Growth Performance, Digestive Enzyme Activities, and Oxidative Stress Markers in the Proximal Intestine of European Sea Bass (Dicentrarchus labrax) Fed High Starch or Lipid Diets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial and Diets
2.2. Sampling and Performance Indicators
2.3. PH of Intestinal Duct and Sample Homogenization
2.4. Digestive Enzyme Analysis
2.5. Lipid Peroxidation and Lipid Soluble Antioxidant System (l.s.a.s. with SOD, CAT, and GPx)
2.6. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Anticipatory Digestive Enzyme Activities
3.3. Lipid Peroxidation, the Lipid Soluble Antioxidant System, and Glucose-6-P-Dehydrogenase Enzyme Activities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The State of Food and Agriculture 2020; FAO: Rome, Italy, 2020.
- Pinotti, L.; Giromini, C.; Ottoboni, M.; Tretola, M.; Marchis, D. Review: Insects and former foodstuffs for upgrading food waste biomasses/streams to feed ingredients for farm animals. Animal 2019, 13, 1365–1375. [Google Scholar] [CrossRef] [PubMed]
- Torrecillas, S.; Robaina, L.; Caballero, M.J.; Montero, D.; Calandra, G.; Mompel, D.; Karalazos, V.; Kaushik, S.; Izquierdo, M.S. Combined replacement of fishmeal and fish oil in European sea bass (Dicentrarchus labrax): Production performance, tissue composition and liver morphology. Aquaculture 2017, 474, 101–112. [Google Scholar] [CrossRef]
- Campos, I.; Matos, E.; Maia, M.R.G.; Marques, A.; Valente, L.M.P. Partial and total replacement of fish oil by poultry fat in diets for European seabass (Dicentrarchus labrax) juveniles: Effects on nutrient utilization, growth performance, tissue composition and lipid metabolism. Aquaculture 2019, 502, 107–120. [Google Scholar] [CrossRef]
- Cardinaletti, G.; Messina, M.; Bruno, M.; Tulli, F.; Poli, B.M.; Giorgi, G.; Chini-Zittelli, G.; Tredici, M.; Tibaldi, E. Effects of graded levels of a blend of Tisochrysis lutea and Tetraselmis suecica dried biomass on growth and muscle tissue composition of European sea bass (Dicentrarchus labrax) fed diets low in fish meal and oil. Aquaculture 2018, 485, 173–182. [Google Scholar] [CrossRef]
- Eroldoğan, T.; Turchini, G.M.; Yılmaz, A.H.; Taşbozan, O.; Engin, K.; Ölçülü, A.; Özşahinoğlu, I.; Mumoğullarında, P. Potential of cottonseed oil as fish oil replacer in European sea bass feed formulation. Turk. J. Fish. Aquat. Sci. 2012, 12, 787–797. [Google Scholar] [CrossRef]
- Peixoto, M.J.; Magnoni, L.; Gonçalves, J.F.M.; Twijnstra, R.H.; Kijjoa, A.; Pereira, R.; Palstra, A.P.; Ozório, R.O.A. Effects of dietary supplementation of Gracilaria Sp. extracts on fillet quality, oxidative stress, and immune responses in European seabass (Dicentrarchus labrax). J. Appl. Phycol. 2019, 31, 761–770. [Google Scholar] [CrossRef]
- Silva-Brito, F.; Timoteo, F.; Magnoni, L. Impact of the replacement of dietary fish oil by animal fats and environmental salinity on the metabolic response of European seabass (Dicentrarchus labrax). Comp. Biochem. Physiol. 2019, 233, 46–59. [Google Scholar] [CrossRef]
- Medale, F.; Le Boucher, R.; Panserat, S. Plant based diets for farmed fish. INRA Prod. Anim. 2013, 26, 303–315. [Google Scholar]
