New Strategies to Increase Fish Larval Physiological Responses against Changes in Water Temperature
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maulu, S.; Hasimuna, O.J.; Haambiya, L.H.; Monde, C.; Musuka, C.G.; Makorwa, T.H.; Munganga, B.P.; Phiri, K.J.; Nsekanabo, J.D. Climate Change Effects on Aquaculture Production: Sustainability Implications, Mitigation, and Adaptations. Front. Sustain. Food Syst. 2021, 5, 609097. [Google Scholar] [CrossRef]
- Ngoan, L.D. Effects of climate change in aquaculture: Case study in Thua Thien Hue Province, Vietnam. Biomed. J. Sci. Tech. Res. 2018, 10, 2018. [Google Scholar] [CrossRef]
- Stewart, H.A.; Aboagye, D.I.; Ramee, S.W.; Allen, P.J. Effects of acute thermal stress on acid-base regulation, haematology, ion-osmoregulation and aerobic metabolism in Channel Catfish (Ictalurus punctatus). Aquac. Res. 2019, 50, 2133–2141. [Google Scholar] [CrossRef]
- Navarro-Guillén, C.; Gilannejad, N.; Pérez-Hilario, D.; Martínez-Rodríguez, G.; Yúfera, M. Gut transit of daily consecutive meals in greater amberjack juveniles reared at different temperatures. Aquaculture 2023, 567, 739244. [Google Scholar] [CrossRef]
- Allan, B.J.M.; Browman, H.I.; Shema, S.; Skiftesvik, A.E.; Folkvord, A.; Durif, C.M.F.; Kjesbu, O.S. Increasing temperature and prey availability affect the growth and swimming kinematics of Atlantic herring (Clupea harengus) larvae. J. Plankton Res. 2022, 44, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Sardi, A.E.; Bégout, M.L.; Lalles, A.L.; Cousin, X.; Budzinski, H. Temperature and feeding frequency impact the survival, growth, and metamorphosis success of Solea solea larvae. PLoS ONE 2023, 18, e0281193. [Google Scholar] [CrossRef] [PubMed]
- Kourkouta, C.; Printzi, A.; Geladakis, G.; Mitrizakis, N.; Papandroulakis, N.; Koumoundouros, G. Long lasting effects of early temperature exposure on the swimming performance and skeleton development of metamorphosing gilthead seabream (Sparus aurata L.) larvae. Sci. Rep. 2021, 11, 8787. [Google Scholar] [CrossRef] [PubMed]
- Xavier, M.J.; Conceição, L.E.C.; Valente, L.M.P.; Colen, R.; Rodrigues, A.C.M.; Rocha, R.J.M.; Custódio, L.; Carballo, C.; Manchado, M.; Engrola, S. Dietary Natural Plant Extracts Can Promote Growth and Modulate Oxidative Status of Senegalese Sole Postlarvae under Standard/Challenge Conditions. Animals 2021, 11, 1398. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhao, Y.; Zhou, J.; Zhai, H.; Wei, L.; Liu, Z.; Wang, W.; Jiang, Z.; Ren, T.; Han, Y. Dietary taurine impacts the growth, amino acid profile and resistance against heat stress of tiger puffer (Takifugu rubripes). Aquacult. Nutr. 2020, 26, 1691–1701. [Google Scholar] [CrossRef]
- Cheng, C.H.; Guo, Z.X.; Wang, A.L. The protective effects of taurine on oxidative stress, cytoplasmic free-Ca(2+) and apoptosis of pufferfish (Takifugu obscurus) under low temperature stress. Fish Shellfish Immun. 2018, 77, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-M.; Malintha, G.H.T.; Gunathilaka, G.L.B.E.; Lee, C.; Kim, M.-G.; Lee, B.-J.; Kim, J.-D.; Lee, K.-J. Taurine supplementation in diet for olive flounder at low water temperature. Fish. Aquatic Sci. 2017, 20, 20. [Google Scholar] [CrossRef] [Green Version]
- Gomez Isaza, D.F.; Cramp, R.L.; Smullen, R.; Glencross, B.D.; Franklin, C.E. Coping with climatic extremes: Dietary fat content decreased the thermal resilience of barramundi (Lates calcarifer). Comp. Biochem. Phys. A 2019, 230, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Katsika, L.; Huesca Flores, M.; Kotzamanis, Y.; Estevez, A.; Chatzifotis, S. Understanding the Interaction Effects between Dietary Lipid Content and Rearing Temperature on Growth Performance, Feed Utilization, and Fat Deposition of Sea Bass (Dicentrarchus labrax). Animals 2021, 11, 392. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Guillén, C. New Strategies to Increase Fish Larval Physiological Responses against Changes in Water Temperature. Fishes 2023, 8, 299. https://doi.org/10.3390/fishes8060299
Navarro-Guillén C. New Strategies to Increase Fish Larval Physiological Responses against Changes in Water Temperature. Fishes. 2023; 8(6):299. https://doi.org/10.3390/fishes8060299
Chicago/Turabian StyleNavarro-Guillén, Carmen. 2023. "New Strategies to Increase Fish Larval Physiological Responses against Changes in Water Temperature" Fishes 8, no. 6: 299. https://doi.org/10.3390/fishes8060299
APA StyleNavarro-Guillén, C. (2023). New Strategies to Increase Fish Larval Physiological Responses against Changes in Water Temperature. Fishes, 8(6), 299. https://doi.org/10.3390/fishes8060299