Genetic Variability of Mass-Selected and Wild Populations of Yellow Drum (Nibea albiflora) Revealed Using Microsatellites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extraction
2.2. Microsatellite Analysis
2.3. Statistical Analysis
3. Results
3.1. Polymorphism of Different SSR Loci
3.2. Genetic Diversity of the Yellow Drum Populations
3.3. Analysis of Genetic Structure and Differentiation among Populations
3.4. Analysis of Potential Genetic Bottleneck Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gjedrem, T.; Robinson, N.; Rye, M. The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture 2012, 350, 117–129. [Google Scholar] [CrossRef]
- Goldstein, D.B.; Christian, S. Microsatellites, Evolution and Applications; Oxford University Press: Oxford, UK, 1999; p. 352. [Google Scholar]
- Ellegren, H.; Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 2016, 17, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Porta, J.; Maria Porta, J.; Cañavate, P.; Martínez-Rodríguez, G.; Carmen Alvarez, M. Substantial loss of genetic variation in a single generation of Senegalese sole (Solea senegalensis) culture: Implications in the domestication process. J. Fish Biol. 2007, 71, 223–234. [Google Scholar] [CrossRef]
- Bagshaw, A.T. Functional mechanisms of microsatellite DNA in eukaryotic genomes. Genome Biol. Evol. 2017, 9, 2428–2443. [Google Scholar] [CrossRef]
- Hodel, R.G.; Segovia-Salcedo, M.C.; Landis, J.B.; Crowl, A.A.; Sun, M.; Liu, X.; Gitzendanner, M.A.; Douglas, N.A.; Germain-Aubrey, C.C.; Chen, S.; et al. The report of my death was an exaggeration: A review for researchers using microsatellites in the 21st century. Appl. Plant Sci. 2016, 4, 1600025. [Google Scholar] [CrossRef] [PubMed]
- Astorga, M.P.; Valenzuela, A.; Segovia, N.I.; Poulin, E.; Vargas-Chacoff, L.; Gonzalez-Wevar, C.A. Contrasting patterns of genetic diversity and divergence between landlocked and migratory populations of fish Galaxias maculatus, evaluated through mitochondrial DNA sequencing and nuclear DNA microsatellites. Front. Genet. 2022, 13, 854362. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Zhu, Y.; Chen, X. High polymorphism and moderate differentiation of chub mackerel, Scomber japonicus (Perciformes: Scombridae), along the coast of China revealed by fifteen novel microsatellite markers. Conserv. Genet. 2014, 15, 1021–1035. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, J.; Ren, G.; Ma, D.; Wang, Y.; Xiao, Z.; Xu, S. Pronounced population genetic differentiation in the rock bream Oplegnathus fasciatus inferred from mitochondrial DNA sequences. Mitochondrial DNA Part A 2016, 27, 2045–2052. [Google Scholar]
- Takita, T.; Saito, H.; Oiwa, A. Orcurrence of two cohorts in young of the year of Nibea albiflora in the Arake Sound Japan and comparison of their growth and changes in body composition. Bull. Jpn. Soc. Sci. Fish. 2008, 55, 1149–1156. [Google Scholar] [CrossRef]
- Wang, D.; Wu, X.X. 2023 China Fisheries Statistical Yearbook, 1st ed.; China Agricultural Press: Beijing, China, 2023; pp. 39–40. [Google Scholar]
