Creatine Kinase Activity as an Indicator of Energetic Impairment and Tissue Damage in Fish: A Review
Abstract
:1. Introduction
2. Creatine Kinase as an Indicator of Impairment in Energetic Homeostasis
2.1. Creatine Kinase as an Indicator of the Negative Effects on Energetic Homeostasis in Fish during Bacterial, Fungal, and Parasitical Infections
2.2. Creatine Kinase as an Indicator of the Negative Effects on Energetic Homeostasis in Fish Exposed to Contaminants
2.3. Creatine Kinase as an Indicator of Negative Effects on Energetic Homeostasis in Fish Exposed to Hypoxia and Air
3. Creatine Kinase as an Indicator of Damage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schlattner, U.; Tokarska-Schlattner, M.; Wallimann, T. Mitochondrial creatine kinase in human health and diseases. Biochim. Biophys. Acta 2006, 1762, 164–180. [Google Scholar] [CrossRef] [PubMed]
- Piquereau, J.; Veksler, V.; Novotova, M.; Ventura-Clair, R. Energetic interaction between subcellular organelles in striated muscles. Front. Cell Dev. Biol. 2020, 8, 581045. [Google Scholar] [CrossRef] [PubMed]
- Ellington, W.R.; Suzuki, T. Early evolution of the creatine kinase gene family and the capacity for creatine biosynthesis and membrane transport. Subcell. Biochem. 2007, 46, 17–26. [Google Scholar]
- Wyss, M.; Schlegel, J.; James, P.; Eppenberger, H.M.; Wallimann, T. Mitochondrial creatine kinase from chicken brain. Purification, biophysical characterization, and generation of heterodimeric and heterooctameric molecules with subunits of other creatine kinase isoenzymes. J. Biol. Chem. 1990, 265, 15900–15908. [Google Scholar] [CrossRef] [PubMed]
- Wallimann, T.; Wyss, M.; Brdiczka, D.; Nicolay, K.; Eppenberger, H.M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The phosphocreatine circuit for cellular energy homeostasis. Biochem. J. 1992, 281, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Baldissera, M.D.; Souza, C.F.; Santos, R.C.V.; Stefani, L.M.; Moreira, K.L.S.; Da Veiga, M.L.; Da Rocha, M.I.U.M.; Baldisserotto, B. Pseudomonas aeruginosa strain PA01 impairs enzymes of the phosphotransfer network in the gills of Rhamdia quelen. Vet. Microbiol. 2017, 201, 121–125. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Descovi, S.N.; Verdi, C.M.; Zeppenfeld, C.C.; Da Silva, A.S.; Santos, R.C.V.; Baldisserotto, B. Grape pomace flour ameliorates Pseudomonas aeruginosa-induced bioenergetic dysfunction in gills of grass carp. Aquaculture 2018, 506, 359–366. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Baldisserotto, B. Ichthyophthirius multifiliis impairs splenic enzymes of the phosphoryl transfer network in naturally infected Rhamdia quelen: Effects on energetic homeostasis. Parasitol. Res. 2018, 117, 413–418. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Santos, R.C.V.; Baldisserotto, B. Streptococcus agalactiae alters cerebral enzymes of phosphoryl transfer network in experimentally infected silver catfish: Impairment on brain energy homeostasis. Aquaculture 2018, 489, 105–109. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Descovi, S.N.; Verdi, C.M.; Santos, R.C.V.; Da Silva, A.S.; Baldisserotto, B. Impairment of branchial energy transfer pathways in disease pathogenesis of Providencia rettgeri infection in juvenile Nile tilapia (Oreochromis niloticus): Remarkable involvement of creatine kinase activity. Aquaculture 2019, 502, 365–370. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Abbad, L.B.; da Rocha, M.I.U.M.; da Veiga, M.L.; da Silva, A.S.; Baldisserotto, B. Saprolegnia parasitica impairs branchial phosphoryls transfer network in naturally infected grass carp (Ctenopharyngodon idella): Prejudice on bioenergetic homeostasis. Aquac. Int. 2019, 27, 1643–1654. [Google Scholar] [CrossRef]