- Tibaldi, E.; Hakim, Y.; Uni, Z.; Tulli, F.; de Francesco, M.; Luzzana, U.; Harpaz, S. Effects of the partial substitution of dietary fish meal by differently processed soybean meals on growth performance, nutrient digestibility and activity of intestinal brush border enzymes in the European sea bass (Dicentrarchus labrax). Aquaculture 2006, 261, 182–193. [Google Scholar] [CrossRef]
- Tibaldi, E.; Chini Zittelli, G.; Parisi, G.; Bruno, M.; Giorgi, G.; Tulli, F.; Venturini, S.; Tredici, M.R.; Poli, B.M. Growth performance and quality traits of European sea bass (D. labrax) fed diets including increasing levels of freeze-dried Isochrysis Sp. (T-ISO) biomass as a source of protein and n-3 long chain PUFA in partial substitution of fish derivatives. Aquaculture 2015, 440, 60–68. [Google Scholar] [CrossRef]
- García-Meilán, I.; Ordóñez-Grande, B.; Gallardo, M.A. Meal timing affects protein-sparing effect by carbohydrates in sea bream: Effects on digestive and absorptive processes. Aquaculture 2014, 434, 121–128. [Google Scholar] [CrossRef]
- Kousoulaki, K.; Sether, B.S.; Albrektsen, S.; Noble, C. Review on European sea bass (Dicentrarchus labrax, Linnaeus, 1758) nutrition and feed management: A practical guide for optimizing feed formulation and farming protocols. Aquac. Nutr. 2015, 21, 129–151. [Google Scholar] [CrossRef]
- Vandeputte, M.; Gagnaire, P.A.; Allal, F. The European sea bass: A key marine fish model in the wild and in aquaculture. Anim. Genet. 2019, 50, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Furné, M.; García-Gallego, M.; Hidalgo, M.C.; Morales, A.E.; Domezain, A.; Domezain, J.; Sanz, A. Oxidative stress parameters during starvation and refeeding periods in Adriatic sturgeon (Acipenser naccarii) and rainbow trout (Oncorhynchus mykiss). Aquac. Nutr. 2009, 15, 587–595. [Google Scholar] [CrossRef]
- Gutteridge, J.M.C.; Halliwell, B. Antioxidants: Molecules, medicines, and myths. Biochem. Biophys. Res. Commun. 2010, 393, 561–564. [Google Scholar] [CrossRef]
- Castro, C.; Diógenes, A.F.; Coutinho, F.; Panserat, S.; Corraze, G.; Pérez-Jiménez, A.; Peres, H.; Oliva-Teles, A. Liver and intestine oxidative status of gilthead sea bream fed vegetable oil and carbohydrate rich diets. Aquaculture 2016, 464, 665–672. [Google Scholar] [CrossRef]
- Bakke, A.M.; Glover, C.; Krogdahl, A. Feeding, digestion and absorption of nutrients. In Multifunctional Gut of Fish; Grosell, M., Farrell, A., Brauner, C., Eds.; Academic Press: Cambridge, MA, USA, 2011; pp. 57–75. [Google Scholar]
- García-Meilán, I.; Ordóñez-Grande, B.; Machahua, C.; Buenestado, S.; Fontanillas, R.; Gallardo, M.A. Effects of dietary protein-to-lipid ratio on digestive and absorptive processes in sea bass fingerlings. Aquaculture 2016, 463, 163–173. [Google Scholar] [CrossRef]
- García-Meilán, I.; Ordóñez-Grande, B.; Valentín, J.M.; Hernández, M.D.; García, B.; Fontanillas, R.; Gallardo, M.A. Modulation of digestive and absorptive processes with age and/or after a dietary change in gilthead sea bream. Aquaculture 2016, 459, 54–64. [Google Scholar] [CrossRef]
- Santigosa, E.; Sánchez, J.; Médale, F.; Kaushik, S.; Pérez-Sánchez, J.; Gallardo, M.A. Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture 2008, 282, 68–74. [Google Scholar] [CrossRef]