- Geng, Z.; Xu, D.; Shi, H.; Lou, B.; Mao, G.; Li, S. Study on development and growth of early life stages of Nibea albiflora (Richardson). Adv. Mar. Sci. 2012, 30, 77–86. [Google Scholar]
- Sun, Z. Study on Seed Production Techniques of Nibea albiflora from the Inshore Water of Zhoushan; Zhejiang Ocean University: Zhoushan, China, 2005. [Google Scholar]
- Liu, Q. A study on holding culture technique for fingerling of Nibea albiflora (Richardson) in net-cage. Mod. Fish. Inf. 2009, 24, 20–22. [Google Scholar]
- Budd, A.M.; Banh, Q.Q.; Domingos, J.A.; Jerry, D.R. Sex control in fish: Approaches, challenges and opportunities for aquaculture. J. Mar. Sci. Eng. 2015, 3, 329–355. [Google Scholar] [CrossRef]
- Fatima, S.; Adams, M.; Wilkinson, R. Sex reversal of brook trout (Salvelinus fontinalis) by 17α-methyltestosterone exposure: A serial experimental approach to determine optimal timing and delivery regimes. Anim. Reprod. Sci. 2016, 175, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Lou, B.; Xu, D.; Zhan, W.; Takeuchi, Y.; Yang, F.; Liu, F. Induction of meiotic gynogenesis in yellow drum (Nibea albiflora, Sciaenidae) using heterologous sperm and evidence for female homogametic sex determination. Aquaculture 2017, 479, 667–674. [Google Scholar] [CrossRef]
- Xu, D.; Lou, B.; Xue, B.; Shi, H.; Zhan, W.; Ma, S.; Mao, G. Artificial induction of diploid gynogenesis in Nibea alibiflora and evidence for female homogamety. Oceanol. Limnol. SinIca 2013, 44, 310–317. [Google Scholar]
- Xu, D.; Yang, F.; Chen, R.; Lou, B.; Zhan, W.; Hayashida, T.; Takeuchi, Y. Production of neo-males from gynogenetic yellow drum through 17α-methyltestosterone immersion and subsequent application for the establishment of all-female populations. Aquaculture 2018, 489, 154–161. [Google Scholar] [CrossRef]
- Xing, S.; Shao, C.; Liao, X.; Tian, Y.; Chen, S. Isolation and characterization of polymorphic microsatellite loci from a dinucleotide-enriched genomic library of spotted maigre (Nibea albiflora). Conserv. Genet. 2009, 10, 955–957. [Google Scholar] [CrossRef]
- Xu, D.; Lou, B.; Li, S.; Zhang, Y.; Xin, J.; Zhan, W. Isolation and characterization of novel microsatellite loci in Nibea albiflora. Genet. Mol. Res. 2013, 12, 6156–6159. [Google Scholar] [CrossRef]
- Holland, M.M.; Parson, W. GeneMarker. J. Forensic Sci. 2011, 56, 1. [Google Scholar]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; von Holdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Cornuet, J.M.; Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 1996, 144, 2001–2014. [Google Scholar] [CrossRef]
- Varshney, R.K.; Bohra, A.; Yu, J.; Graner, A.; Zhang, Q.; Sorrells, M.E. Designing future crops: Genomics-assisted breeding comes of age. Trends Plant Sci. 2021, 26, 631–649. [Google Scholar] [CrossRef]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar]
