Stock Discrimination of Gilthead Seabream (Sparus aurata Linnaeus, 1758) through the Examination of Otolith Morphology and Genetic Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Origin and Scale Examination
2.2. Otolith Shape Analysis
2.3. Otolith Bilateral Asymmetry
2.4. Microsatellite DNA Analysis
3. Results
3.1. Degree of Scale Regeneration (SRD)
3.2. Otolith Shape
3.3. Otolith Bilateral Asymmetry
3.4. Genetic Diversity
3.5. Genetic Structure and Individual Assignment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Bauchot, M.L.; Hureau, J.C. Sparidae. In Check-List of the Fishes of the Eastern Tropical Atlantic (CLOFETA); Quero, J.C., Hureau, J.C., Karrer, C., Post, A., Saldanha, L., Eds.; JNICT: Lisbon, Portugal; SEI: Paris, France; UNESCO: Paris, France, 1990; Volume 2, pp. 790–812. [Google Scholar]
- Alarcón, J.A.; Magoulas, A.; Georgakopoulos, T.; Zouros, E.; Alvarez, M.C. Genetic comparison of wild and cultivated european populations of the gilthead sea bream (Sparus aurata). Aquaculture 2004, 230, 65–80. [Google Scholar] [CrossRef]
- Funkenstein, B.; Cavari, B.; Stadie, T.; Davidovitch (Yaiche), E. Restriction site polymorphism of mitochondrial DNA of the gilthead sea bream (Sparus aurata) broodstock in Eilat, Israel. Aquaculture 1990, 89, 217–223. [Google Scholar] [CrossRef]
- Karaiskou, N.; Triantafyllidis, A.; Katsares, V.; Abatzopoulos, T.J.; Triantaphyllidis, C. Microsatellite variability of wild and farmed populations of Sparus aurata. J. Fish Biol. 2009, 74, 1816–1825. [Google Scholar] [CrossRef]
- Maroso, F.; Gkagkavouzis, K.; De Innocentiis, S.; Hillen, J.; do Prado, F.; Karaiskou, N.; Taggart, J.B.; Carr, A.; Nielsen, E.; Triantafyllidis, A.; et al. Genome-wide analysis clarifies the population genetic structure of wild gilthead sea bream (Sparus aurata). PLoS ONE 2021, 16, e0236230. [Google Scholar] [CrossRef]
- Palma, J.; Alarcón, J.A.; Alvarez, C.; Zouros, E.; Magoulas, A.; Andrade, J.P. Developmental stability and genetic heterozygosity in wild and cultured stocks of gilthead sea bream (Sparus aurata). J. Mar. Biol. Assoc. UK 2001, 81, 283–288. [Google Scholar] [CrossRef]
- Slimen, H.; Guerbej, H.; Othmen, A.; Brahim, I.; Blel, H.; Chatti, N.; Abed, A.; Said, K. Genetic differentiation between populations of gilthead seabream (Sparus aurata) along the Tunisian coast. Cybium 2004, 28, 45–50. [Google Scholar] [CrossRef]
- De Innocentiis, S.; Lesti, A.; Livi, S.; Rossi, A.R.; Crosetti, D.; Sola, L. Microsatellite markers reveal population structure in gilthead sea bream Sparus auratus from the Atlantic Ocean and Mediterranean Sea. Fish. Sci. 2004, 70, 852–859. [Google Scholar] [CrossRef]
- Rossi, A.R.; Perrone, E.; Sola, L. Genetic structure of gilthead seabream, Sparus aurata, in the Central Mediterranean Sea. Cent. Eur. J. Biol. 2006, 1, 636–647. [Google Scholar] [CrossRef]
- Coscia, I.; Vogiatzi, E.; Kotoulas, G.; Tsigenopoulos, C.S.; Mariani, S. Exploring neutral and adaptive processes in expanding populations of gilthead sea bream, Sparus aurata L., in the North-East Atlantic. Heredity 2012, 108, 537–546. [Google Scholar] [CrossRef] [Green Version]
- Franchini, P.; Sola, L.; Crosetti, D.; Milana, V.; Rossi, A.R. Low levels of population genetic structure in the gilthead sea bream, Sparus aurata, along the Coast of Italy. ICES J. Mar. Sci. 2012, 69, 41–50. [Google Scholar] [CrossRef] [Green Version]
- García-Celdrán, M.; Ramis, G.; María-Dolores, E.; Peñalver, J.; Borrell, Y.J.; Manchado, M.; Estévez, A.; Afonso, J.M.; Armero, E. Genetic assessment of three gilthead sea bream (Sparus aurata L.) populations along the Spanish coast and of three broodstocks managements. Aquac. Int. 2016, 24, 1409–1420. [Google Scholar] [CrossRef]
- Gkagkavouzis, K.; Karaiskou, N.; Katopodi, T.; Leonardos, I.; Abatzopoulos, T.J.; Triantafyllidis, A. The genetic population structure and temporal genetic stability of gilthead sea bream Sparus aurata populations in the Aegean and Ionian Seas, using microsatellite DNA markers. J. Fish Biol. 2019, 94, 606–613. [Google Scholar] [CrossRef]
- Polovina, E.-S.; Kourkouni, E.; Tsigenopoulos, C.S.; Sanchez-Jerez, P.; Ladoukakis, E.D. Genetic structuring in farmed and wild Gilthead seabream and European seabass in the Mediterranean Sea: Implementations for detection of escapees. Aquat. Living Resour. 2020, 33, 7. [Google Scholar] [CrossRef]
- Šegvić-Bubić, T.; Talijančić, I.; Grubišić, L.; Izquierdo-Gomez, D.; Katavić, I. Morphological and molecular differentiation of wild and farmed gilthead sea bream Sparus aurata: Implications for management. Aquac. Environ. Interact. 2014, 6, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Šegvić-Bubić, T.; Lepen, I.; Trumbić, Ž.; Ljubković, J.; Sutlović, D.; Matić-Skoko, S.; Grubišić, L.; Glamuzina, B.; Mladineo, I. Population genetic structure of reared and wild gilthead sea bream (Sparus aurata) in the Adriatic Sea inferred with microsatellite loci. Aquaculture 2011, 318, 309–315. [Google Scholar] [CrossRef]
