- Tibbetts, S.; Milley, J.; Lall, S. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J. Appl. Phycol. 2015, 27, 1109–1119. [Google Scholar] [CrossRef]
- Silva, B.; Wendt, E.; Castro, J.; de Oliveira, A.; Carrim, A.; Vieira, J.; Sassi, R.; Sassi, C.; da Silva, A.; Barboza, G.; et al. Analysis of some chemical elements in marine microalgae for biodiesel production and other uses. Algal Res. 2015, 9, 312–321. [Google Scholar] [CrossRef]
- Rebolloso-Fuentes, M.M.; Navarro-Pérez, A.; Ramos-Miras, J.J.; Guil-Guerrero, J.L. Biomass nutrient profiles of the microalga Phaeodactylum tricornutum. J. Food Biochem. 2001, 25, 57–76. [Google Scholar] [CrossRef]
- Wild, K.J.; Steingaß, H.; Rodehutscord, M. Variability in nutrient composition and in vitro crude protein digestibility of 16 microalgae products. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1306–1319. [Google Scholar] [CrossRef] [PubMed]
- Chronakis, I.S.; Madsen, M. Algal proteins. In Handbook of Food Proteins; Woodhead Publishing: Sawston, UK, 2011; pp. 353–394. [Google Scholar]
- Dayananda, C.; Kumudha, A.; Sarada, R.; Ravishankar, G.A. Isolation, characterization and outdoor cultivation of green microalgae Botryococcus sp. Sci. Res. Essays 2010, 5, 2497–2505. [Google Scholar]
- Sarker, P.K.; Kapuscinski, A.R.; Vandenberg, G.W.; Proulx, E.; Sitek, A.J.; Thomsen, L. Towards sustainable and ocean-friendly aquafeeds: Evaluating a fish-free feed for rainbow trout (Oncorhynchus mykiss) using three marine microalgae species. Elem. Sci. Anth. 2020, 8, 5. [Google Scholar] [CrossRef]
- Khanra, S.; Mondal, M.; Halder, G.; Tiwari, O.N.; Gayen, K.; Bhowmick, T.K. Downstream Processing of Microalgae for Pigments, Protein and Carbohydrate in Industrial Application: A Review. Food Bioprod. Process. 2018, 110, 60–84. [Google Scholar] [CrossRef]
- Jung, F.; Kreuger-Genge, A.; Waldeck, P.; Keupper, J.H. Spirulina platensis, a super food? J. Cell. Biotechnol. 2019, 5, 43–54. [Google Scholar] [CrossRef]
- Sajjadi, B.; Chen, W.Y.; Raman, A.A.A.; Ibrahim, S. Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew. Sust. Energy Rev. 2018, 97, 200–232. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Yasumaru, F.; Lemos, D. In vitro prediction of digestible protein content of marine microalgae (Nannochloropsis granulata) meals for Pacific white shrimp (Litopenaeus vannamei) and rainbow trout (Oncorhynchus mykiss). Algal Res. 2017, 21, 76–80. [Google Scholar] [CrossRef]
- Hajiahmadian, M.; Vajargah, M.F.; Farsani, H.G.; Chorchi, M.M. Effect of Spirulina platensis meal as feed additive on growth performance and survival rate in golden barb fish, punius gelius (Hamilton, 1822). J. Fisher. Int. 2012, 7, 61–64. [Google Scholar]
- Ibrahem, M.D.; Mohamed, M.F.; Ibrahim, M.A. The role of Spirulina platensis (Arthrospira platensis) in growth and immunity of Nile tilapia (Oreochromis niloticus) and its resistance to bacterial infection. J. Agric. Sci. 2013, 5, 19–117. [Google Scholar] [CrossRef]
- Sullivan, J.A.; Reigh, R.C. Apparent digestibility of selected feedstuffs in diets for hybrid striped bass (Morone saxatilis × Morone chrysops). Aquaculture 1995, 138, 313–322. [Google Scholar] [CrossRef]
- Bernaerts, T.M.M.; Gheysen, L.I.; Foubert, M.E.; Hendrickx, A.M.; Van Loey, A.M. The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnol. Adv. 2019, 37, 107419. [Google Scholar] [CrossRef] [PubMed]