- Furné, M.; Hidalgo, M.C.; López, A.; García-Gallego, M.; Morales, A.E.; Domezain, A.; Domezainé, J.; Sanz, A. Digestive enzyme activities in Adriatic sturgeon Acipenser naccarii and rainbow trout Oncorhynchus mykiss. A Comparative Study. Aquaculture 2005, 250, 391–398. [Google Scholar] [CrossRef]
- Magalhães, R.; Díaz-Rosales, P.; Diógenes, A.F.; Enes, P.; Oliva-Teles, A.; Peres, H. Improved digestibility of plant ingredient-based diets for European seabass (Dicentrarchus labrax) with exogenous enzyme supplementation. Aquac. Nutr. 2018, 24, 1287–1295. [Google Scholar] [CrossRef]
- García-Meilán, I.; Valentín, J.M.; Fontanillas, R.; Gallardo, M.A. Different protein to energy ratio diets for gilthead sea bream (Sparus aurata): Effects on digestive and absorptive processes. Aquaculture 2013, 412–413, 1–7. [Google Scholar] [CrossRef]
- García-Meilán, I.; Ordóñez-Grande, B.; Valentín, J.M.; Fontanillas, R.; Gallardo, Á. High dietary carbohydrate inclusion by both protein and lipid replacement in gilthead sea bream. Changes in digestive and absorptive processes. Aquaculture 2020, 520, 734977. [Google Scholar] [CrossRef]
- Santigosa, E.; Sáenz de Rodrigáñez, M.Á.; Rodiles, A.; Barroso, F.G.; Alarcón, F.J. Effect of diets containing a purified soybean trypsin inhibitor on growth performance, digestive proteases and intestinal histology in juvenile sea bream (Sparus aurata L.). Aquac. Res. 2010, 41, e187–e198. [Google Scholar] [CrossRef]
- Santigosa, E.; García-Meilán, I.; Valentín, J.M.; Navarro, I.; Pérez-Sánchez, J.; Gallardo, M.Á. Plant oils’ inclusion in high fish meal-substituted diets: Effect on digestion and nutrient absorption in gilthead sea bream (Sparus aurata L.). Aquac. Res. 2011, 42, 962–974. [Google Scholar] [CrossRef]
- Santigosa, E.; García-Meilán, I.; Valentin, J.M.; Pérez-Sánchez, J.; Médale, F.; Kaushik, S.; Gallardo, M.A. Modifications of intestinal nutrient absorption in response to dietary fish meal replacement by plant protein sources in sea bream (Sparus aurata) and rainbow trout (Onchorynchus mykiss). Aquaculture 2011, 317, 146–154. [Google Scholar] [CrossRef]
- Dias, J.; Alvarez, M.J.; Diez, A.; Arzel, J.; Corraze, G.; Bautista, J.M.; Kaushik, S.J.; Francé, F. Regulation of hepatic lipogenesis by dietary protein energy in juvenile European seabass (Dicentrarchus labrax). Aquaculture 1998, 161, 169–186. [Google Scholar] [CrossRef]
- Peres, H.; Oliva-Teles, A. Influence of temperature on protein utilization in juvenile European seabass (Dicentrarchus labrax). Aquaculture 1999, 170, 337–348. [Google Scholar] [CrossRef]
- Peres, H.; Oliva-Teles, A. Effect of dietary lipid level on growth performance and feed utilization by European sea bass juveniles (Dicentrarchus labrax). Aquaculture 1999, 179, 325–334. [Google Scholar] [CrossRef]
- Enes, P.; Panserat, S.; Kaushik, S.; Oliva-Teles, A. Dietary carbohydrate utilization by European sea bass (Dicentrarchus labrax L.) and gilthead sea bream (Sparus aurata L.) juveniles. Rev. Fish. Sci. 2011, 19, 201–215. [Google Scholar] [CrossRef]