- Žužul, I.; Šegvić-Bubić, T.; Talijančić, I.; Džoić, T.; Lepen Pleić, I.; Beg Paklar, G.; Ivatek-Šahdan, S.; Katavić, I.; Grubišić, L. Spatial connectivity pattern of expanding gilthead seabream populations and its interactions with aquaculture sites: A combined population genetic and physical modelling approach. Sci. Rep. 2019, 9, 14718. [Google Scholar] [CrossRef] [Green Version]
- Lett, C.; Barrier, N.; Ourmières, Y.; Petit, C.; Labonne, M.; Bourjea, J.; Darnaude, A.M. Modeling Larval Dispersal for the Gilthead Seabream in the Northwestern Mediterranean Sea. Mar. Environ. Res. 2019, 152, 104781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, C.; Correia, A.T.; Vaz-Pires, P.; Froufe, E. Genetic Diversity and Population Structure of the Blue Jack Mackerel Trachurus Picturatus across Its Western Distribution. J. Fish Biol. 2019, 94, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Correia, A.T.; Faria, R.; Alexandrino, P.; Antunes, C.; Isidro, E.J.; Coimbra, J. Evidence for Genetic Differentiation in the European Conger Eel Conger Conger Based on Mitochondrial DNA Analysis. Fish. Sci. 2006, 72, 20–27. [Google Scholar] [CrossRef]
- Shanks, A.L. Pelagic Larval Duration and Dispersal Distance Revisited. Biol. Bull. 2009, 216, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Arechavala-Lopez, P.; Toledo-Guedes, K.; Izquierdo-Gomez, D.; Šegvić-Bubić, T.; Sanchez-Jerez, P. Implications of Sea Bream and Sea Bass Escapes for Sustainable Aquaculture Management: A Review of Interactions, Risks and Consequences. Rev. Fish. Sci. Aquac. 2018, 26, 214–234. [Google Scholar] [CrossRef]
- Glaropoulos, A.; Papadakis, V.M.; Papadakis, I.E.; Kentouri, M. Escape-related behavior and coping ability of sea bream due to food supply. Aquac. Int. 2012, 20, 965–979. [Google Scholar] [CrossRef]
- Dempster, T.; Moe Føre, H.; Fredheim, A.; Jensen, Ø.; Sanchez-Jerez, P. Escapes of marine fish from sea-cage aquaculture in the Mediterranean Sea: Status and prevention. CIESM Work. Monogr. 2007, 32, 55–60. [Google Scholar]
- Arechavala-Lopez, P.; Uglem, I.; Fernandez-Jover, D.; Bayle-Sempere, J.T.; Sanchez-Jerez, P. Post-escape dispersion of farmed seabream (Sparus aurata L.) and recaptures by local fisheries in the Western Mediterranean Sea. Fish. Res. 2012, 121–122, 126–135. [Google Scholar] [CrossRef]
- Somarakis, S.; Pavlidis, M.; Saapoglou, C.; CS, T.; Dempster, T. Evidence for ‘escape through spawning’ in large gilthead sea bream Sparus aurata reared in commercial sea-cages. Aquac. Environ. Interact. 2013, 3, 135–152. [Google Scholar] [CrossRef] [Green Version]
- Arechavala-Lopez, P.; Izquierdo-Gomez, D.; Forcada, A.; Fernandez-Jover, D.; Toledo-Guedes, K.; Valle, C.; Sanchez-Jerez, P. Recapturing fish escapes from coastal farms in the western Mediterranean Sea: Insights for potential contingency plans. Ocean Coast. Manag. 2018, 151, 69–76. [Google Scholar] [CrossRef]
- Izquierdo-Gomez, D.; Sanchez-Jerez, P. Management of fish escapes from Mediterranean Sea cage aquaculture through artisanal fisheries. Ocean Coast. Manag. 2016, 122, 57–63. [Google Scholar] [CrossRef]
- Toledo-Guedes, K.; Sanchez-Jerez, P.; Brito, A. Influence of a massive aquaculture escape event on artisanal fisheries. Fish. Manag. Ecol. 2014, 21, 113–121. [Google Scholar] [CrossRef]
- Begg, G.A.; Waldman, J.R. An holistic approach to fish stock identification. Fish. Res. 1999, 43, 35–44. [Google Scholar] [CrossRef]
- Lishchenko, F.; Jones, J.B. Application of Shape Analyses to Recording Structures of Marine Organisms for Stock Discrimination and Taxonomic Purposes. Front. Mar. Sci. 2021, 8, 667183. [Google Scholar] [CrossRef]
- Neves, J.; Veríssimo, A.; Múrias Santos, A.; Garrido, S. Comparing Otolith Shape Descriptors for Population Structure Inferences in a Small Pelagic Fish, the European Sardine Sardina Pilchardus (Walbaum, 1792). J. Fish Biol. 2023, 102, 1219–1236. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, A.L.; Hernández-Fraga, K.; Alvarez-Hernández, S. Discrimination Analysis of Phenotypic Stocks Comparing Fish Otolith and Scale Shapes. Fish. Res. 2017, 185, 6–13. [Google Scholar] [CrossRef]
- Geladakis, G.; Nikolioudakis, N.; Koumoundouros, G.; Somarakis, S. Morphometric Discrimination of Pelagic Fish Stocks Challenged by Variation in Body Condition. ICES J. Mar. Sci. 2018, 75, 711–718. [Google Scholar] [CrossRef]
- Khan, U.; Bal, H.; Battal, Z.S.; Seyhan, K. Using Otolith and Body Shape to Discriminate between Stocks of European Anchovy (Engraulidae: Engraulis Encrasicolus) from the Aegean, Marmara and Black Seas. J. Fish Biol. 2022, 101, 1452–1465. [Google Scholar] [CrossRef] [PubMed]
- Muniz, A.A.; Moura, A.; Triay-Portella, R.; Moreira, C.; Santos, P.T.; Correia, A.T. Population Structure of the Chub Mackerel (Scomber Colias) in the North-East Atlantic Inferred from Otolith Shape and Body Morphometrics. Mar. Freshw. Res. 2021, 72, 341–352. [Google Scholar] [CrossRef]