- Nagappan, S.; Kumar Verma, S. Co-production of biodiesel and alpha-linolenic acid (omega-3 fatty acid) from microalgae, Desmodesmus sp. MCC34. Energy Source Part A 2018, 40, 2933–2940. [Google Scholar] [CrossRef]
- Habte-Tsion, H.M.; Kolimadu, G.D.; Rossi, W.; Filer, K.; Kumar, V. Effects of Schizochytrium and micro-minerals on immune, antioxidant, inflammatory and lipid-metabolism status of Micropterus salmoides fed high- and low-fishmeal diets. Sci. Rep. 2020, 10, 7457. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.B.; Berlinsky, D.L. Effects of partial replacement of fish meal protein by microalgae on growth, feed intake, and body composition of Atlantic cod. N. Am. J. Aquacult. 2011, 73, 76–83. [Google Scholar] [CrossRef]
- Grossman, A. Nutrient Acquisition: The generation of Bioactive Vitamin B12 by Microalgae. Curr. Biol. 2016, 26, R319–R337. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chang, Y.; Ye, Y. The effect of dietary pigments on the coloration of Japanese ornamental carp (koi, Cyprinus carpio L.). Aquaculture 2012, 342, 62–68. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Gonçalves, A.; Barbeiro, M. Phaeodactylum tricornutum in finishing diets for gilthead seabream: Effects on skin pigmentation, sensory properties, and nutritional value. J. Appl. Phycol. 2017, 29, 1945–1956. [Google Scholar] [CrossRef]
- Paniagua-Michel, J. Chapter 16—Microalgal nutraceuticals. In Handbook of Marine Microalgae; Kim, S.-K., Ed.; Academic Press: Boston, MA, USA, 2015; pp. 255–267. [Google Scholar]
- Milledge, J.J. Commercial application of microalgae other than as biofuels: A brief review. Rev. Environ. Sci. Bio. Technol. 2011, 10, 31–41. [Google Scholar] [CrossRef]
- Harun, R.; Jason, W.S.Y.; Cherrington, T.; Danquah, M.K. Microalgal biomass as a cellulosic fermentation feedstock for bioethanol production. Renew Sust. Energy Rev. 2010, 85, 199–203. [Google Scholar] [CrossRef]
- Raven, J.; Beardall, J. Carbohydrate metabolism and respiration in algae. In Photosynthesis in Algae; Larkum, A.W.D., Douglas, S.E., Raven, J.A., Eds.; Kluwer: Dordrecht, The Netherlands, 2004; pp. 205–224. [Google Scholar]
- Patel, A.K.; Singhania, R.R.; Awasthi, M.K.; Varjani, S.; Bhatia, S.K.; Tsai, M.L. Emerging prospects of macro- and microalgae as prebiotic. Microbial Cell Fact. 2021, 20, 112. [Google Scholar] [CrossRef] [PubMed]
- Teuling, E.; Schrama, J.W.; Gruppen, H.; Wierenga, P.A. Effect of cell wall characteristics on algae nutrient digestibility in Nile tilapia (Oreochromis niloticus) and African catfish (Clarus gariepinus). Aquaculture 2017, 479, 490–500. [Google Scholar] [CrossRef]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.T.; Show, P.L. Microalgae: A Potential Alternative to Health Supplementation for Humans. Food Sci. Hum. Wellness 2019, 80, 16–24. [Google Scholar] [CrossRef]
- Edelmann, M.; Aalto, S.; Chamlagain, B.; Kariluoto, S.; Piironen, V. Riboflavin, Niacin, Folate and Vitamin B12 in Commercial Microalgae Powders. J. Food Compos. Anal. 2019, 82, 103226. [Google Scholar] [CrossRef]
- Barbosa, M.J.; Zijffers, J.W.; Nisworo, A.; Vaes, W.; van Schoonhoven, J.; Wijffels, R.H. Optimization of biomass, vitamins, and carotenoid yield on light energy in a flat-panel reactor using the A-stat technique. Biotechnol. Bioeng. 2005, 89, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89. [Google Scholar] [CrossRef]