- Guimarães, A.T.B.; Silva, H.C.; Boeger, W. The effect of trichlorfon on acetylcholinesterase activity and histopathology of cultivated fish Oreochromis niloticus. Ecotoxicol. Environ. Saf. 2007, 68, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Baldissera, M.D.; Souza, C.F.; Parmeggiani, B.; Vendrusculo, R.G.; Ribeiro, L.C.; Muenchen, D.K.; Zeppenfeld, C.C.; Meinhart, A.D.; Wagner, R.; Zanella, R.; et al. Protective effects of diet containing rutin against trichlorfon-induced muscle bioenergetics disruption and impairment on fatty acid profile of silver catfish Rhamdia quelen. Ecotoxicol. Environ. Saf. 2020, 205, 111127. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Barroso, D.C.; Pereira, R.S.; Alessio, K.O.; Bizzi, C.; Baldisserotto, B.; Val, A.L. Acute exposure to environmentally relevant concentrations of copper affects branchial and hepatic phosphoryl transfer network of Cichlasoma amazonarum: Impacts on bioenergetics homeostasis. Comp. Biochem. Physiol. Part C 2020, 238, 108846. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Grings, M.; Descovi, S.N.; Henn, A.S.; Flores, E.M.M.; da Silva, A.S.; Leipnitz, G.; Baldisserotto, B. Exposure to methylmercury chloride inhibits mitochondrial electron transport chain and phosphotransfer network in liver and gills of grass carp: Protective effects of diphenyl diselenide dietary supplementation as an alternative strategy for mercury toxicity. Aquaculture 2019, 509, 85–95. [Google Scholar]
- Baldissera, M.D.; Souza, C.F.; Boaventura, T.P.; Nakayama, C.L.; Baldisserotto, B.; Luz, R.K. Involvement of the phosphoryl transfer network in gill bioenergetic imbalance of pacamã (Lophiosilurus alexandri) subjected to hypoxia: Notable participation of creatine kinase. Fish Physiol. Biochem. 2020, 46, 405–416. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Petrolli, T.G.; Baldisserotto, B.; Da Silva, A.S. Caffeine prevents hypoxia-induced dysfunction on branchial bioenergetics of Nile tilapia through phosphoryl transfer network. Aquaculture 2019, 502, 1–7. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Val, A.L.; Baldisserotto, B. Participation of phosphoryl transfer network on branchial energetic imbalance of matrinxã (Brycon amazonicus) exposed to air: Notable involvement of creatine kinase. Aquaculture 2020, 518, 734863. [Google Scholar] [CrossRef]
- Banaei, M.; Forouzanfar, M.; Jafarinia, M. Toxic effects of polyethylene microplastics on transcriptional changes, biochemical response, and oxidative stress in common carp (Cyprinus carpio). Comp. Biochem. Physiol. Part C 2022, 261, 109423. [Google Scholar] [CrossRef]
- Kumari, K.; Singh, A.; Swamy, S.; Singhar, P.S.; Thakur, S. Use of enzymatic biomarkers of Labeo rohita to study the effect of polybrominated diphenyl ether (BDE-209) via dietary exposure in laboratory conditions. Environ. Monit. Assess. 2022, 194, e499. [Google Scholar] [CrossRef]
- Mani, R.; Balasubramanian, S.; Raghunath, A.; Perumal, E. Chronic exposure to copper oxide nanoparticles causes muscle toxicity in adult zebrafish. Environ. Sci. Pollut. Res. 2020, 27, 27358–27369. [Google Scholar] [CrossRef] [PubMed]