- Pawson, M.G.; Jennings, S. A critique of methods for stock identification in marine capture fisheries. Fish. Res. 1996, 25, 203–217. [Google Scholar] [CrossRef]
- Arechavala-Lopez, P.; Sanchez-Jerez, P.; Bayle-Sempere, J.T.; Sfakianakis, D.G.; Somarakis, S. Morphological differences between wild and farmed Mediterranean fish. Hydrobiologia 2012, 679, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Arechavala-Lopez, P.; Sanchez-Jerez, P.; Bayle-Sempere, J.T.; Sfakianakis, D.G.; Somarakis, S. Discriminating farmed gilthead sea bream Sparus aurata and European sea bass Dicentrarchus labrax from wild stocks through scales and otoliths. J. Fish Biol. 2012, 80, 2159–2175. [Google Scholar] [CrossRef]
- Geladakis, G.; Somarakis, S.; Koumoundouros, G. Differences in otolith shape and fluctuating-asymmetry between reared and wild gilthead seabream (Sparus aurata Linnaeus, 1758). J. Fish Biol. 2021, 98, 277–286. [Google Scholar] [CrossRef]
- Fragkoulis, S.; Christou, M.; Karo, R.; Ritas, C.; Tzokas, C.; Batargias, C.; Koumoundouros, G. Scaling of body-shape quality in reared gilthead seabream Sparus aurata L. Consumer preference assessment, wild standard and variability in reared phenotype. Aquac. Res. 2017, 48, 2402–2410. [Google Scholar] [CrossRef]
- Rogdakis, Y.; Koukou, K.; Ramfos, A.; Dimitriou, E.; Katselis, G. Comparative morphology of wild, farmed and hatchery- released gilthead sea bream (Sparus aurata) in western Greece. Int. Sch. J. 2011, 4, 001–009. [Google Scholar]
- Šegvić-Bubić, T.; Talijančić, I.; Vulić, L.; Šegvić, B.; Žužul, I.; Radonić, I.; Grubišić, L. Assignment of Gilthead Seabream Sparus aurata to Its Origin through Scale Shape and Microchemistry Composition: Management Implications for Aquaculture Escapees. Water 2020, 12, 3186. [Google Scholar] [CrossRef]
- Talijančić, I.; Šegvić-Bubić, T.; Žužul, I.; Džoić, T.; Maršić-Lučić, J.; Grubišić, L. Morphological and ecophysiological adaptations of wild gilthead seabream Sparus aurata associated with tuna farms. Aquac. Environ. Interact. 2019, 11, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Talijančić, I.; Žužul, I.; Kiridžija, V.; Šiljić, J.; Pleadin, J.; Grubišić, L.; Šegvić-Bubić, T. Plastic Responses of Gilthead Seabream Sparus aurata to Wild and Aquaculture Pressured Environments. Front. Mar. Sci. 2021, 8, 694627. [Google Scholar] [CrossRef]
- Campana, S.E.; Casselman, J.M. Stock Discrimination Using Otolith Shape Analysis. Can. J. Fish. Aquat. Sci. 1993, 50, 1062–1083. [Google Scholar] [CrossRef]
- Campana, S.E.; Neilson, J.D. Microstructure of Fish Otoliths. Can. J. Fish. Aquat. Sci. 1985, 42, 1014–1032. [Google Scholar] [CrossRef]
- Panfili, J.; TomÁS, J.; Morales-Nin, B. Otolith Microstructure in Tropical Fish. In Tropical Fish Otoliths: Information for Assessment, Management and Ecology; Green, B.S., Mapstone, B.D., Carlos, G., Begg, G.A., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2009; pp. 212–248. ISBN 978-1-4020-5775-5. [Google Scholar]
- Campana, S.E.; Thorrold, S.R. Otoliths, increments, and elements: Keys to a comprehensive understanding of fish populations? Can. J. Fish. Aquat. Sci. 2001, 58, 30–38. [Google Scholar] [CrossRef]
- Cardinale, M.; Doering-Arjes, P.; Kastowsky, M.; Mosegaard, H. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Can. J. Fish. Aquat. Sci. 2004, 61, 158–167. [Google Scholar] [CrossRef]
- Huang, Y.F.; Song, B.L.; Deng, T.H.; Wang, Q.; Shen, Q.; Liu, L.G. Ontogenetic development, allometric growth patterns, and daily increment validation of larvae and juvenile Culter alburnus. Environ. Biol. Fishes 2021, 104, 1593–1610. [Google Scholar] [CrossRef]
- Hüssy, K.; Mosegaard, H.; Albertsen, C.M.; Nielsen, E.E.; Hemmer-Hansen, J.; Eero, M. Evaluation of otolith shape as a tool for stock discrimination in marine fishes using Baltic Sea cod as a case study. Fish. Res. 2016, 174, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Mérigot, B.; Letourneur, Y.; Lecomte-Finiger, R. Characterization of local populations of the common sole Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics and shape analysis. Mar. Biol. 2007, 151, 997–1008. [Google Scholar] [CrossRef]
- Mille, T.; Mahé, K.; Cachera, M.; Villanueva, M.C.; de Pontual, H.; Ernande, B. Diet is correlated with otolith shape in marine fish. Mar. Ecol. Prog. Ser. 2016, 555, 167–184. [Google Scholar] [CrossRef] [Green Version]
- Vignon, M.; Morat, F. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Mar. Ecol. Prog. Ser. 2010, 411, 231–241. [Google Scholar] [CrossRef]
- Hoff, N.T.; Dias, J.F.; de Lourdes, Z.-T.M.; Correia, A.T. Spatio-Temporal Evaluation of the Population Structure of the Bigtooth Corvina Isopisthus Parvipinnis from Southwest Atlantic Ocean Using Otolith Shape Signatures. J. Appl. Ichthyol. 2020, 36, 439–450. [Google Scholar] [CrossRef]
- Soeth, M.; Daros, F.A.; Correia, A.T.; Fabré, N.N.; Medeiros, R.; Feitosa, C.V.; de Sousa Duarte, O.; Lenz, T.M.; Spach, H.L. Otolith Phenotypic Variation as an Indicator of Stock Structure of Scomberomorus Brasiliensis from the Southwestern Atlantic Ocean. Fish. Res. 2022, 252, 106357. [Google Scholar] [CrossRef]