- Hernández-Carmona, G.; Carrillo-Domínguez, S.; Arvizu-Higuera, D.L.; Rodríguez-Montesinos, Y.E.; Murillo-Álvarez, J.I.; Muñoz-Ochoa, M.; Castillo- Domínguez, R.M. Monthly variation in the chemical composition of Eisenia arborea JE areschoug. J. Appl. Phycol. 2009, 21, 607–616. [Google Scholar] [CrossRef]
- Mustafa, M.G. A review: Dietary benefits of algae as an additive in fish feed. Isr. J. Aquac. 1995, 47, 155–162. [Google Scholar]
- Guedes, C.A.; Sousa-Pinto, I.; Malcata, X.F. Chapter 8—Application of Microalgae Protein to Aquafeed. In Handbook of Marine Microalgae; Kim, S.-K., Ed.; Academic Press: Boston, MA, USA, 2015; pp. 93–125. [Google Scholar]
- Di Lena, G.; Casini, I.; Lucarini, M.; Sanchez del Pulgar, J.; Aguzzi, A.; Caproni, R.; Lombardi-Boccia, G. Chemical characterization and nutritional evaluation of microalgal biomass from large-scale production: A comparative study of five species. Eur. Food Res. Technol. 2020, 246, 323–332. [Google Scholar] [CrossRef]
- Ryckebosch, E.; Bruneel, C.; Muylaert, K.; Foubert, I. Microalgae as an alternative source of omega-3 long chain polyunsaturated fatty acids. Lipid Technol. 2012, 24, 128–130. [Google Scholar] [CrossRef]
- Denstadli, V.; Skrede, A.; Krogdahl, A.; Sahlstrøm, S.; Trond Storebakken, T. Feed intake, growth, feed conversion, digestibility, enzyme activities and intestinal structure in Atlantic salmon (Salmo salar L.) fed graded levels of phytic acid. Aquaculture 2006, 256, 365–376. [Google Scholar] [CrossRef]
- Pereira, H.; Sardinha, M.; Santos, T.; Gouveia, L.; Barreira, L.; Dias, J.; Varela, J. Incorporation of defatted microalgal biomass (Tetraselmis sp. CTP4) at the expense of soybean meal as a feed ingredient for juvenile gilthead seabream (Sparus aurata). Algal Res. 2020, 47, 101869. [Google Scholar] [CrossRef]
- Feng, W.; Zhu, Y.; Wu, F.; He, Z.; Zhang, C.; Giesy, J.P. Forms and lability of phosphorus in algae and aquatic macrophytes characterized by solution 31 P NMR coupled with enzymatic hydrolysis. Sci. Rep. 2016, 6, 37164. [Google Scholar] [CrossRef] [PubMed]
- Teuling, E.; Wierenga, P.A.; Agboola, J.O.; Gruppen, H.; Schrama, J.W. Cell wall disruption increases bioavailability of Nannochloropsis gaditana nutrients for juvenile Nile tilapia (Oreochromis niloticus). Aquaculture 2019, 499, 269–282. [Google Scholar] [CrossRef]
- Maldonado-Othón, C.A.; Perez-Velazquez, M.; Gatlin, D.M.; González-Félix, M.L. Replacement of fish oil by soybean oil and microalgal meals in diets for Totoaba macdonaldi (Gilbert, 1890) juveniles. Aquaculture 2020, 529, 735705. [Google Scholar] [CrossRef]
- Hart, B. Evaluation of Schizochytrium sp. as a Source of DHA and Haematococcus pluvialis as a Source of Astaxanthin Pigment in Diets for Farmed Salmonids. Available online: http://hdl.handle.net/10222/81070 (accessed on 10 December 2021).
- Hua, K.; Cobcroft, J.M.; Cole, A.; Condon, K.; Jerry, D.R.; Mangott, A.; Strugnell, J.M. The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef]
- Révész, N.; Biró, J. Recent trends in fish feed ingredients–mini review. Acta Agrar. Kaposváriensis 2019, 23, 32–47. [Google Scholar] [CrossRef]
- Aragão, C.; Gonçalves, A.T.; Costas, B.; Azeredo, R.; Xavier, M.J.; Engrola, S. Alternative Proteins for Fish Diets: Implications beyond Growth. Animals 2022, 12, 1211. [Google Scholar] [CrossRef]
