Aquatic Pollutants: Risks, Consequences, Possible Solutions and Novel Testing Approaches
Funding
Conflicts of Interest
References
- Islam, T.; Repon, M.A.-O.; Islam, T.; Sarwar, Z.; Rahman, M.M. Impact of textile dyes on health and ecosystem: A review of structure, causes, and potential solutions. Environ. Sci. Pollut. Res. Int. 2022, 30, 9207–9242. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Lü, F.; Zhang, H.; He, P. Where should Fenton go for the degradation of refractory organic contaminants in wastewater? Water Res. 2023, 229, 119479. [Google Scholar] [CrossRef] [PubMed]
- Al Osman, M.; Yang, F.A.-O.; Massey, I.Y. Exposure routes and health effects of heavy metals on children. Biometals 2019, 32, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Savoca, D.; Arculeo, M.; Arizza, V.; Pace, A.; Melfi, R.; Caracappa, S.; Caracappa, G.; Vullo, C.; Cambera, I.; Visconti, G.; et al. Impact of Heavy Metals in Eggs and Tissues of C. caretta along the Sicilian Coast (Mediterranean Sea). Environments 2022, 9, 88. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef]
- Al-Hasawi, Z.M. Adverse Impacts of Toxic Metal Pollutants on Sex Steroid Hormones of Siganus rivulatus (Teleostei: Siganidae) from the Red Sea. Fishes 2022, 7, 367. [Google Scholar] [CrossRef]
- Mensoor, M.; Said, A. Determination of Heavy Metals in Freshwater Fishes of the Tigris River in Baghdad. Fishes 2018, 3, 23. [Google Scholar] [CrossRef]
- Bonsignore, M.; Salvagio Manta, D.; Mirto, S.; Quinci, E.M.; Ape, F.; Montalto, V.; Gristina, M.; Traina, A.; Sprovieri, M. Bioaccumulation of heavy metals in fish, crustaceans, molluscs and echinoderms from the Tuscany coast. Ecotoxicol. Environ. Saf. 2018, 162, 554–562. [Google Scholar] [CrossRef]
- UNEP. UN Environmental Programme—Endocrine Disrupting Chemicals. Available online: https://www.unep.org/explore-topics/chemicals-waste/what-we-do/emerging-issues/endocrine-disrupting-chemicals (accessed on 23 January 2023).
- Ciślak, M.; Kruszelnicka, I.; Zembrzuska, J.; Ginter-Kramarczyk, D. Estrogen pollution of the European aquatic environment: A critical review. Water Res. 2023, 229, 119413. [Google Scholar] [CrossRef]
- Sami, N.; Fatma, T. Optimized culture conditions facilitate the estrone biodegradation ability and laccase activity of Spirulina CPCC-695. Biodegradation 2022, 47, 97–120. [Google Scholar] [CrossRef]
- Desbiolles, F.; Malleret, L.; Tiliacos, C.; Wong-Wah-Chung, P.; Laffont-Schwob, I. Occurrence and ecotoxicological assessment of pharmaceuticals: Is there a risk for the Mediterranean aquatic environment? Sci. Total Environ. 2018, 639, 1334–1348. [Google Scholar] [CrossRef]
- Gómez-Regalado, M.D.C.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E.; Zafra-Gómez, A. Bioaccumulation/bioconcentration of pharmaceutical active compounds in aquatic organisms: Assessment and factors database. Sci. Total Environ. 2022, 861, 160638. [Google Scholar] [CrossRef]
- Pan, Y.; Gao, S.H.; Ge, C.; Gao, Q.; Huang, S.; Kang, Y.; Luo, G.; Zhang, Z.; Fan, L.; Zhu, Y.; et al. Removing microplastics from aquatic environments: A critical review. Environ. Sci. Ecotechnol. 2023, 13, 100222. [Google Scholar] [CrossRef]