- Castonguay, M.; Simard, P.; Gagnon, P. Usefulness of Fourier Analysis of Otolith Shape for Atlantic Mackerel (Scomber scombrus) Stock Discrimination. Can. J. Fish. Aquat. Sci. 1991, 48, 296–302. [Google Scholar] [CrossRef]
- Lombarte, A.; Lleonart, J. Otolith size changes related with body growth, habitat depth and temperature. Environ. Biol. Fishes 1993, 37, 297–306. [Google Scholar] [CrossRef]
- Bolles, K.; Begg, G.A. Distinction between silver hake (Merluccius bilinearis) stocks in U.S. waters of the northwest Atlantic based on whole otolith morphometrics. Fish. Bull. 2000, 98, 451–462. [Google Scholar]
- Monteiro, L.R.; Di Beneditto, A.P.M.; Guillermo, L.H.; Rivera, L.A. Allometric changes and shape differentiation of sagitta otoliths in sciaenid fishes. Fish. Res. 2005, 74, 288–299. [Google Scholar] [CrossRef]
- Hüssy, K. Otolith shape in juvenile cod (Gadus Morhua): Ontogenetic and environmental effects. J. Exp. Mar. Bio. Ecol. 2008, 364, 35–41. [Google Scholar] [CrossRef]
- Başusta, N.; Khan, U. Sexual Dimorphism in the Otolith Shape of Shi Drum, Umbrina Cirrosa (L.), in the Eastern Mediterranean Sea: Fish Size–Otolith Size Relationships. J. Fish Biol. 2021, 99, 164–174. [Google Scholar] [CrossRef]
- Díaz-Gil, C.; Palmer, M.; Catalán, I.A.; Alós, J.; Fuiman, L.A.; García, E.; del Mar Gil, M.; Grau, A.; Kang, A.; Maneja, R.H.; et al. Otolith fluctuating asymmetry: A misconception of its biological relevance? ICES J. Mar. Sci. 2015, 72, 2079–2089. [Google Scholar] [CrossRef]
- Popper, A.N.; Ramcharitar, J.; Campana, S.E. Why Otoliths? Insights from inner ear physiology and fisheries biology. Mar. Freshw. Res. 2005, 56, 497–504. [Google Scholar] [CrossRef]
- Ramcharitar, J.U.; Deng, X.; Ketten, D.; Popper, A.N. Form and function in the unique inner ear of a teleost: The silver perch (Bairdiella Chrysoura). J. Comp. Neurol. 2004, 475, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Alados, C.L.; Escos, J.; Emlen, J.M. Developmental instability as an indicator of natural stress on the Pacific Hake (Merlussius Productus). Fish. Bull. 1994, 91, 587–593. [Google Scholar]
- Somarakis, S.; Kostikas, I.; Peristeraki, N.; Tsimenides, N. Fluctuating asymmetry in the otoliths of larval anchovy Engraulis encrasicolus and the use of developmental instability as an indicator of condition in larval fish. Mar. Ecol. Prog. Ser. 1997, 151, 191–203. [Google Scholar] [CrossRef]
- Allenbach, D.M. Fluctuating asymmetry and exogenous stress in fishes: A review. Rev. Fish Biol. Fish. 2011, 21, 355–376. [Google Scholar] [CrossRef]
- Fey, D.P.; Hare, J.A. Fluctuating asymmetry in the otoliths of larval Atlantic menhaden Brevoortia tyrannus (Latrobe)–A condition indicator? J. Fish Biol. 2008, 72, 121–130. [Google Scholar] [CrossRef]
- Lemberget, T.; McCormick, M.I. Replenishment success linked to fluctuating asymmetry in larval fish. Oecologia 2009, 159, 83–93. [Google Scholar] [CrossRef]
- Izquierdo-Gómez, D.; Arechavala-Lopez, P.; Bayle-Sempere, J.T.; Sánchez-Jerez, P. Assessing the influence of gilthead sea bream escapees in landings of Mediterranean fisheries through a scale-based methodology. Fish. Manag. Ecol. 2017, 24, 62–72. [Google Scholar] [CrossRef]
- Geladakis, G.; Somarakis, S.; Koumoundouros, G. Scale regeneration in reared Gilthead seabream: Revisiting the use of scales in identifying aquaculture escapees. Aquac. Res. 2021, 52, 4263–4268. [Google Scholar] [CrossRef]
- Katselis, G.; Koukou, K.; Dimitriou, E.; Koutsikopoulos, C. Short-term seaward fish migration in the Messolonghi–Etoliko lagoons (Western Greek coast) in relation to climatic variables and the lunar cycle. Estuar. Coast. Shelf Sci. 2007, 73, 571–582. [Google Scholar] [CrossRef]
- Katselis, G.; Koutsikopoulos, C.; Dimitriou, E.; Rogdakis, Y. Spatial patterns and temporal trends in the fisheries landings of the Messolonghi-Etoliko lagoons (Western Greek Coast). Sci. Mar. 2003, 67, 501–511. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.J.; Cabral, H.N.; Drake, P.; Economou, A.N.; Fernandez-Delgado, C.; Gordo, L.; Marchand, L.; Thiel, R. Recruitment and production of commercial species in estuaries. In Fishes in Estuaries; Elliott, M., Hemingway, K.L., Eds.; Blackwell Science Ltd.: Oxford, UK, 2002; p. 54e123. [Google Scholar]
- Quilhac, A.; Sire, J.Y. Restoration of the subepidermal tissues and scale regeneration after wounding a cichlid fish, Hemicromis bimaculatus. J. Exp. Zool. 1998, 281, 305–327. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Libungan, L.A.; Pálsson, S. ShapeR: An R Package to Study Otolith Shape Variation among Fish Populations. PLoS ONE 2015, 10, e0121102. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; Vienna, Austria: R Foundation for Statistical Computing. 2021. Available online: https://www.R-project.org (accessed on 1 November 2022).