- Randazzo, B.; Marco, P.D.; Zarantoniello, M.; Daniso, E.; Cerri, R.; Grazia Finoia, M.; Capoccioni, F.; Tibaldi, E.; Olivotto, I.; Cardinaletti, G. Effects of supplementing a plant protein-rich diet with insect, crayfish or microalgae meals on gilthead sea bream (Sparus aurata) and European seabass (Dicentrarchus labrax) growth, physiological status and gut health. Aquaculture 2023, 575, 739811. [Google Scholar] [CrossRef]
- Chen, W.; Luo, L.; Han, D.; Long, F.; Chi, Q.; Hu, Q. Effect of dietary supplementation with filamentous microalga Tribonema ultriculosum on growth performance, fillet quality and immunity of rainbow trout Oncorhynchus mykiss. Aquac. Nutr. 2021, 27, 1232–1243. [Google Scholar] [CrossRef]
- Stoneham, T.R.; Kuhn, D.D.; Taylor, D.P.; Neilson, A.P.; Smith, S.A.; Gatlin, D.M.; Chu, H.S.S.; O’Keefe, S.F. Production of omega-3 enriched tilapia through the dietary use of algae meal or fish oil: Improved nutrient value of fillet and offal. PLoS ONE 2018, 13, 0194241. [Google Scholar] [CrossRef] [PubMed]
- Haas, S.; Bauer, J.L.; Adakli, A.; Meyer, S.; Lippemeier, S.; Schwarz, K.; Schulz, C. Marine microalgae Pavlova viridis and Nannochloropsis sp. as n-3 PUFA source in diets for juvenile European sea bass (Dicentrarchus labrax L.). J. Appl. Phycol. 2016, 28, 1011–1021. [Google Scholar] [CrossRef]
- Sarker, P.K.; Kapuscinski, A.R.; Lanois, A.J.; Livesey, E.D.; Bernhard, K.P.; Coley, M.L. Towards sustainable aquafeeds: Complete substitution of fish oil with marine microalga Schizochytrium sp. improves growth and fatty acid deposition in juvenile Nile tilapia (Oreochromis niloticus). PLoS ONE 2016, 11, e0156684. [Google Scholar] [CrossRef] [PubMed]
- Kiron, V.; Sørensen, M.; Huntley, M.; Vasanth, G.K.; Gong, Y.; Dahle, D.; Palihawadana, A.M. Defatted biomass of the microalga, Desmodesmus sp., can replace fishmeal in the feeds for Atlantic salmon. Front. Mar. Sci. 2016, 3, 67. [Google Scholar] [CrossRef]
- He, Y.; Lin, G.; Rao, X.; Chen, L.; Jian, H.; Wang, M.; Guo, Z.; Chen, B. Microalga Isochrysis galbana in feed for Trachinotus ovatus: Effect on growth performance and fatty acid composition of fish fillet and liver. Aquac. Int. 2018, 26, 1261–1280. [Google Scholar] [CrossRef]
- Knutsen, H.R.; Johnsen, I.H.; Keizer, S.; Sorensen, M.; Roques, J.A.C.; Heden, I.; Sundell, K.; Hagen, O. Fish welfare, fast muscle cellularity, fatty acid and body-composition of juvenile spotted wolfish (Anarhichas minor) fed a combination of plant proteins and microalgae (Nannochloropsis oceanica). Aquaculture 2019, 506, 212–223. [Google Scholar] [CrossRef]
- Sarker, P.K.; Kapuscinski, A.R.; McKuin, B.; Fitzgerald, D.S.; Nash, H.M.; Greenwood, C. Microalgae-blend tilapia feed eliminates fishmeal and fish oil, improves growth, and is cost viable. Sci. Rep. 2020, 10, 19328. [Google Scholar] [CrossRef]
- Serrano, E.; Simpfendorfer, R.; Medina, A.; Sandoval, C.; Martínez, A.; Morales, R.; Davies, S.J. 2021. Partially replacing fish oil with microalgae (Schizochytrium limacinum and Nannochloropsis oceanica) in diets for rainbow trout (Oncorhynchus mykiss) reared in saltwater with reference to growth performance, muscle fatty acid composition and liver. Aquac. Res. 2021, 52, 4401–4413. [Google Scholar] [CrossRef]
- Karapanagiotidis, I.T.; Metsoviti, M.N.; Gkalogianni, E.Z.; Psofakis, P.; Asimaki, A.; Katsoulas, N.; Papapolymerou, G.; Zarkadas, I. The effects of replacing fishmeal by Chlorella vulgaris and fish oil by Schizochytrium sp. and Microchloropsis gaditana blend on growth performance, feed efficiency, muscle fatty acid composition and liver histology of gilthead seabream (Sparus aurata). Aquaculture 2022, 561, 738709. [Google Scholar] [CrossRef]