- Dalvand, M.; Hamidian, A.H. Occurrence and distribution of microplastics in wetlands. Sci. Total Environ. 2023, 862, 160740. [Google Scholar] [CrossRef]
- Akash, S.; Sivaprakash, B.; Rajamohan, N.; Selvankumar, T. Biotransformation as a tool for remediation of polycyclic aromatic hydrocarbons from polluted environment—Review on toxicity and treatment technologies. Environ. Pollut. 2023, 318, 120923. [Google Scholar] [CrossRef]
- Dubey, S.; Chen, C.W.; Haldar, D.; Tambat, V.S.; Kumar, P.; Tiwari, A.; Singhania, R.R.; Dong, C.D.; Patel, A.K. Advancement in algal bioremediation for organic, inorganic, and emerging pollutants. Environ. Pollut. 2023, 317, 120840. [Google Scholar] [CrossRef]
- Gallareta-Olivares, G.; Rivas-Sanchez, A.; Cruz-Cruz, A.; Hussain, S.M.; González-González, R.B.; Cárdenas-Alcaide, M.F.; Iqbal, H.M.N.; Parra-Saldívar, R. Metal-doped carbon dots as robust nanomaterials for the monitoring and degradation of water pollutants. Chemosphere 2023, 312, 137190. [Google Scholar] [CrossRef]
- Pinto, P.I.S.; Estêvão, M.D.; Santos, S.; Andrade, A.; Power, D.M. In vitro screening for estrogenic endocrine disrupting compounds using Mozambique tilapia and sea bass scales. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2017, 199, 106–113. [Google Scholar] [CrossRef]
- Bourillon, B.; Feunteun, E.; Acou, A.; Trancart, T.; Teichert, N.; Belpaire, C.; Dufour, S.; Bustamante, P.; Aarestrup, K.; Walker, A.; et al. Anthropogenic Contaminants Shape the Fitness of the Endangered European Eel: A Machine Learning Approach. Fishes 2022, 7, 274. [Google Scholar] [CrossRef]
- Liu, Y.; Shang, D.; Yang, Y.; Cui, P.; Sun, J. Transcriptomic Analysis Provides Insights into Microplastic and Heavy Metal Challenges in the Line Seahorse (Hippocampus erectus). Fishes 2022, 7, 338. [Google Scholar] [CrossRef]
- Pinto, P.I.; Anjos, L.; Estêvão, M.D.; Santos, S.; Santa, C.; Manadas, B.; Monsinjon, T.; Canário, A.V.M.; Power, D.M. Proteomics of sea bass skin-scales exposed to the emerging pollutant fluoxetine compared to estradiol. Sci. Total Environ. 2022, 814, 152671. [Google Scholar] [CrossRef] [PubMed]
- Kučera, J.; Púček Belišová, N.; Mackuľak, T.; Ryba, J.; Douda, K.; Bondarev, D.; Slavík, O.; Tamáš, M.; Escobar Calderon, J.F.; Horký, P. Polystyrene Microparticles and the Functional Traits of Invertebrates: A Case Study on Freshwater Shrimp Neocardina heteropoda. Fishes 2022, 7, 323. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estêvão, M.D. Aquatic Pollutants: Risks, Consequences, Possible Solutions and Novel Testing Approaches. Fishes 2023, 8, 97. https://doi.org/10.3390/fishes8020097
Estêvão MD. Aquatic Pollutants: Risks, Consequences, Possible Solutions and Novel Testing Approaches. Fishes. 2023; 8(2):97. https://doi.org/10.3390/fishes8020097
Chicago/Turabian StyleEstêvão, Maria Dulce. 2023. "Aquatic Pollutants: Risks, Consequences, Possible Solutions and Novel Testing Approaches" Fishes 8, no. 2: 97. https://doi.org/10.3390/fishes8020097
APA StyleEstêvão, M. D. (2023). Aquatic Pollutants: Risks, Consequences, Possible Solutions and Novel Testing Approaches. Fishes, 8(2), 97. https://doi.org/10.3390/fishes8020097