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. Primer V6: User Manual/Tutorial (Plymouth Routines in Multivariate Ecological Research); Primer-E: Plymouth, UK, 2006. [Google Scholar]
- Anderson, M.; Braak, C.T. Permutation tests for multi-factorial analysis of variance. J. Stat. Comput. Simul. 2003, 73, 85–113. [Google Scholar] [CrossRef]
- Anderson, M.J.; Willis, T.J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 2003, 84, 511–525. [Google Scholar] [CrossRef]
- Tort, A. Elliptical Fourier Functions as a Morphological Descriptor of the Genus Stenosarina (Brachiopoda, Terebratulida, New Caledonia). Math. Geol. 2003, 35, 873–885. [Google Scholar] [CrossRef]
- Somarakis, S.; Kostikas, I.; Tsimenides, N. Fluctuating asymmetry in the otoliths of larval fish as an indicator of condition: Conceptual and methodological aspects. J. Fish Biol. 1997, 51, 30–38. [Google Scholar] [CrossRef]
- Palmer, A.R. Fluctuating asymmetry analyses: A primer. In Developmental Instability: Its Origins and Evolutionary Implications; Markow, T.A., Ed.; Contemporary Issues in Genetics and Evolution: Tempe, AZ, USA, 1994; Volume 2, pp. 335–364. [Google Scholar]
- Palmer, A.R.; Strobeck, C. Fluctuating asymmetry as a measure of developmental stability: Implications of non-normal distributions and power of statistical tests. Acta Zool. Fenn. 1992, 191, 55–70. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. Biometry, 2nd ed.; WH Freeman & Co.: New York, NY, USA, 1981. [Google Scholar]
- Palmer, A.R.; Strobeck, C. Fluctuating asymmetry: Measurement, analysis, patterns. Annu. Rev. Ecol. Syst. 1986, 17, 391–421. [Google Scholar] [CrossRef]
- Walsh, P.S.; Metzger, D.A.; Higuchi, R. Chelex 100 as a Medium for Simple Extraction of DNA for PCR-Based Typing from Forensic Material. Biotechniques 1991, 54, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Batargias, C.; Dermitzakis, E.; Magoulas, A.; Zouros, E. Characterization of six polymorphic microsatellite markers in gilthead seabream, Sparus aurata (Linnaeus 1758). Mol. Ecol. 1999, 8, 897–898. [Google Scholar] [PubMed]
- Franch, R.; Louro, B.; Tsalavouta, M.; Chatziplis, D.; Tsigenopoulos, C.S.; Sarropoulou, E.; Antonello, J.; Magoulas, A.; Mylonas, C.C.; Babbucci, M.; et al. A Genetic Linkage Map of the Hermaphrodite Teleost Fish Sparus aurata L. Genetics 2006, 174, 851–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarropoulou, E.; Franch, R.; Louro, B.; Power, D.M.; Bargelloni, L.; Magoulas, A.; Senger, F.; Tsalavouta, M.; Patarnello, T.; Galibert, F.; et al. A gene-based radiation hybrid map of the gilthead sea bream Sparus aurata refines and exploits conserved synteny with Tetraodon nigroviridis. BMC Genom. 2007, 8, 44. [Google Scholar] [CrossRef] [Green Version]
- Loukovitis, D.; Sarropoulou, E.; Tsigenopoulos, C.S.; Batargias, C.; Magoulas, A.; Apostolidis, A.P.; Chatziplis, D.; Kotoulas, G. Quantitative Trait Loci Involved in Sex Determination and Body Growth in the Gilthead Sea Bream (Sparus aurata L.) through Targeted Genome Scan. PLoS ONE 2011, 6, e16599. [Google Scholar] [CrossRef] [Green Version]
- Toonen, R.; Hughes, S. Increased throughput for fragment analysis on an ABI PRISM 377 automated sequencer using a membrane comb and STRand software. BioTechniques 2001, 31, 1320–1324. [Google Scholar]
- Van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.M.; Shipley, P. Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- ROUSSET, F. Genepop’007: A complete re-implementation of the Genepop Software for Windows and Linux. Mol. Ecol. Resour. 2008, 8, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Park, S. MStools v 3.1.1: Excel Spreadsheet Toolkit for Data Conversion. Animal Genomics Lab; University College: Dublin, Ireland, 2008. [Google Scholar]
- Yeh, F.C.; Yang, R.C.; Boyle, T.B.J.; Ye, Z.H.; Mao, J.X. PopGene, the User-Friendly Shareware for Population Genetic Analysis, Molecular Biology and Biotechnology Center; University of Alberta: Alberta, EDM, Canada, 1997. [Google Scholar]
- Goudet, J. FSTAT, a program to estimate and test gene diversities and differentiation statistics from codominant genetic markers (version 2.9.4). 2003. Available online: https://www2.unil.ch/popgen/softwares/fstat.htm (accessed on 12 December 2022).
