Identification of Novel Mutations in the Tyrosinase Gene (TYR) Associated with Pigmentation in Chinese Giant Salamanders (Andrias davidianus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Sample Collection
2.2. Transcriptome Sequencing
2.3. Quality Control and De Novo Assembly
2.4. Gene Annotations
2.5. Differential Expression Analysis
2.6. Identification of Simple Sequence Repeats (SSRs) and Single Nucleotide Polymorphisms (SNPs)
2.7. Validation of DEGs Using qPCR
2.8. TYR Gene Cloning and Sequencing
2.9. Gene Mutation Analysis
2.10. Statistical Analysis
3. Results
3.1. Sequencing Characterization and De Novo Assembly
3.2. Functional Annotation
3.3. DEGs Analysis
3.4. Identification of SNP and SSR Markers
3.5. Validation of Candidate Gene Expression Results
3.6. Identification of TYR Sequence and Mutations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuthill, I.C.; Allen, W.L.; Arbuckle, K.; Caspers, B.; Chaplin, G.; Hauber, M.E.; Hill, G.E.; Jablonski, N.G.; Jiggins, C.D.; Kelber, A.; et al. The biology of color. Science 2017, 357. [Google Scholar] [CrossRef] [Green Version]
- Caro, T.; Mallarino, R. Coloration in Mammals. Trends Ecol. Evol. 2020, 35, 357–366. [Google Scholar] [CrossRef]
- FrostMason, S.K.; Mason, K.A. What insights into vertebrate pigmentation has the axolotl model system provided? Int J Dev Biol 1996, 40, 685–693. [Google Scholar]
- Hubbard, J.K.; Uy, J.A.; Hauber, M.E.; Hoekstra, H.E.; Safran, R.J. Vertebrate pigmentation: From underlying genes to adaptive function. Trends Genet. TIG 2010, 26, 231–239. [Google Scholar] [CrossRef]
- D’Mello, S.A.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.Y.; Fisher, D.E. Melanocyte biology and skin pigmentation. Nature 2007, 445, 843–850. [Google Scholar] [CrossRef]
- Woodcock, M.R.; Vaughn-Wolfe, J.; Elias, A.; Kump, D.K.; Kendall, K.D.; Timoshevskaya, N.; Timoshevskiy, V.; Perry, D.W.; Smith, J.J.; Spiewak, J.E.; et al. Identification of Mutant Genes and Introgressed Tiger Salamander DNA in the Laboratory Axolotl, Ambystoma mexicanum. Sci. Rep. 2017, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Liu, L.; Wang, X.; Gao, X.; Jiang, J.; Wang, B. Transcriptomics reveals the molecular processes of light-induced rapid darkening of the non-obligate cave dweller Oreolalax rhodostigmatus (Megophryidae, Anura) and their genetic basis of pigmentation strategy. BMC Genom. 2018, 19, 422. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Gong, Q.; Lai, J.; Song, M.; Liu, Y.; Wu, Y.; Ai, J.; Long, Z. Transcriptome analysis identifies candidate genes associated with skin color variation in Triplophysa siluroides. Comp. Biochem. Physiol. Part D Genom. Proteom. 2020, 35, 100682. [Google Scholar] [CrossRef]
- Lu, C.; Chai, J.; Murphy, R.W.; Che, J. Giant salamanders: Farmed yet endangered. Science 2020, 367, 989. [Google Scholar] [CrossRef]
- Yan, F.; Lu, J.; Zhang, B.; Yuan, Z.; Zhao, H.; Huang, S.; Wei, G.; Mi, X.; Zou, D.; Xu, W.; et al. The Chinese giant salamander exemplifies the hidden extinction of cryptic species. Curr. Biol. CB 2018, 28, R590–R592. [Google Scholar] [CrossRef] [Green Version]
- Suarez, P.; Baumer, K.; Hall, D. Further insight into the global variability of the OCA2-HERC2 locus for human pigmentation from multiallelic markers. Sci. Rep. 2021, 11, 22530. [Google Scholar] [CrossRef]
- Andrade, P.; Carneiro, M. Pterin-based pigmentation in animals. Biol. Lett. 2021, 17, 20210221. [Google Scholar] [CrossRef]
- Singh, A.P.; Frohnhofer, H.G.; Irion, U.; Nusslein-Volhard, C. Fish pigmentation. Response to Comment on "Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish". Science 2015, 348, 297. [Google Scholar] [CrossRef] [Green Version]
- Garber, M.; Grabherr, M.G.; Guttman, M.; Trapnell, C. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 2011, 8, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Gotz, S.; Garcia-Gomez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talon, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef]