- Marnett, L.J.; Hancock, A.B. Lipid peroxidation-DNA damage by malondialdehyde. Mutat. Res.-Fundam. Mol. Mech. Mutagen 1999, 424, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Babaei, S.; Abedian Kenari, A.; Hedayati, M.; Yazdani Sadati, M.A.; Metón, I. Effect of diet composition on growth performance, hepatic metabolism and antioxidant activities in Siberian sturgeon (Acipenser baerii, Brandt, 1869) submitted to starvation and refeeding. Fish. Physiol. Biochem. 2016, 42, 1509–1520. [Google Scholar] [CrossRef]
- Pandolfi, P.P.; Sonati, F.; Rivi, R.; Mason, P.; Grosveld, F.; Luzzatto, L. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J. 1995, 14, 5209–5215. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Castro, C.; Peréz-Jiménez, A.; Coutinho, F.; Díaz-Rosales, P.; Serra, C.A.D.R.; Panserat, S.; Corraze, G.; Peres, H.; Oliva-Teles, A. Dietary carbohydrate and lipid sources affect differently the oxidative status of European sea bass (Dicentrarchus labrax) juveniles. Br. J. Nutr. 2015, 114, 1584–1593. [Google Scholar] [CrossRef] [PubMed]
- Lupatsch, I.; Kissil, G.W. Predicting aquaculture waste from gilthead sea bream (Sparus aurata) culture using a nutritional approach. Aquac. Living Resour. 1998, 11, 265–268. [Google Scholar] [CrossRef]
- García-Carreño, F.L.; Dimes, L.E.; Haard, N.F. Substrate gel-electroforesis for composition and molecular-weight of proteinases of proteinaceous proteinase-inhibitors. Anal Biochem 1993, 214, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, F.J.; Diaz, M.; Moyano, F.J.; Abellan, E. Characterization and functional properties of digestive proteases in two sparids; gilthead seabream (Sparus aurata) and common dentex (Dentex dentex). Fish. Physiol. Biochem. 1998, 19, 257–267. [Google Scholar] [CrossRef]
- Diaz, M.; Moyano, F.J.; Garcia Carreno, F.L.; Alarcon, F.J.; Sarasquete, M.C. Substrate-SDS-PAGE determination of protease activity through larval development in sea bream. Aquac. Int. 1997, 5, 461–471. [Google Scholar] [CrossRef]
- Uchiyama, M.; Mihara, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978, 86, 271–278. [Google Scholar] [CrossRef]
- Mccords, J.M.; Fridovich, I. Superoxide dismutase an enzymic function for erythrocuprein-hemocuprein. J. Biol. Chem 1969, 244, 6049–6055. [Google Scholar]
- Aebi, H. [13] Catalase in vitro. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1984. [Google Scholar] [CrossRef]
- Flohe, L.; Gunzler, W. Assays of glutathione-peroxidase. Methods Enzym. 1984, 105, 114–121. [Google Scholar]
- Babaei, S.; Abedian-Kenari, A.; Hedayati, M.; Yazdani-Sadati, M.A. Growth response, body composition, plasma metabolites, digestive and antioxidant enzymes activities of Siberian sturgeon (Acipenser baerii, Brandt, 1869) fed different dietary protein and carbohydrate: Lipid ratio. Aquac. Res. 2017, 48, 2642–2654. [Google Scholar] [CrossRef]
- Medale, F.; Kaushik, S. Evolution of INRA research in the field of fish nutrition: Exploring alternatives to marine fishery-derived ingredients. Prod. Anim. 2008, 21, 87–94. [Google Scholar]
- Kim, K.W.; Moniruzzaman, M.; Kim, K.D.; Han, H.S.; Yun, H.; Lee, S.; Bai, S.C. Effects of dietary protein levels on growth performance and body composition of juvenile parrot fish, Oplegnathus fasciatus. Int. Aquat. Res. 2016, 8, 239–245. [Google Scholar] [CrossRef]