- Excoffier, L.; Lischer, H.E.L. Arlequin Suite Ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Rice, W.R. Analyzing tables of statistical tests. Evolution 1989, 43, 223–225. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software Structure: A simulation Study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, N.A. Distruct: A program for the graphical display of population structure. Mol. Ecol. Notes 2004, 4, 137–138. [Google Scholar] [CrossRef]
- Vaz-dos-Santos, A.M.; Rautenberg, K.A.; Augusto, C.G.; Ballester, E.L.; Schwingel, P.R.; Pinto, E.; Almeida, A.; Correia, A.T. Geographic Variation in Opisthonema Oglinum (Lesueur, 1818) in the Southeastern Brazilian Bight Inferred from Otolith Shape and Chemical Signatures. Fishes 2023, 8, 234. [Google Scholar] [CrossRef]
- Schroeder, R.; Schwingel, P.R.; Correia, A.T. Population Structure of the Brazilian Sardine (Sardinella Brasiliensis) in the Southwest Atlantic Inferred from Body Morphology and Otolith Shape Signatures. Hydrobiologia 2022, 849, 1367–1381. [Google Scholar] [CrossRef]
- Vignon, M. Short-term stress for long-lasting otolith morphology—brief embryological stress disturbance can reorient otolith ontogenetic trajectory. Can. J. Fish. Aquat. Sci. 2018, 75, 1713–1722. [Google Scholar] [CrossRef]
- Mahé, K.; Gourtay, C.; Defruit, G.B.; Chantre, C.; de Pontual, H.; Amara, R.; Claireaux, G.; Audet, C.; Zambonino-Infante, J.L.; Ernande, B. Do environmental conditions (temperature and food composition) affect otolith shape during fish early-juvenile phase? An experimental approach applied to European Seabass (Dicentrarchus Labrax). J. Exp. Mar. Bio. Ecol. 2019, 521, 151239. [Google Scholar] [CrossRef]
- Geladakis, G.; Kourkouta, C.; Somarakis, S.; Koumoundouros, G. Developmental temperature shapes the otolith morphology of metamorphosing and juvenile Gilthead Seabream (Sparus aurata Linnaeus, 1758). Fishes 2022, 7, 82. [Google Scholar] [CrossRef]
- Lombarte, A.; Cruz, A. Otolith size trends in marine fish communities from different depth strata. J. Fish Biol. 2007, 71, 53–76. [Google Scholar] [CrossRef]
- Volpedo, A.; Echeverria, D.D. Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine. Fish. Res. 2003, 60, 551–560. [Google Scholar] [CrossRef]
- Coll-Lladó, C.; Giebichenstein, J.; Webb, P.B.; Bridges, C.R.; de la Serrana, D.G. Ocean acidification promotes otolith growth and calcite deposition in gilthead sea bream (Sparus aurata) larvae. Sci. Rep. 2018, 8, 8384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagliano, M. Feeding history influences otolith shape in tropical fish. Mar. Ecol. Prog. Ser. 2004, 278, 291–296. [Google Scholar] [CrossRef]
- Vasconcelos, J.; Vieira, A.R.; Sequeira, V.; González, J.; Kaufmann, M.; Gordo, L. Identifying Populations of the Blue Jack Mackerel (Trachurus Picturatus) in the Northeast Atlantic by Using Geometric Morphometrics and Otolith Shape Analysis. Fish. Bull. Natl. Ocean. Atmos. Adm. 2018, 116, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Capoccioni, F.; Costa, C.; Aguzzi, J.; Menesatti, P.; Lombarte, A.; Ciccotti, E. Ontogenetic and Environmental Effects on Otolith Shape Variability in Three Mediterranean European Eel (Anguilla anguilla, L.) Local Stocks. J. Exp. Mar. Bio. Ecol. 2011, 397, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Loukovitis, D.; Sarropoulou, E.; Vogiatzi, E.; Tsigenopoulos, C.S.; Kotoulas, G.; Magoulas, A.; Chatziplis, D. Genetic variation in farmed populations of the gilthead sea bream Sparus aurata in Greece using microsatellite DNA markers. Aquac. Res. 2012, 43, 239–246. [Google Scholar] [CrossRef]
- Gkagkavouzis, K.; Papakostas, S.; Maroso, F.; Karaiskou, N.; Carr, A.; Nielsen, E.E.; Bargelloni, L.; Triantafyllidis, A. Investigating Genetic Diversity and Genomic Signatures of Hatchery-Induced Evolution in Gilthead Seabream (Sparus aurata) Populations. Diversity 2021, 13, 563. [Google Scholar] [CrossRef]
- Žužul, I.; Grubišić, L.; Šegvić-Bubić, T. Genetic discrimination of wild versus farmed gilthead sea bream Sparus aurata using microsatellite markers associated with candidate genes. Aquat. Living Resour. 2022, 35, 8. [Google Scholar] [CrossRef]
- Norris, A.T.; Bradley, D.G.; Cunningham, E.P. Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar) populations. Aquaculture 1999, 180, 247–264. [Google Scholar] [CrossRef]
- Skaala, Ø.; Høyheim, B.; Glover, K.; Dahle, G. Microsatellite analysis in domesticated and wild Atlantic salmon (Salmo salar L.): Allelic diversity and identification of individuals. Aquaculture 2004, 240, 131–143. [Google Scholar] [CrossRef]