- Ye, J.; Fang, L.; Zheng, H.; Zhang, Y.; Chen, J.; Zhang, Z.; Wang, J.; Li, S.; Li, R.; Bolund, L.; et al. WEGO: A web tool for plotting GO annotations. Nucleic Acids Res. 2006, 34, W293–W297. [Google Scholar] [CrossRef]
- Iseli, C.; Jongeneel, C.V.; Bucher, P. ESTScan: A program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1999, 99, 138–148. [Google Scholar]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Bai, Y.; Meng, Y.; Luo, J.; Wang, H.; Li, G.; Li, C. Full-length transcriptome assembly of Andrias davidianus (amphibia: Caudata) skin via hybrid sequencing. Biosci. Rep. 2021, 41. [Google Scholar] [CrossRef]
- Hu, Q.; Tian, H.; Li, W.; Meng, Y.; Wang, Q.; Xiao, H. Identification of critical sex-biased genes in Andrias davidianus by de novo transcriptome. Mol. Genet. Genom. MGG 2019, 294, 287–299. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, Q.; Meng, Y.; Tian, H.; Xiao, H. Comparative transcriptome reveal the potential adaptive evolutionary genes in Andrias davidianus. Hereditas 2018, 155, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rzepka, Z.; Buszman, E.; Beberok, A.; Wrzesniok, D. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis. Postepy Higieny i Medycyny Doswiadczalnej 2016, 70, 695–708. [Google Scholar] [CrossRef] [PubMed]
- Herczeg, G.; Matsuba, C.; Merila, J. Sequence variation in the melanocortin-1 receptor gene (Mc1r) does not explain variation in the degree of melanism in a widespread amphibian. Ann. Zool. Fenn. 2010, 47, 37–45. [Google Scholar] [CrossRef]
- Henning, F.; Renz, A.J.; Fukamachi, S.; Meyer, A. Genetic, comparative genomic, and expression analyses of the Mc1r locus in the polychromatic Midas cichlid fish (Teleostei, Cichlidae Amphilophus sp.) species group. J. Mol. Evol. 2010, 70, 405–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaud, V.; Lasseaux, E.; Green, D.J.; Gerrard, D.T.; Plaisant, C.; Eye, U.K.B.; Vision, C.; Fitzgerald, T.; Birney, E.; Arveiler, B.; et al. The contribution of common regulatory and protein-coding TYR variants to the genetic architecture of albinism. Nat. Commun. 2022, 13, 3939. [Google Scholar] [CrossRef] [PubMed]
- Seruggia, D.; Josa, S.; Fernandez, A.; Montoliu, L. The structure and function of the mouse tyrosinase locus. Pigment. Cell Melanoma Res. 2021, 34, 212–221. [Google Scholar] [CrossRef]
- Pavan, W.J.; Sturm, R.A. The Genetics of Human Skin and Hair Pigmentation. Annu. Rev. Genom. Hum. Genet. 2019, 20, 41–72. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Park, S.J.; Choe, S.H.; Lee, J.R.; Cho, H.M.; Kim, S.U.; Kim, J.S.; Sim, B.W.; Song, B.S.; Lee, Y.; et al. Identification and characterization of the tyrosinase gene (TYR) and its transcript variants (TYR_1 and TYR_2) in the crab-eating macaque (Macaca fascicularis). Gene 2017, 630, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Kamaraj, B.; Purohit, R. Mutational Analysis of Oculocutaneous Albinism: A Compact Review. BioMed Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalahroudi, V.G.; Kamalidehghan, B.; Kani, A.A.; Aryani, O.; Tondar, M.; Ahmadipour, F.; Chung, L.Y.; Houshmand, M. Two Novel Tyrosinase (TYR) Gene Mutations with Pathogenic Impact on Oculocutaneous Albinism Type 1 (OCA1). PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Qi, Y.; Liang, Q.; Song, J.; Liu, J.; Li, W.; Shu, Y.; Tao, M.; Zhang, C.; Qin, Q.; et al. Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny. Sci. China Life Sci. 2019, 62, 1194–1202. [Google Scholar] [CrossRef]
- Cho, I.H.; Lu, Z.R.; Yu, J.R.; Park, Y.D.; Yang, J.M.; Hahn, M.J.; Zou, F. Towards profiling the gene expression of tyrosinase-induced melanogenesis in HEK293 cells: A functional DNA chip microarray and interactomics studies. J. Biomol. Struct. Dyn. 2009, 27, 331–346. [Google Scholar] [CrossRef]