- Wang, J.T.; Liu, Y.J.; Tian, L.X.; Mai, K.S.; Du, Z.Y.; Wang, Y.; Yang, H.J. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum). Aquaculture 2005, 249, 439–447. [Google Scholar] [CrossRef]
- Masser, M.P.; Grant, W.E.; Neill, W.H.; Robinson, E.H. A simulation model representing effects on dietary energy/protein ratio and water temperature on growth of channel catfish (Ictalurus punctatus). Ecol. Model. 1991, 53, 17–35. [Google Scholar] [CrossRef]
- Kaushik, S.; Luquet, P. Relationship between protein-intake and voluntary energy-intake as affected by body-weight with an estimation of maintenance needs in rainbow-trout. Z. Tierphysiol. Tierernahr. Futterm. 1984, 51, 57–69. [Google Scholar] [CrossRef]
- Nikolopoulou, D.; Moutou, K.A.; Fountoulaki, E.; Venou, B.; Adamidou, S.; Alexis, M.N. Patterns of gastric evacuation, digesta characteristics and pH changes along the gastrointestinal tract of gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2011, 158, 406–414. [Google Scholar] [CrossRef]
- Deguara, S.; Jauncey, K.; Agius, C. Enzyme activities and pH variations in the digestive tract of gilthead sea bream. J. Fish. Biol. 2003, 62, 1033–1043. [Google Scholar] [CrossRef]
- Guillaume, J.; Choubert, G. Digestive physiology and nutrient digestibility in fishes. In Nutrition and Feeding of Fish and Crustaceans; Guillaume, J., Ed.; Springer Praxis: Chichester, UK, 2001. [Google Scholar]
- Lawlor, P.G.; Lynch, P.B.; Caffrey, P.J.; O’Reilly, J.J.; O’Connell, M.K. Measurements of the acid-binding capacity of ingredients used in pig diets. Ir. Vet. J. 2005, 58, 447–452. [Google Scholar] [CrossRef]
- Morais, S.; Silva, T.; Cordeiro, O.; Rodrigues, P.; Guy, D.R.; Bron, J.E.; Taggart, J.B.; Bell, J.G.; Tocher, D.R. Effects of genotype and dietary fish oil replacement with vegetable oil on the intestinal transcriptome and proteome of Atlantic salmon (Salmo salar). BMC Genom. 2012, 13, 448. [Google Scholar] [CrossRef] [PubMed]
- Castro, C.; Pérez-Jiménez, A.; Guerreiro, I.; Peres, H.; Castro-Cunha, M.; Oliva-Teles, A. Effects of temperature and dietary protein level on hepatic oxidative status of Senegalese sole juveniles (Solea senegalensis). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2012, 163, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Castro, C.; Peréz-Jiménez, A.; Coutinho, F.; Corraze, G.; Panserat, S.; Peres, H.; Teles, A.O.; Enes, P. Nutritional history does not modulate hepatic oxidative status of European sea bass (Dicentrarchus labrax) submitted to handling stress. Fish. Physiol. Biochem. 2018, 44, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Kjær, M.A.; Aursnes, I.A.; Berge, G.M.; Sørensen, M.; Marchenko, Y.; Gjøen, T.; Ruyter, B. The influence of different dietary oil qualities on growth rate, feed utilization and oxidative stress in Atlantic cod. Aquac. Nutr. 2014, 20, 192–204. [Google Scholar] [CrossRef]
- Morales, A.E.; Pérez-Jiménez, A.; Carmen Hidalgo, M.; Abellán, E.; Cardenete, G. Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2004, 139, 153–161. [Google Scholar] [CrossRef]
- Pérez-Jiménez, A.; Hidalgo, M.C.; Morales, A.E.; Arizcun, M.; Abellán, E.; Cardenete, G. Antioxidant enzymatic defenses and oxidative damage in Dentex dentex fed on different dietary macronutrient levels. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009, 150, 537–545. [Google Scholar] [CrossRef]