- Mjølnerød, I.B.; Refseth, U.H.; Karlsen, E.; Balstad, T.; Jakobsen, K.S.; Hindar, K. Genetic Differences Between Two Wild and One Farmed Population of Atlantic Salmon (Salmo salar) Revealed by Three Classes of Genetic Markers. Hereditas 1997, 127, 239–248. [Google Scholar] [CrossRef]
- Reed, T.E.; Prodöhl, P.; Hynes, R.; Cross, T.; Ferguson, A.; McGinnity, P. Quantifying heritable variation in fitness-related traits of wild, farmed and hybrid Atlantic salmon families in a wild river environment. Heredity 2015, 115, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Sylvester, E.V.A.; Wringe, B.F.; Duffy, S.J.; Hamilton, L.C.; Fleming, I.A.; Castellani, M.; Bentzen, P.; Bradbury, I.R. Estimating the relative fitness of escaped farmed salmon offspring in the wild and modelling the consequences of invasion for wild populations. Evol. Appl. 2019, 12, 705–717. [Google Scholar] [CrossRef] [Green Version]
- Wright, S. Variability within and among natural populations. In Evolution and Genetics of Populations; University of Chicago Press: Chicago, IL, USA, 1978; Volume 4, p. 580. [Google Scholar]
- Balloux, F.; Lugon-Moulin, N. The estimation of population differentiation with microsatellite markers. Mol. Ecol. 2002, 11, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Tishkoff, S.A.; Kidd, K.K. Implications of biogeography of human populations for ‘race’ and medicine. Nat. Genet. 2004, 36, S21–S27. [Google Scholar] [CrossRef]
- Elhaik, E. Empirical Distributions of FST from Large-Scale Human Polymorphism Data. PLoS ONE 2012, 7, e49837. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, G.; Patterson, N.; Sankararaman, S.; Price, A.L. Estimating and interpreting FST: The impact of rare variants. Genome Res. 2013, 23, 1514–1521. [Google Scholar] [CrossRef] [Green Version]
- LUND, R.A.; HANSEL, L.P. Identification of wild and reared Atlantic salmon, Salmo salar L., using scale characters. Aquac. Res. 1991, 22, 499–508. [Google Scholar] [CrossRef]
- Fiske, P.; Lund, R.A.; Hansen, L.P. Identifying fish farm escapees. In Stock Identification Methods: Applications in Fishery Science, 1st ed.; Cardin, S.X., Kerr, L.A., Mariani, S., Eds.; Elsevier Academic Press: Waltham, MA, USA, 2005; pp. 659–680. [Google Scholar]
- Bereiter-Hahn, J.; Zylberberg, L. Regeneration of teleost fish scale. Comp. Biochem. Physiol. Part A Physiol. 1993, 105, 625–641. [Google Scholar] [CrossRef]
- Blair, A.A. Regeneration of the Scales of Atlantic Salmon. J. Fish. Res. Board Canada 1942, 5c, 440–447. [Google Scholar] [CrossRef]
- Palmer, A.R. Waltzing with Asymmetry: Is fluctuating asymmetry a powerful new tool for biologists or just an alluring new dance step? Bioscience 1996, 46, 518–532. [Google Scholar] [CrossRef] [Green Version]
- Lychakov, D.V. Behavioral lateralization and otolith asymmetry. J. Evol. Biochem. Physiol. 2013, 49, 441–456. [Google Scholar] [CrossRef]
- Mille, T.; Mahé, K.; Villanueva, M.C.; De Pontual, H.; Ernande, B. Sagittal otolith morphogenesis asymmetry in marine fishes. J. Fish Biol. 2015, 87, 646–663. [Google Scholar] [CrossRef]
- Mahé, K.; Ider, D.; Massaro, A.; Hamed, O.; Jurado-Ruzafa, A.; Gonçalves, P.; Anastasopoulou, A.; Jadaud, A.; Mytilineou, C.; Elleboode, R.; et al. Directional bilateral asymmetry in otolith morphology may affect fish stock discrimination based on otolith shape analysis. ICES J. Mar. Sci. 2019, 76, 232–243. [Google Scholar] [CrossRef] [Green Version]
- Mahé, K.; MacKenzie, K.; Ider, D.; Massaro, A.; Hamed, O.; Jurado-Ruzafa, A.; Gonçalves, P.; Anastasopoulou, A.; Jadaud, A.; Mytilineou, C.; et al. Directional Bilateral Asymmetry in Fish Otolith: A Potential Tool to Evaluate Stock Boundaries? Symmetry 2021, 13, 987. [Google Scholar] [CrossRef]
- Dimitriou, E.; Katselis, G.; Moutopoulos, D.K.; Akovitiotis, C.; Koutsikopoulos, C. Possible influence of reared gilthead sea bream (Sparus aurata, L.) on wild stocks in the area of the Messolonghi lagoon (Ionian Sea, Greece). Aquac. Res. 2007, 38, 398–408. [Google Scholar] [CrossRef]
- Dimitriou, E.; Athanassopoulos, A.; Kapareliotis, A.; Katselis, G.; Rogdakis, Y.; Betts, H.; Wendling, C. Recordings of the hydrology and fisheries production of on of the fish farms of Messolonghi Etoliko lagoons. In Proceedings of the Ninth Panhellenic Symposium of Ichthyologists, Messolonghi, Greece, 20–23 January 2000. [Google Scholar]
- Morales-Nin, B. Review of the growth regulation processes of otolith daily increment formation. Fish. Res. 2000, 46, 53–67. [Google Scholar] [CrossRef]
NW. Aegean | E. Aegean | Ionian | Messolonghi | ||
---|---|---|---|---|---|