- Di Rienzo, A.; Peterson, A.C.; Garza, J.C.; Valdes, A.M.; Slatkin, M.; Freimer, N.B. Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. USA 1994, 91, 3166–3170. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, Y.; Song, W.; Jiang, L.; Yan, X. Genome-wide radseq reveals genetic differentiation of wild and cultured populations of large yellow croaker. Genes 2023, 14, 1508. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.C.; Hsu, H.H.; Chua, C.S.; Wang, T.Y.; Chen, Y.M.; Chen, T.Y. Development of pedigree classification using microsatellite and mitochondrial markers for giant grouper broodstock (Epinephelus Lanceolatus) management in Taiwan. Mar. Drugs 2014, 12, 2397–2407. [Google Scholar] [CrossRef]
- Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978, 89, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Irvin, S.D.; Wetterstrand, K.A.; Hutter, C.M.; Aquadro, C.F. Genetic variation and differentiation at microsatellite loci in Drosophila simulans: Evidence for founder effects in New World populations. Genetics 1998, 150, 777–790. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Liu, X.; Wang, Z.; Cai, M.; Yao, C. Genetic structure and genetic diversity analysis of four consecutive breeding generations of large yellow croaker (Pseudosciaena crocea) using microsatellite markers. J. Fish. China 2010, 34, 500–507. [Google Scholar] [CrossRef]
- Meirmans, P.G.; Hedrick, P.W. Assessing population structure: Fst and related measures. Mol. Ecol. Resour. 2011, 11, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Balloux, F.; Lugon-Moulin, N. The estimation of population differentiation with microsatellite markers. Mol. Ecol. 2002, 11, 155–165. [Google Scholar] [CrossRef]
- Xu, D.; Lou, B.; Zhou, W.; Chen, R.; Zhan, W.; Liu, F. Genetic diversity and population differentiation in the yellow drum Nibea albiflora along the coast of the China Sea. Mar. Biol. Res. 2017, 13, 456–462. [Google Scholar] [CrossRef]
- Miao, L.; Tang, X.N.; Li, M.Y.; Wang, T.; Wang, S.; Zhang, X.L.; Chen, J. Artificial gynogenesis in Pseudosciaena crocea (Perciformes, Sciaenidae) with heterologous sperm and its verification using microsatellite markers. Aquac. Res. 2014, 45, 1253–1259. [Google Scholar] [CrossRef]
- Perez-Enriquez, R.; Valadez-Rodriguez, J.A.; Max-Aguilar, A.; Dumas, S.; Diaz-Viloria, N. Parental contribution in a cultivated stock for the spotted rose snapper Lutjanus guttatus (Steindachner, 1869) estimated by newly developed microsatellite markers. Lat. Am. J. Aquat. Res. 2020, 48, 247–256. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, J.; Gao, T.X.; Song, N. Comparative analysis of genetic variation between cultured and wild populations of Nibea albiflora based on mitochondrial DNA control region. Period. Ocean. Univ. China 2021, 51, 11–19. [Google Scholar]
- Xu, D.; Lou, B.; Shi, H.; Geng, Z.; Li, S.; Zhang, Y. Genetic diversity and population structure of Nibea albiflora in the China Sea revealed by mitochondrial COI sequences. Biochem. Syst. Ecol. 2012, 45, 158–165. [Google Scholar] [CrossRef]
Locus | Na | Ne | I | HO | He | PIC | Fst |
---|---|---|---|---|---|---|---|
Nibea01 | 8.200 | 4.056 | 1.580 | 0.793 | 0.724 | 0.682 | 0.174 |
Nibea02 | 11.200 | 6.822 | 1.908 | 0.747 | 0.769 | 0.745 | 0.150 |
Nibea03 | 6.000 | 3.739 | 1.167 | 0.480 | 0.560 | 0.509 | 0.219 |
Nibea04 | 9.800 | 4.982 | 1.745 | 0.620 | 0.762 | 0.725 | 0.133 |