- Saera-Vila, A.; Benedito-Palos, L.; Sitjà-Bobadilla, A.; Nácher-Mestre, J.; Serrano, R.; Kaushik, S.; Pérez-Sánchez, J. Assessment of the health and antioxidant trade-off in gilthead sea bream (Sparus aurata L.) fed alternative diets with low levels of contaminants. Aquaculture 2009, 296, 87–95. [Google Scholar] [CrossRef]
- Giannetto, A.; Fernandes, J.M.O.; Nagasawa, K.; Mauceri, A.; Maisano, M.; De Domenico Cappello, E.T.; Oliva, S.; Fasulo, S. Influence of continuous light treatment on expression of stress biomarkers in Atlantic cod. Dev. Comp. Immunol. 2014, 44, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, A.; Abellán, E.; Arizcun, M.; Cardenete, G.; Morales, A.E.; Hidalgo, M.C. Dietary carbohydrates improve oxidative status of common dentex (Dentex dentex) juveniles, a carnivorous fish species. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2017, 203, 17–23. [Google Scholar] [CrossRef]
- Sánchez-Nuño, S.; Sanahuja, I.; Fernández-Alacid, L.; Ordóñez-Grande, B.; Carbonell, T.; Ibarz, A. Oxidative attack during temperature fluctuation challenge compromises liver protein homeostasis of a temperate fish model. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2019, 236, 110311. [Google Scholar] [CrossRef]
- Enes, P.; Pérez-Jiménez, A.; Peres, H.; Couto, A.; Pousão-Ferreira, P.; Oliva-Teles, A. Oxidative status and gut morphology of white sea bream, Diplodus sargus fed soluble non-starch polysaccharide supplemented diets. Aquaculture 2012, 358–359, 79–84. [Google Scholar] [CrossRef]
- Jiang, J.; Shi, D.; Zhou, X.Q.; Yin, L.; Feng, L.; Liu, Y.; Jiang, W.D.; Zhao, Y. Effects of glutamate on growth, antioxidant capacity, and antioxidant-related signaling molecule expression in primary cultures of fish enterocytes. Fish. Physiol. Biochem. 2015, 41, 1143–1153. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Liang, H.; Mokrani, A.; Ji, K.; Yu, H.; Ge, X.; Ren, M.; Xie, J.; Pan, L.; Sun, A. Dietary histidine affects intestinal antioxidant enzyme activities, antioxidant gene expressions and inflammatory factors in juvenile blunt Snout bream (Megalobrama amblycephala). Aquac. Nutr. 2019, 25, 249–259. [Google Scholar] [CrossRef]
- Gao, J.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Ren, T.; Komilus, C.F.; Han, Y. Effects of dietary palm oil supplements with oxidized and non-oxidized fish oil on growth performances and fatty acid compositions of juvenile Japanese sea bass, Lateolabrax japonicus. Aquaculture 2012, 324–325, 97–103. [Google Scholar] [CrossRef]
- Wang, L.N.; Liu, W.B.; Lu, K.L.; Xu, W.N.; Cai, D.S.; Zhang, C.N.; Qian, Y. Effects of dietary carbohydrate/lipid ratios on non-specific immune responses, oxidative status and liver histology of juvenile yellow catfish Pelteobagrus fulvidraco. Aquaculture 2014, 426–427, 41–48. [Google Scholar] [CrossRef]
- Prada, F.J.A.; Macedo, D.V.; Mello, M.A.R. Evaluation of a protein deficient diet in rats through blood oxidative stress biomarkers. Res. Commun. Mol. Pathol. Pharmacol. 2003, 113, 213–228. [Google Scholar] [PubMed]