- Zhao, W.; Cui, X.; Wang, Z.Q.; Yao, R.; Xie, S.H.; Gao, B.Y.; Zhang, C.W.; Niu, J. Beneficial changes in growth performance, antioxidant capacity, immune response, hepatic health, and flesh quality of Trachinotus ovatus fed with Oedocladium carolinianum. Front. Immunol. 2022, 13, 940929. [Google Scholar] [CrossRef] [PubMed]
- Grassi, T.L.M.; Paiva, N.M.; Oliveira, D.L.; Taniwaki, F.; Cavazzana, J.F.; da Costa Camargo, G.C.R.; Diniz, J.C.P.; Bermejo-Poza, R.; Borghesi, R.; Villarroel, M.; et al. Growth performance and flesh quality of tilapia (Oreochromis niloticus) fed low concentrations of Rubrivivax gelatinosus, Saccharomyces cerevisiae and Spirulina platensis. Aquac. Int. 2020, 28, 1305–1317. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Y.; Han, D.; Han, D.; Zhu, X.; Xie, S.; Long, F.; Jia, J.; Hu, Q. Effects of dietary supplementation with filamentous microalgae (Oedocladium sp. or Tribonema ultriculosum) on growth performance, fillet fatty acid composition, skin pigmentation, and immune response of yellow catfish Pelteobagrus fulvidraco. J. World Aquac. Soc. 2021, 52, 1273–1289. [Google Scholar] [CrossRef]
- Tavakoli, S.; Regenstein, J.M.; Daneshvar, E.; Bhatnagar, A.; Luo, Y.; Hong, H. Recent advances in the application of microalgae and its derivatives for preservation, quality improvement, and shelf-life extension of seafood. Crit. Rev. Food Sci. Nutr. 2022, 62, 6055–6068. [Google Scholar] [CrossRef] [PubMed]
- Sáez, M.I.; Galafat, A.; Suárez, M.D.; Chaves-Pozo, E.; Arizcun, M.; Ayala, M.D.; Alarcón, F.J.; Martínez, T.F. Effects of raw and hydrolysed Nannochloropsis gaditana biomass included at low level in finishing diets for gilthead seabream (Sparus aurata) on fillet quality and shelf life. J. Appl. Phycol. 2023, 35, 1163–1181. [Google Scholar] [CrossRef]
- Matos, E.; Dias, J.; Dinis, M.T.; Silva, T.S. Sustainability vs. Quality in gilthead seabream (Sparus aurata L.) farming: Are trade-offs inevitable? Rev. Aquac. 2017, 9, 388–409. [Google Scholar] [CrossRef]
- Abdulrahman, N.M.; Abid, S.H.; Koyun, M. Effect of microalgae Chlorella pyrenoidosa as feed additive on common carp (Cyprinus carpio L.) nutritional performance, proximate composition and organoleptic evaluation. Appl. Ecol. Environ. Res. 2019, 3, 118–126. [Google Scholar]
- Güroy, B.; Güroy, D.; Mantoğlu, S.; Çelebi, K.; Şahin, O.I.; Kayalı, S.; Canan, B. Dietary Spirulina (Arthrospira platensis, Gomont, 1892) improved the flesh quality and shelf life of rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) fed fish meal or plant-based diet. Aquac. Res. 2019, 50, 2519–2527. [Google Scholar] [CrossRef]
- Rosas, V.T.; Monserrat, J.M.; Bessonart, M.; Magnone, L.; Romano, L.A.; Tesser, M.B. Fish oil and meal replacement in mullet (Mugil liza) diet with Spirulina (Arthrospira platensis) and linseed oil. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 218, 46–54. [Google Scholar] [CrossRef]
- Sheykhkanlu Milan, F.; Rostamzadeh Sani Maleki, B.; Moosavy, M.H.; Mousavi, S.; Sheikhzadeh, N.; Khatibi, S.A. Ameliorating effects of dietary Haematococcus pluvialis on arsenic-induced oxidative stress in rainbow trout (Oncorhynchus mykiss) fillet. Ecotoxicol. Environ. Saf. 2021, 207, 111559. [Google Scholar] [CrossRef]