- Ucar, A.; Ozgeris, F.B.; Yeltekin, A.C.; Parlak, V.; Alak, G.; Keles, M.S.; Atamanalp, M. The effect of N-acetylcysteine supplementation on the oxidative stress levels, apoptosis, DNA damage, and hematopoietic effect in pesticide-exposed fish blood. J. Biochem. Mol. Toxicol. 2019, 33, e22311. [Google Scholar] [CrossRef]
- Rivas-Aravena, A.; Valenzuela, M.F.; Aguirre, S.E.; Escarate, C.G.; Molina, A.; Valdés, J.Á. Transcriptomic response of rainbow trout (Oncorhynchus mykiss) skeletal muscle to Flavobacterium psychrophilum. Comp. Biochem. Physiol. Part D Genom. Proteom. 2019, 31, e100596. [Google Scholar] [CrossRef] [PubMed]
- Alderman, S.L.; Dindia, L.A.; Kennedy, C.J.; Farrel, A.P.; Gillis, T.D. Proteomic analysis of sockeye salmon serum as a tool for biomarker discovery and new insight into the sublethal toxicity of diluted bitumen. Comp. Biochem. Physiol. D 2017, 22, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Adham, K.G.; Ibrahim, H.M.; Hamed, S.S.; Saleh, R.A. Blood chemistry of the Nile tilapia, Oreochromis niloticus (Linnaeus, 1757) under the impact of water pollution. Aquat. Ecol. 2002, 36, 549–557. [Google Scholar] [CrossRef]
- Liquin, J.I.; Keyong, J.; Mei, L.; Baojie, W.; Longjiang, H.; Mingming, Z.; Lei, W. Low temperature stress on the hematological parameters and HSP gene expression in the turbot Scophthalmus maximus. Chin. J. Oceanol. Limnol. 2016, 34, 430–440. [Google Scholar]
- Hossain, S.; Dahanayake, P.S.; De Silva, B.C.J.; Wickramanayake, M.V.K.S.; Wimalasena, S.H.M.P.; Heo, G.J. Multidrug resistant Aeromonas spp. isolated from zebrafish (Danio rerio): Antibiogram, antimicrobial resistance genes and class 1 integron gene cassettes. Lett. Appl. Microbiol. 2019, 68, 370–377. [Google Scholar] [CrossRef]
- Lulijwa, R.; Rupia, E.J.; Alfaro, A.C. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Rev. Aquac. 2019, 12, 640–663. [Google Scholar] [CrossRef]
- Li, X.; Han, T.; Zheng, S.; Wu, G. Hepatic glucose metabolism and its disorders in Fish. Adv. Exp. Med. Biol. 2022, 1354, 207–235. [Google Scholar]
- Alekssev, A.E.; Reyes, S.; Selivanov, V.A.; Dzeja, P.P.; Terzic, A. Compartmentation of membrane processes and nucleotide dynamics in diffusion-restricted cardiac cell microenvironment. J. Mol. Cell. Cardiol. 2012, 52, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Bajpai, J.; Saini, R.; Bajpai, A.K.; Acharya, S. Sustained release of pesticide (cypermethrin) from nanocarriers: An effective technique for environmental and crop protection. Process Saf. Environ. Prot. 2018, 117, 315–325. [Google Scholar] [CrossRef]
- Trujillo-González, A.; Becker, J.A.; Vaughan, D.B.; Hutson, K.S. Monogenean parasites infect ornamental fish imported to Australia. Parasitol. Res. 2018, 117, 995–1011. [Google Scholar] [CrossRef]
- Wang, N.; Jiang, M.; Zhang, P.; Shu, H.; Li, Y.; Guo, Z.; Li, Y. Amelioration of induced bioaccumulation, oxidative stress and intestinal microbiota by Bacillus cereus in Carassius auratus gibelio. Chemosphere 2020, 245, 125613. [Google Scholar] [CrossRef]
- Perrault, J.R.; Bauman, K.D.; Greenan, T.M.; Blum, P.C.; Henry, M.S.; Walsh, C.J. Maternal transfer and sublethal immune system effects of brevetoxin exposure in nesting loggerhead sea turtles (Caretta caretta) from western Florida. Aquat. Toxicol. 2016, 180, 131–140. [Google Scholar] [CrossRef]
Fish Species | Stress/Condition | Tissue | Result | Reference |
---|---|---|---|---|