- Arrigo, T.; Leonardi, S.; Cuppari, C.; Manti, S.; Lanzafame, A.; D’Angelo, G.; Gitto, E.; Marseglia, L.; Salpietro, C. Role of the diet as a link between oxidative stress and liver diseases. World J. Gastroenterol. 2015, 21, 384–395. [Google Scholar] [CrossRef]
- Coutinho, F.; Castro, C.; Rufino-Palomares, E.; Ordóñez-Grande, B.; Gallardo, M.A.; Oliva-Teles, A.; Peres, H. Dietary glutamine supplementation effects on amino acid metabolism, intestinal nutrient absorption capacity and antioxidant response of gilthead sea bream (Sparus aurata) juveniles. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2016, 191, 9–17. [Google Scholar] [CrossRef]
- Jain, S.K.; Palmer, M. Effect of glucose-6-phosphate dehydrogenase deficiency on reduced and oxidized glutathione and lipid peroxide levels in the blood of African-Americans. Clin. Chim. Acta Int. J. Clin. Chem. 1996, 253, 181–183. [Google Scholar] [CrossRef]
- Nóbrega-Pereira, S.; Fernandez-Marcos, P.J.; Brioche, T.; Gomez-Cabrera, M.C.; Salvador-Pascual, A.; Flores, J.M.; Viña, J.; Serrano, M. G6PD protects from oxidative damage and improves healthspan in mice. Nat. Commun. 2016, 7, 10894. [Google Scholar] [CrossRef]
- Hillar, A.; Nicholls, P. A Mechanism for NADPH inhibition of catalase compound II formation. FEBS Lett. 1992, 314, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Box, A.; Sureda, A.; Galgani, F.; Pons, A.; Deudero, S. Assessment of environmental pollution at Balearic islands applying oxidative stress biomarkers in the mussel Mytilus galloprovincialis. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2007, 146, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.B.; Rizvi, S.I. Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxidative Med. Cell. Longev. 2010, 3, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Agostini, J.F.; Toé, H.C.Z.D.; Vieira, K.M.; Baldin, S.L.; Costa, N.L.F.; Cruz, C.U.; Longo, L.; Machado, M.M.; da Silveira, T.R.; Schuck, P.F.; et al. Cholinergic system and oxidative stress changes in the brain of a zebrafish model chronically exposed to ethanol. Neurotox. Res. 2018, 33, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Kono, Y.; Fridovich, I. Superoxide radical inhibits catalase. J. Biol. Chem. 1982, 257, 5751–5754. [Google Scholar] [CrossRef]
Dietary Conditions | P36S36 | P40S29 | P43S24 | C | L20S13 | L22S7 |
---|---|---|---|---|---|---|
Analysis (%DM): | ||||||
Moisture | 7.9 | 7.6 | 7.0 | 5.7 | 5.6 | 7.4 |
Protein | 35.6 | 40.1 | 43.0 | 44.0 | 43.7 | 42.6 |
Lipid | 16.1 | 16.5 | 15.8 | 17.6 | 19.7 | 22.3 |
Starch | 35.5 | 29.2 | 24.2 | 20.4 | 13.1 | 7.3 |
Calculated GE (MJ/kg) | 20.9 | 21.1 | 20.9 | 21.6 | 21.9 | 22.4 |
1 Ingredients (%): | ||||||
Fish oil | 12.3 | 12.1 | 12.0 | 14.0 | 16.0 | 18.0 |
Soy concentrate | 3.7 | 6.6 | 15.0 | 15.0 | 15.0 | 15.0 |
Corn gluten | 5.2 | 9.0 | 7.1 | 7.1 | 7.1 | 7.1 |
Cellulose | 0.0 | 0.0 | 1.3 | 3.8 | 8.1 | 12.5 |
Wheat starch | 36.7 | 30.2 | 22.5 | 18.0 | 11.7 | 5.3 |
Dietary Conditions | P36S36 | P40S29 | P43S24 | C | L20S13 | L22S7 |
---|---|---|---|---|---|---|
FBW (g) | 214.6 ± 6.7 | 221.3 ± 7.5 | 226.5 ± 4.9 | 230.2 ± 6.5 | 230.3 ± 10.5 | 244.4 ± 5.1 |
SGR | 0.57 ± 0.02 | 0.59 ± 0.03 | 0.61 ± 0.02 | 0.62 ± 0.02 | 0.62 ± 0.03 | 0.67 ± 0.01 |
K | 2.14 ± 0.07 a | 2.18 ± 0.05 a | 2.16 ± 0.02 a | 2.21 ± 0.06 a | 2.31 ± 0.08 a | 1.86 ± 0.01 b |