- Awed, E.M.; Sadek, K.M.; Soliman, M.K.; Khalil, R.H.; Younis, E.M.; Abdel-Warith, A.W.A.; Abdel-Latif, H.M. Spirulina platensis alleviated the oxidative damage in the gills, liver, and kidney organs of Nile tilapia intoxicated with sodium sulphate. Animals 2020, 10, 2423. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, D.; Abd El-Hamid, M.I.; Al-Zaban, M.I.; ElHady, M.; El-Azzouny, M.M.; ElFeky, T.M.; Omar, A.E. Impacts of fortifying Nile tilapia (Oreochromis niloticus) diet with different strains of microalgae on its performance, fillet quality and disease resistance to Aeromonas hydrophila considering the interplay between antioxidant and inflammatory response. Antioxidants 2022, 11, 2181. [Google Scholar] [CrossRef] [PubMed]
- Biswas, O.; Kandasamy, P.; Nanda, P.K.; Biswas, S.; Lorenzo, J.M.; Das, A.; Alessandroni, L.; Lamri, M.; Das, A.K.; Gagaoua, M. Phytochemicals as natural additives for quality preservation and improvement of muscle foods: A focus on fish and fish products. Food Mater. Res. 2023, 3, 5. [Google Scholar] [CrossRef]
- Fuat Gulhan, M.; Duran, A.; Selamoglu Talas, Z.; Kakoolaki, S.; Mansouri, S.M. Effects of propolis on microbiologic and biochemical parameters of rainbow trout (Oncorhynchus mykiss) after exposure to the pesticide. Iran. J. Fish. Sci. 2012, 11, 490–503. [Google Scholar]
- Selamoglu, Z.; Duran, A.; Gulhan, M.F.; Erdemli, M.E. Effects of propolis on biochemical and microbiological parameters in carp (Cyprinus carpio) fillets exposed to arsenic. Iran. J. Fish. Sci. 2015, 14, 896–907. [Google Scholar]
- Öz, M. Effects of garlic (Allium sativum) supplemented fish diet on sensory, chemical, and microbiological properties of rainbow trout during storage at −18 °C. LWT—Food Sci. Technol. 2018, 92, 155–160. [Google Scholar] [CrossRef]
- Hassanzadeh, P.; Oladi, A.; Sheikhzadeh, N.; Mahmoudi, R.; Khani Oushani, A.; Mousavi, S. Study the effects of administrating zeolite/chitosan and zeolite/nano chitosan composites in rainbow trout (Oncorhynchus mykiss) diet on the quality of the frozen fillet. Iran. Vet. J. 2020, 16, 66–76. [Google Scholar]
- Neetoo, H.; Ye, M.; Chen, H. Bioactive alginate coatings to control Listeria monocytogenes on cold-smoked salmon slices and fillets. Int. J. Food Microbiol. 2010, 136, 326–331. [Google Scholar] [CrossRef]
Microalgae Nutrient (per 100 g) | Tetraselmis suecica | Isochrysis galbana | Chlorella | Tetraselmis chuii | Phaeodactylum tricornutum | Nannochloropsis granulate | Botryococcus braunii | Porphyridium aerugineum | Schizochytrium sp. |
---|---|---|---|---|---|---|---|---|---|
Sodium (mg) | 3223.1 | 2735 | - | 890 | 1430 | 310 | 940 | 810 | 100 |
Calcium (mg) | 1790.7 | 1145.5 | 331,00 | 2990 | 1910 | 980 | 100 | 640 | 340 |
Potassium (mg) | 1349.4 | 1314.4 | 714 | 1860 | 1720 | 600 | 750 | 670 | 550 |
Phosphor (mg) | 964.6 | 625.3 | 29820 | 1460 | 269 | 0.073 | 1450 | 1390 | 470 |
Sulfur (mg) | - | - | - | 1380 | 1050 | 0.058 | 410 | 640 | 740 |
Magnesium (mg) | 601.4 | 400.4 | 335 | 430 | 555 | 700 | 360 | 550 | - |
Iron (mg) | 30.9 | 31 | 53.9 | 477.5 | 477.27 | 0.0102 | 620.3 | 1110.07 | 13 |
Zinc (mg) | 6.6 | 13.4 | 217 | 5 | 37.3 | 0.0025 | 2.78 | 4.1 | 36 |
Manganese (mg) | 3.5 | 3.6 | - | 4.51 | 31.4 | 0.0019 | 45.37 | 25.85 | - |
Copper (mg) | 1.1 | 2.8 | - | 5.48 | 8.4 | 0.0064 | 3.52 | 4.53 | 2 |
Selenium (mg) | - | - | 2.2 | 0.05 | 0.05 | 0.05 | - | - | 0.13 |
Lipid (g) | 14.68 | 31.9 | 12.18 | 01.07 | 12.73 | 18.4 | 14.3 | 7.55 | 50.00 |
Protein(g) | 26.05 | 28.98 | 51.45 | 19.57 | 26.95 | 28.8 | 19 | 40.8 | 19.22 |