All | n | 75 | 65 | 205 | 50 |
SLmean | 19.1(2.0) | 18.4(1.2) | 17.8(1.9) | 17.0(0.5) | |
SLrange | 13.8–23.7 | 15.5–20.9 | 13.8–24 | 16.2–18.5 | |
SRD | 52.7(33.0) | 34.6(22.1) | 35.8(23.8) | 41.6(24.7) | |
L30 | n | 28 | 35 | 99 | 22 |
SLmean | 17.7(1.9) | 18.3(1.2) | 17.4(1.7) | 17.0(0.4) | |
SLrange | 13.8–21.2 | 16.4–20.9 | 13.8–22.5 | 16.3–17.8 | |
SRD | 17.5(9.0) | 17.9(9.4) | 16.7(8.5) | 18.9(8.9) | |
31–60 | n | 17 | 21 | 71 | 17 |
SLmean | 19.6(1.3) | 18.6(1.3) | 17.8(1.8) | 17.0(0.5) | |
SLrange | 15.8–20.8 | 15.5–20.7 | 14.2–22.3 | 16.2–18.1 | |
SRD | 46.8(9.8) | 45.7(7.6) | 42.0(7.7) | 48.2(7.9) | |
M60 | n | 30 | 9 | 35 | 11 |
SLmean | 20.2(1.7) | 18.3(0.9) | 18.9(2.1) | 17.0(0.6) | |
SLrange | 15.9–23.7 | 16.8–19.8 | 13.8–24.0 | 16.4–18.5 | |
SRD | 87.7(12.3) | 73.6(11.5) | 77.2(12.3) | 76.8(12.5) |
Otolith | Source | Type III Some of Squares | df | Mean Squares | Pseudo-F | p (perm) |
---|---|---|---|---|---|---|
Left | Origin | 0.030 | 3 | 0.010 | 5.630 | <0.001 |
SRD | 0.004 | 2 | 0.002 | 1.141 | 0.296 | |
Origin:SRD | 0.015 | 6 | 0.003 | 1.453 | 0.054 | |
Residuals | 0.626 | 357 | 0.002 | |||
Total | 0.681 | 368 | ||||
Right | Origin | 0.057 | 3 | 0.019 | 8.441 | <0.001 |
SRD | 0.004 | 2 | 0.002 | 0.947 | 0.471 | |
Origin:SRD | 0.023 | 6 | 0.004 | 1.692 | <0.01 | |
Residuals | 0.805 | 359 | 0.002 | |||
Total | 0.887 | 370 |
L30 | NW. Aegean | E. Aegean | Ionian | Messolonghi |
NW. Aegean | - | * | ** | ** |
E. Aegean | 1.534 | - | ns | *** |
Ionian | 1.992 | 1.059 | - | ** |
Messolonghi | 2.337 | 2.327 | 2.137 | - |
31–60 | NW. Aegean | E. Aegean | Ionian | Messolonghi |
NW. Aegean | - | *** | *** | ** |
E. Aegean | 2.564 | - | ns | * |
Ionian | 3.223 | 0.896 | - | ** |
Messolonghi | 1.978 | 1.729 | 2.048 | - |
M60 | NW. Aegean | E. Aegean | Ionian | Messolonghi |
NW. Aegean | - | ns | *** | ns |
E. Aegean | 1.303 | - | ns | ns |
Ionian | 2.044 | 1.117 | - | ** |
Messolonghi | 1.397 | 1.344 | 1.866 | - |
R−L | n | Skew (g1) | Kurtosis (g2) | SE (g1) | SE (g2) | tS (g1) | tS (g2) |
---|---|---|---|---|---|---|---|
OS | 357 | −0.417 | 2.074 | 0.129 | 0.258 | −3.23 ** | 8.04 *** |
OP | 357 | −0.529 | 2.979 | 0.129 | 0.258 | −4.09 *** | 11.55 *** |
OL | 357 | −0.294 | 0.845 | 0.129 | 0.258 | −2.28 * | 3.28 ** |
OD | 357 | 0.028 | 0.159 | 0.129 | 0.258 | 0.22 | 0.62 |
H2 | 357 | 2.245 | 16.111 | 0.129 | 0.258 | 17.37 *** | 62.48 *** |
H3 | 357 | 0.060 | 0.993 | 0.129 | 0.258 | 0.47 | 3.85 *** |
H4 | 357 | 0.116 | 1.553 | 0.129 | 0.258 | 0.89 | 6.02 *** |
H5 | 357 | 0.273 | 1.297 | 0.129 | 0.258 | 2.11 * | 5.03 *** |
Fish Group | n | A | Ae | Ar | Ho | He | FIS |
---|---|---|---|---|---|---|---|
L30 | 129 | 14.85 ± 6.09 | 8.82 ± 4.82 | 8.77 ± 2.66 | 0.88 ± 0.02 | 0.86 ± 0.03 | −0.02 |
31–60 | 91 | 13.41 ± 5.52 | 8.21 ± 4.13 | 8.79 ± 2.78 | 0.89 ± 0.02 | 0.86 ± 0.03 | −0.03 |
M60 | 66 | 11.78 ± 5.09 | 7.98 ± 4.10 | 8.75 ± 2.91 | 0.88 ± 0.03 | 0.87 ± 0.02 | −0.02 |
NWAR | 27 | 10.44 ± 4.33 | 6.46 ± 2.99 | 7.39 ± 2.24 | 0.84 ± 0.02 | 0.83 ± 0.03 | −0.02 |
InR | 28 | 9.78 ± 3.6 | 5.43 ± 2.43 | 7.08 ± 2.03 | 0.80 ± 0.03 | 0.79 ± 0.03 | −0.01 |
NW. Aegean | L30 | 31–60 | M60 | Reared |
L30 | - | ns | ns | * |
31–60 | 0.0027 | - | ns | * |
M60 | −0.0072 | 0.0016 | - | * |
Reared | 0.0160 | 0.0189 | 0.0143 | - |
Ionian ¹ | L30 | 31–60 | M60 | Reared |
L30 | - | ns | ns | * |
31–60 | 0.0004 | - | ns | * |
M60 | 0.0003 | −0.0018 | - | * |
Reared | 0.0399 | 0.0395 | 0.0374 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geladakis, G.; Batargias, C.; Somarakis, S.; Koumoundouros, G. Stock Discrimination of Gilthead Seabream (Sparus aurata Linnaeus, 1758) through the Examination of Otolith Morphology and Genetic Structure. Fishes 2023, 8, 291. https://doi.org/10.3390/fishes8060291
Geladakis G, Batargias C, Somarakis S, Koumoundouros G. Stock Discrimination of Gilthead Seabream (Sparus aurata Linnaeus, 1758) through the Examination of Otolith Morphology and Genetic Structure. Fishes. 2023; 8(6):291. https://doi.org/10.3390/fishes8060291
Chicago/Turabian StyleGeladakis, George, Costas Batargias, Stylianos Somarakis, and George Koumoundouros. 2023. "Stock Discrimination of Gilthead Seabream (Sparus aurata Linnaeus, 1758) through the Examination of Otolith Morphology and Genetic Structure" Fishes 8, no. 6: 291. https://doi.org/10.3390/fishes8060291
APA StyleGeladakis, G., Batargias, C., Somarakis, S., & Koumoundouros, G. (2023). Stock Discrimination of Gilthead Seabream (Sparus aurata Linnaeus, 1758) through the Examination of Otolith Morphology and Genetic Structure. Fishes, 8(6), 291. https://doi.org/10.3390/fishes8060291