- Nakajima, K.; Nakajima, T.; Yaoita, Y. Generation of Albino Cynops pyrrhogaster by Genomic Editing of the tyrosinase Gene. Zool. Sci. 2016, 33, 290–294. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, K.; Yaoita, Y. Highly efficient gene knockout by injection of TALEN mRNAs into oocytes and host transfer in Xenopus laevis. Biol. Open 2015, 4, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, S.; Cliffe, R.; Amaya, E. Highly efficient bi-allelic mutation rates using TALENs in Xenopus tropicalis. Biol. Open 2012, 1, 1273–1276. [Google Scholar] [CrossRef] [Green Version]
- Cai, H.; Peng, Z.; Ren, R.; Wang, H. Efficient Gene Disruption via Base Editing Induced Stop in Newt Pleurodeles waltl. Genes 2019, 10, 837. [Google Scholar] [CrossRef] [Green Version]
Genes | Primer Sequences | Amplified Region | Tm (°C) | Size (bp) |
---|---|---|---|---|
MC1R | F5′-GCGGGCAGTGATGGTTATTA-3′ | CDs | 62 | 110 |
R5′-GAAGCCAATGAGGCAGATGA-3′ | ||||
Agouti | F5′-GAACTTCTTCCACCCATCTCAA-3′ | CDs | 62 | 116 |
R5′-GAGCCTTTCTAGGTGGAACTTT-3′ | ||||
TYRP1 | F5′-CGTGTCTCCGAATGATCCTATTT-3′ | CDs | 62.0 | 83 |
R5′-ACTGTGTCTTCTCAGCCATTC-3′ | ||||
TYR p1 | F5′-TACAGATTGCTGCTGTGCAGA-3′ | CDs | 52.0 | 1651 |
R5′-TTGTTGAATTACTCTGGCCTT-3′ | ||||
TYR p2 | F5′-GCAGACCAGAAGAATACAACAATC-3′ | CDs | 62.0 | 105 |
R5′-CCTCAGAACCCTGGCTTTATC-3′ | ||||
DCT | F5′-TGCAACAGCCTGGATGACTA-3′ | CDs | 56.0 | 194 |
R5′-GCATTCCGGAAGCTGAAACT-3′ | ||||
MITF | F5′-CCTTCTGCAGGCCTTTCATC-3′ | CDs | 56.0 | 144 |
R5′-AGTGATGGTGCCATCTGTGA-3′ | ||||
GAPDH | F5′-CACTGAGGAACAGGTGGTCT-3′ | CDs | 57.97 | 163 |
F5′-ATGGCTCATCAGGTCCACAA-3′ |
Pathway | KO | Enrichment_Factor | Q_Value |
---|---|---|---|
ECM-receptor interaction | ko04512 | 0.17 | 0.0000 × 1000 |
Focal adhesion | ko04510 | 0.24 | 0.0000 × 1000 |
Cardiac muscle contraction | ko04260 | 0.21 | 2.8714 × 10−7 |
Tight junction | ko04530 | 0.27 | 4.7132 × 10−7 |
Dilated cardiomyopathy | ko05414 | 0.17 | 3.4160 × 10−5 |
Hypertrophic cardiomyopathy (HCM) | ko05410 | 0.17 | 3.4160 × 10−5 |
Protein digestion and absorption | ko04974 | 0.22 | 1.4015 × 10−3 |
Glycolysis/Gluconeogenesis | ko00010 | 0.32 | 2.0857 × 10−2 |
Searching Item | Number |
---|---|
Total number of sequences examined | 22,531 |
Total size of examined sequences (bp) | 51,295,961 |
Total number of identified SSRs | 13,131 |
Number of SSR containing sequences | 8638 |
Number of sequences containing more than 1 SSR | 2966 |
Number of SSRs present in compound formation | 774 |
Mono nucleotide | 10,844 |
Di nucleotide | 1528 |
Tri nucleotide | 679 |
Tetra nucleotide | 78 |
Penta nucleotide | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Han, M.; Ma, H.; Zhang, H.; Zhang, H.; Zhao, H.; Li, J.; Jiang, W. Identification of Novel Mutations in the Tyrosinase Gene (TYR) Associated with Pigmentation in Chinese Giant Salamanders (Andrias davidianus). Fishes 2023, 8, 121. https://doi.org/10.3390/fishes8030121
Deng J, Han M, Ma H, Zhang H, Zhang H, Zhao H, Li J, Jiang W. Identification of Novel Mutations in the Tyrosinase Gene (TYR) Associated with Pigmentation in Chinese Giant Salamanders (Andrias davidianus). Fishes. 2023; 8(3):121. https://doi.org/10.3390/fishes8030121
Chicago/Turabian StyleDeng, Jie, Mengdi Han, Hongying Ma, Han Zhang, Hongxing Zhang, Hu Zhao, Jia Li, and Wei Jiang. 2023. "Identification of Novel Mutations in the Tyrosinase Gene (TYR) Associated with Pigmentation in Chinese Giant Salamanders (Andrias davidianus)" Fishes 8, no. 3: 121. https://doi.org/10.3390/fishes8030121
APA StyleDeng, J., Han, M., Ma, H., Zhang, H., Zhang, H., Zhao, H., Li, J., & Jiang, W. (2023). Identification of Novel Mutations in the Tyrosinase Gene (TYR) Associated with Pigmentation in Chinese Giant Salamanders (Andrias davidianus). Fishes, 8(3), 121. https://doi.org/10.3390/fishes8030121