PER | 1.11 ± 0.06 | 0.98 ± 0.10 | 1.07 ± 0.04 | 1.03 ± 0.12 | 1.09 ± 0.08 | 1.16 ± 0.08 |
FCR | 2.53 ± 0.13 | 2.59 ± 0.27 | 2.19 ± 0.08 | 2.29 ± 0.32 | 2.12 ± 0.18 | 2.05 ± 0.14 |
VFI (g·kg−0.7·day−1) | 2.33 ± 0.03 | 2.32 ± 0.08 | 2.45 ± 0.02 | 2.45 ± 0.09 | 2.56 ± 0.06 | 2.47 ± 0.04 |
HSI | 3.22 ± 0.22 a | 2.90 ± 0.20 ab | 2.58 ± 0.17 abc | 2.43 ± 0.19 bcd | 2.00 ± 0.09 cd | 1.75 ± 0.12 b |
MFI | 4.72 ± 0.60 | 5.32 ± 0.63 | 5.04 ± 0.43 | 6.41 ± 0.79 | 7.53 ± 0.83 | 6.41 ± 0.47 |
Dietary Conditions | P36S36 | P40S29 | P43S24 | C | L20S13 | L22S7 |
---|---|---|---|---|---|---|
Chymotrypsin-like 24 KDa | 1.01 ± 0.09 b | 2.70 ± 0.81 a | 0.36 ± 0.4 bc | 0.92 ± 0.03 b | 0.54 ± 0.67 bc | 0.25 ± 0.31 c |
Trypsin-like 23 KDa | 1.26 ± 0.22 b | 3.41 ± 0.59 a | 3.11 ± 1.09 a | 1.32 ± 0.14 b | 2.35 ± 1.78 ab | 0.69 ± 0.42 c |
Chymotrypsin-like 21 KDa | 0.53 ± 0.11 ab | 1.91 ± 1.09 a | 0.10 ± 0.12 c | 0.58 ± 0.41 ab | 0.37 ± 0.45 abc | 0.17 ± 0.21 bc |
Chymotrypsin-like 18 KDa | 0.37 ± 0.18 b | 2.05 ± 0.36 a | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.17 ± 0.21 bc |
Trypsin-like 17 KDa | 0.30 ± 0.09 b | 1.81 ± 0.38 a | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.09 ± 0.10 bc |
Chymotrypsin-like 15 KDa | 0.09 ± 0.11 | 0.69 ± 0.84 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Dietary Conditions | P36S36 | P40S29 | P43S24 | C | L20S13 | L22S7 |
---|---|---|---|---|---|---|
SOD/LPO Ratio | 0.202 ± 0.033 b | 0.373 ± 0.043 a | 0.473 ± 0.065 a | 0.486 ± 0.78 a | 0.508 ± 0.077 a | 0.222 ± 0.025 b |
CAT/LPO Ratio | 0.156 ± 0.026 b | 0.146 ± 0.09 b | 0.244 ± 0.045 ab | 0.239 ± 0.045 ab | 0.226 ± 0.021 a | 0.131 ± 0.014 b |
GPx*100/LPO Ratio | 0.103 ± 0.017 b | 0.139 ± 0.018 b | 0.204 ± 0.015 a | 0.233 ± 0.028 a | 0.239 ± 0.027 a | 0.102 ± 0.013 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Meilán, I.; Herrera-Muñoz, J.I.; Ordóñez-Grande, B.; Fontanillas, R.; Gallardo, Á. Growth Performance, Digestive Enzyme Activities, and Oxidative Stress Markers in the Proximal Intestine of European Sea Bass (Dicentrarchus labrax) Fed High Starch or Lipid Diets. Fishes 2023, 8, 223. https://doi.org/10.3390/fishes8050223
García-Meilán I, Herrera-Muñoz JI, Ordóñez-Grande B, Fontanillas R, Gallardo Á. Growth Performance, Digestive Enzyme Activities, and Oxidative Stress Markers in the Proximal Intestine of European Sea Bass (Dicentrarchus labrax) Fed High Starch or Lipid Diets. Fishes. 2023; 8(5):223. https://doi.org/10.3390/fishes8050223
Chicago/Turabian StyleGarcía-Meilán, Irene, Juan Ignacio Herrera-Muñoz, Borja Ordóñez-Grande, Ramón Fontanillas, and Ángeles Gallardo. 2023. "Growth Performance, Digestive Enzyme Activities, and Oxidative Stress Markers in the Proximal Intestine of European Sea Bass (Dicentrarchus labrax) Fed High Starch or Lipid Diets" Fishes 8, no. 5: 223. https://doi.org/10.3390/fishes8050223
APA StyleGarcía-Meilán, I., Herrera-Muñoz, J. I., Ordóñez-Grande, B., Fontanillas, R., & Gallardo, Á. (2023). Growth Performance, Digestive Enzyme Activities, and Oxidative Stress Markers in the Proximal Intestine of European Sea Bass (Dicentrarchus labrax) Fed High Starch or Lipid Diets. Fishes, 8(5), 223. https://doi.org/10.3390/fishes8050223