Nibea05 | 6.400 | 3.437 | 1.352 | 0.460 | 0.660 | 0.613 | 0.178 |
Nibea06 | 10.200 | 6.277 | 1.846 | 0.787 | 0.772 | 0.736 | 0.146 |
Nibea07 | 8.800 | 4.876 | 1.555 | 0.527 | 0.658 | 0.630 | 0.266 |
Nibea08 | 13.000 | 7.627 | 1.953 | 0.500 | 0.769 | 0.737 | 0.183 |
Nibea09 | 10.200 | 5.949 | 1.810 | 0.907 | 0.772 | 0.735 | 0.149 |
Nibea10 | 5.000 | 2.726 | 1.136 | 0.547 | 0.617 | 0.544 | 0.213 |
Nibea11 | 5.600 | 2.969 | 1.189 | 0.713 | 0.622 | 0.560 | 0.249 |
Niall28 | 11.800 | 6.524 | 1.924 | 0.873 | 0.781 | 0.758 | 0.128 |
Mean | 8.850 | 4.999 | 1.597 | 0.663 | 0.706 | 0.664 | 0.182 |
Population | Na | Ne | Ho | He | PIC |
---|---|---|---|---|---|
F4 | 11.833 | 6.960 | 0.742 | 0.809 | 0.7292 |
NeoG | 4.250 | 2.402 | 0.569 | 0.518 | 0.3826 |
AF | 5.583 | 2.922 | 0.581 | 0.618 | 0.5110 |
CP | 8.500 | 4.474 | 0.672 | 0.746 | 0.6431 |
WP | 14.083 | 8.235 | 0.750 | 0.838 | 0.7404 |
Mean | 8.850 | 4.999 | 0.663 | 0.706 | 0.6010 |
Source of Variation | Sum of Squares | Variance Components | Percentage of Variation | Fixation Index Fst |
---|---|---|---|---|
Among population | 51.377 | 0.08351 Va | 1.39 | |
Within population | 1135.833 | 1.92833 Vb | 32.20 | |
within individuals | 596.500 | 3.97677 Vc | 66.40 | |
Total | 1783.710 | 5.98851 | 100 | Fst = 0.01940 ** |
Population | F4 | NeoG | AF | CP | WP |
---|---|---|---|---|---|
F4 | 0.144 | 0.109 | 0.182 | 0.137 | |
NeoG | 0.1223 | 0.067 | 0.150 | 0.108 | |
AF | 0.1002 | 0.0610 | 0.158 | 0.117 | |
CP | 0.1790 | 0.1362 | 0.1454 | 0.058 | |
WP | 0.1064 | 0.0941 | 0.1005 | 0.0060 |
Pop | Sign Test | Wilcoxon Sign-Rank | |||||||
---|---|---|---|---|---|---|---|---|---|
IAM | TPM | SMM | IAM | TPM | SMM | ||||
Hd/He | p | Hd/He | p | Hd/He | p | p | p | p | |
F4 | 2/10 | 0.821 | 5/7 | 0.577 | 9/3 | 0.017 * | 0.001 ** | 0.380 | 0.052 |
NeoG | 3/9 | 0.119 | 4/8 | 0.352 | 8/4 | 0.071 | 0.052 | 0.677 | 0.151 |
AF | 3/9 | 0.177 | 5/7 | 0.591 | 9/3 | 0.015 * | 0.008 ** | 1.000 | 0.077 |
CP | 1/11 | 0.020 * | 6/6 | 0.341 | 10/2 | 0.003 ** | 0.001 ** | 0.791 | 0.002 ** |
WP | 2/10 | 0.089 | 5/7 | 0.541 | 8/4 | 0.059 | 0.003 * | 0.909 | 0.109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Liu, S.; Zhu, Q.; Chen, R.; Hu, W.; Xu, D. Genetic Variability of Mass-Selected and Wild Populations of Yellow Drum (Nibea albiflora) Revealed Using Microsatellites. Fishes 2024, 9, 25. https://doi.org/10.3390/fishes9010025
Yu Q, Liu S, Zhu Q, Chen R, Hu W, Xu D. Genetic Variability of Mass-Selected and Wild Populations of Yellow Drum (Nibea albiflora) Revealed Using Microsatellites. Fishes. 2024; 9(1):25. https://doi.org/10.3390/fishes9010025
Chicago/Turabian StyleYu, Qin, Simiao Liu, Qihui Zhu, Ruiyi Chen, Weihua Hu, and Dongdong Xu. 2024. "Genetic Variability of Mass-Selected and Wild Populations of Yellow Drum (Nibea albiflora) Revealed Using Microsatellites" Fishes 9, no. 1: 25. https://doi.org/10.3390/fishes9010025
APA StyleYu, Q., Liu, S., Zhu, Q., Chen, R., Hu, W., & Xu, D. (2024). Genetic Variability of Mass-Selected and Wild Populations of Yellow Drum (Nibea albiflora) Revealed Using Microsatellites. Fishes, 9(1), 25. https://doi.org/10.3390/fishes9010025