Carbohydrate (g) | 24.01 | 17.67 | 11.86 | 79.36 | 16.91 | 37.6 | 18.74 | 39.2 | 24.88 |
Ash (g) | 17.99 | 15.16 | 9.50 | 14 | 27.95 | 8.6 | 39.73 | 2.1 | 3.67 |
References | [19] | [19] | [20,21] | [22] | [23,19] | [24,25] | [26] | [19] | [27] |
Microalgal Culture | Fish Species | Microalage Replacement (%) with Fish Meal/Fish Oil/Dietary Inclusion Level | Influence | References |
---|---|---|---|---|
Combination of Nannochloropsis sp. and Isochrysis sp. | Juvenile Atlantic cod (Gadus morhua) | 15%, 30% | No changes in n-3 and n-6 fatty acids content ↑ level of 20:1(n-9) fatty acid ↑ feed intake ↑ fish growth, ↑ survival, ↓ feed conversion ratios | [38] |
Pavlova viridis and Nannochloropsis sp. | European sea bass (Dicentrarchus labrax L.). | 50%, 100% | ↑ DHA ↑ Total PUFAs | [70] |
Nannochloropsis oculata Schizochytrium sp. | Nile tilapia (Oreochromis niloticus) | N. oculata: 3%, 5% and 8% Schizochytrum sp.: 3.2% | ↑ DHA ↑ Total PUFAs ↑ crude lipid content ↓ arsenic content crude protein and ash content, total n-3 PUFA, n-6 PUFA, n-3 LC PUFA, and n-6 LC PUFA, SFA, MUFA not significantly different | [71] |
Desmodesmus sp. | Atlantic salmon | 10, 20% diet 10% diet 20% diet | No significant changes in proximate composition ↓ Lipid content ↓ protein content ↓ ash content | [72] |
Schizochytrium sp. | Juvenile tilapia | 1.75%, 5.26%, 8.77% | ↑ Omega 3 ↑ total n-3 ↑ LC-PUFAs ↑ DHA ↑ Total SFA ↓ Total MUFA ↓ Omega 6 ↓ Total ash ↓ Crude protein | [68] |
Isochrysis galbana | Trachinotus ovatus | 4.5–5.0 wt % | ↑ DHA contents ↑ EPA contents ↑ PUFAs ↑ Docosapentaenoic acid ↑ LC-n-3 PUFAs ↑ total lipid contents ↑ total PLs ↑ α-linolenic acid content ↑ SDA content SFAs, MFAs, n-6 FAs, neutral lipids and TAG, crude protein contents and moisture not significantly influenced | [73] |
Spotted wolffish (Anarhichas minor) | Nannochloropsis oceanica | 7.5% and 15% | ↑ omega-3 fatty acid EPA ↑ PUFA ↓ Total saturated fatty acids ↓ Saturated fatty acid C14:0, C16:0 ↓ monounsaturated fatty acid C22:1n-9 No changes in EPA and DHA level | [74] |
Combination of Nannochloropsis oculata and Schizochytrium sp. | Nile tilapia (Oreochromis niloticus) | ↑ growth performance ↑ DHA, protein, lipid | [75] | |
Schizochytrium limacinum | Totoaba macdonaldi | 33%, 66% and 100% | ↑ DHA ↑ TGC ↑ total n-3 FA, 22:6n-3 ↑ n-3/n-6 ratios, ↑ Crude fat | [61] |
Mixture of: Schizochytrium limacinum and Nannochloropsis oceanica | Rainbow trout (Oncorhynchs mykiss) | 9% and 17% | ↑ n-3/n-6 ratio ↓ MUFA No changes in total SAFA, total PUFA, n−3 PUFA, EPA, DHA, and 22:6n−3 fatty acid content | [75] |
1. Chlorella vulgaris 2. blend of Schizochytrium sp. and Microchloropsis gaditana | Gilthead seabream (Sparus aurata) | 1. 10%, 20%, 30% 2. 50% and 100% | 1. ↑ level of 18:3n-3 and 18:2n-6 No significantly changes in DHA and EPA 2. ↑ level of n-6 PUFA No changes in DHA and EPA | [76] |
Oedocladium carolinianum | Trachinotus ovatus | 1% and 5% | In the whole body: ↑ The total MUFA ↑ oleic acid (C18:1) and Eicosenoic acid (C20:1) content ↓ Total PUFAs andtotal n-6 PUFA, linoleic acid (C18:2n6) content in 5% of the diet No changes in total SFAs, total n-3 PUFA profiles, EPAand DHA concentrations | [77] |
Spirulina platensis | Nile tilapia (Oreochromis niloticus) | 0.25, 0.5% | ↑ protein content ↑ EPA ↓ lipid content ↓ MUFA ↓ SFAs ↓ PUFA ↓ linoleic acid concentrations ↓ n-6/n-3 ratio | [78] |