Rhamdia quelen | Bacterial infection (Pseudomonas aeruginosa) | Gills | Inhibition of cytosolic and mitochondrial CK activities | [6] |
Ctenopharyngodon idella | Bacterial infection (Pseudomonas aeruginosa) | Gills | Inhibition of cytosolic and mitochondrial CK activities | [7] |
Rhamdia quelen | Parasitic infection (Ichthyophthirius multifiliis) | Spleen | Inhibition of cytosolic and mitochondrial CK activities | [8] |
Rhamdia quelen | Bacterial infection (Streptococcus agalactiae) | Brain | Inhibition of cytosolic and mitochondrial CK activities | [9] |
Oreochromis niloticus | Bacterial infection (Providencia rettgeri) | Gills | Inhibition of cytosolic and mitochondrial CK activities | [10] |
Ctenopharyngodon idella | Fungal infection (Saprolegnia parasitica) | Gills | Inhibition of cytosolic and mitochondrial CK activities | [11] |
Rhamdia quelen | Exposure to organophosphate trichlorfon | Gills | Inhibition of cytosolic and mitochondrial CK activities | [12] |
Rhamdia quelen | Exposure to organophosphate trichlorfon | Muscle | Inhibition of cytosolic and mitochondrial CK activities | [13] |
Cichlasoma amazonarum | Exposure to copper | Gills | Inhibition of mitochondrial CK activity; increase in cytosolic CK activity | [14] |
Ctenopharyngodon idella | Exposure to methylmercury chloride | Gills | Inhibition of cytosolic and mitochondrial CK activities | [15] |
Lophiosilurus alexandri | Hypoxia | Gills | Inhibition of cytosolic and mitochondrial CK activities | [16] |
Oreochromis niloticus | Hypoxia | Gills | Inhibition of cytosolic and mitochondrial CK activities | [17] |
Brycon amazonicus | Air exposure | Gills | Inhibition of cytosolic and mitochondrial CK activities | [18] |
Fish Species | Stress/Condition | Tissue | Result | Reference |
---|---|---|---|---|
Cyprinus carpio | Exposure to polyethylene microplastic | Plasma | Increase in CK activity | [19] |
Labeo rohita | Exposure to decabromodiphenyl ether | Serum | Increase in CK activity | [20] |
Danio rerio | Exposure to copper oxide nanoparticles | Serum | Increase in CK activity | [21] |
Oncorhynchus mykiss | Exposure to cypermethrin | Serum | Increase in CK and CK-MB activities | [22] |
Oncorhynchus mykiss | Bacterial infection (Flavobacterium psychrophilum) | Serum | Increase in CK activity | [23] |
Oncorhynchus nerka | Exposure to bitumen | Serum | Increase in CK activity | [24] |
Scophthalmus maximus | Thermal stress | Plasma | Increase in CK activity | [25] |
Oreochromis niloticus | Water pollution | Serum | Increase in CK activity | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldissera, M.D.; Baldisserotto, B. Creatine Kinase Activity as an Indicator of Energetic Impairment and Tissue Damage in Fish: A Review. Fishes 2023, 8, 59. https://doi.org/10.3390/fishes8020059
Baldissera MD, Baldisserotto B. Creatine Kinase Activity as an Indicator of Energetic Impairment and Tissue Damage in Fish: A Review. Fishes. 2023; 8(2):59. https://doi.org/10.3390/fishes8020059
Chicago/Turabian StyleBaldissera, Matheus D., and Bernardo Baldisserotto. 2023. "Creatine Kinase Activity as an Indicator of Energetic Impairment and Tissue Damage in Fish: A Review" Fishes 8, no. 2: 59. https://doi.org/10.3390/fishes8020059
APA StyleBaldissera, M. D., & Baldisserotto, B. (2023). Creatine Kinase Activity as an Indicator of Energetic Impairment and Tissue Damage in Fish: A Review. Fishes, 8(2), 59. https://doi.org/10.3390/fishes8020059