filamentous microalga Tribonema ultriculosum | Rainbow trout (Oncorhynchs mykiss) | 50 g/kg 100 g/kg | ↓ polyunsaturated fatty acids (linoleic acid and linolenic acid) ↑ DHA contents ↑ n-3/n-6 polyunsaturated fatty acids ↑ Saturated fatty acids ↑ palmitoleic acid ↑ EPA | [67] |
Oedocladium sp. or Tribonema ultriculosum | Yellow catfish (Pelteobagrus fulvidraco) | 4% and 5% | ↑ MUFA ↑ TFA content ↑ palmitoleic acid ↑ EPA ↑ C14:0 profile or the ↑ C14:0 and C16:0 profiles ↑ EPA ↓ PUFAs, n-6 PUFA No changes in n-3/n-6 ratio and EPA | [79] |
Microalgal Culture | Fish Species | % Replacement of Fish Meal/Fish Oil/Dietary Inclusion Levels | Effects | References |
---|---|---|---|---|
Phaeodactylum tricornutum | Gilthead seabream | 2.5% | No significant effect on flavor, odor, flavor, whiteness, and fatness perception in cooked fillets Skin color: lighter and more vivid yellow | [41] |
Chlorella pyrenoidosa | Common carp (Cyprinus carpio L.) | 2.5 g/kg, 5 g/kg 7.5 g/kg | ↑ color ↑ j uiciness ↑ complete acceptability than the ↑ freshness ↑ Flavor (except 2.5 g/kg) | [83] |
Spirulina (Arthrospira platensis) | rainbow trout (Oncorhynchs mykiss) | 4% | ↑ red/green tonality (a*) No significant differences in the sensory evaluation including smell, texture, and general acceptability among diet groups | [84] |
Nannochloropsis gaditana | Sparus aurata | 2.5% and 5% | Skin color: ↑ L* (more lightness) ↑ b* (more yellowish) ↓ a* (more greennish) | [81] |
Microalgal Species | Fish Species | Microalgae (%) Replacement with Fish Meal/Fish Oil/Dietary Inclusion | Effects | References |
---|---|---|---|---|
Spirulina platensis | Mullet (Mugil liza) | 30, 50, 70, 100% substitution with fish meal | ↑ antioxidant capacity No significant changes in MDA level | [85] |
Spirulina platensis | Nile tilapia | 1% diet | ↑ GPX level | [87] |
Haematococcus pluvialis | Rainbow trout (Oncorhynchus mykiss) | 0.28, 0.56, 1.12% diet | ↓ levels of pH ↓ peroxide value ↓ protein and lipid oxidation levels ↑ CAT, GPX, SOD and GST gene expressions | [86] |
filamentous microalga Tribonema ultriculosum | Rainbow trout (Oncorhynchus mykiss) | 50 g/kg 100 g/kg | ↓ MDA level | [67] |
Oedocladium carolinianum | Trachinotus ovatus | 5% diet | In the liver: ↑ T-AOC and CAT, GSH-PX, andSOD activities ↓ the MDA level | [77] |
Nannochloropsis oculate, Schizochytrium, and Spirulina | Nile tilapia | 0.75%, 1.5%, 3% diet | ↓ ROS, H2O2, and MDA levels ↑ Total antioxidant capacity | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheikhzadeh, N.; Soltani, M.; Heidarieh, M.; Ghorbani, M. Role of Dietary Microalgae on Fish Health and Fillet Quality: Recent Insights and Future Prospects. Fishes 2024, 9, 26. https://doi.org/10.3390/fishes9010026
Sheikhzadeh N, Soltani M, Heidarieh M, Ghorbani M. Role of Dietary Microalgae on Fish Health and Fillet Quality: Recent Insights and Future Prospects. Fishes. 2024; 9(1):26. https://doi.org/10.3390/fishes9010026
Chicago/Turabian StyleSheikhzadeh, Najmeh, Mehdi Soltani, Marzieh Heidarieh, and Mahdi Ghorbani. 2024. "Role of Dietary Microalgae on Fish Health and Fillet Quality: Recent Insights and Future Prospects" Fishes 9, no. 1: 26. https://doi.org/10.3390/fishes9010026
APA StyleSheikhzadeh, N., Soltani, M., Heidarieh, M., & Ghorbani, M. (2024). Role of Dietary Microalgae on Fish Health and Fillet Quality: Recent Insights and Future Prospects. Fishes, 9(1), 26. https://doi.org/10.3390/fishes9010026