Exogenous β-Propeller Phytase and Prebiotic Mannan Oligosaccharide (MOS) Supplementation of Formulated Diets Applied to Juvenile Nile Tilapia, Oreochromis niloticus: Impact on Growth Performance and Nutrient Digestibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Diets
2.2. Fish and Experimental Conditions
2.3. Digestibility Trial and Chemical Analyses
2.4. Calculations and Statistical Analyses
- -
- pecific growth rate (SGR) was calculated as follows:SGR (% M day−1) = 100 (lnMf − ln Mi)/(tx − t1), where ln is loge and Mx and Mi are the mean body masses of fish at times tx and t1, respectively.
- -
- Feed conversion ratio (FCR) was calculated as follows:FCR (g/g) = FI/(Bf − Bi + Md), where Bi and Bf are the total body masses (g) of fish at the start and end of the experiment, Mdx-1 is the biomass of fish dying throughout the experiment and FI (g) is the quantity of distributed feed during the rearing period.
- -
- Protein efficiency ratio (PER) was calculated as follows:PER = (wet mass gain, g)/(protein intake, g).
3. Results
3.1. Phytase Incorporation
3.1.1. Survival, Feed Intake, Growth Performance and Feed Utilization
3.1.2. Nutrient Digestibility
3.1.3. Carcass Composition
3.2. MOS Incorporation
3.2.1. Growth Performance
3.2.2. Nutrient Digestibility
3.2.3. Carcass Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020. In Brief. Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar]
- Al-Zayat, A.M. Effect of Various Levels of Spirulina (Arthrospira platensis) as Feed Supplement on Growth Performance, Feed Utilization, Immune Response and Hematology of the Nile Tilapia (Oreochromis niloticus) Fingerlings. Egypt. J. Aquat. Biol. Fish. 2019, 23, 361–370. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Metian, M. Feed Matters: Satisfying the Feed Demand of Aquaculture. Rev. Fish. Sci. Aquac. 2015, 23, 1–10. [Google Scholar] [CrossRef]
- Salin, K.R.; Arun, V.V.; Nair, C.M.; Tidwell, J.H. Sustainable Aquafeed. In Sustainable Aquaculture; Hai, F.I., Visvanathan, C., Boopathy, R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 123–151. ISBN 978-3-319-73256-5. [Google Scholar]
- Alhazzaa, R.; Nichols, P.D.; Carter, C.G. Sustainable Alternatives to Dietary Fish Oil in Tropical Fish Aquaculture. Rev. Aquac. 2019, 11, 1195–1218. [Google Scholar] [CrossRef]
- Francis, G.; Makkar, H.P.S.; Becker, K. Antinutritional Factors Present in Plant-Derived Alternate Fish Feed Ingredients and Their Effects in Fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Azaza, M.; Mensi, F.; Kammoun, W.; Abdelouaheb, A.; Brini, B.; Kraïem, M. Nutritional Evaluation of Waste Date Fruit as Partial Substitute for Soybean Meal in Practical Diets of Juvenile Nile Tilapia, Oreochromis niloticus L. Aquac. Nutr. 2009, 15, 262–272. [Google Scholar] [CrossRef]
- Kumar, V.; Sinha, A.K.; Kajbaf, K. Phytic Acid and Phytase Enzyme. In Whole Grains and their Bioactives; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 467–483. ISBN 978-1-119-12948-6. [Google Scholar]
- Sinha, A.K.; Kumar, V.; Makkar, H.P.S.; De Boeck, G.; Becker, K. Non-Starch Polysaccharides and Their Role in Fish Nutrition—A Review. Food Chem. 2011, 127, 1409–1426. [Google Scholar] [CrossRef]
- Rodrigues, E.J.D.; Ito, P.I.; Ribeiro, L.F.M.; de Carvalho, P.L.P.F.; Xavier, W.d.S.; Guimarães, M.G.; Junior, A.C.F.; Pezzato, L.E.; Barros, M.M. Phytase Supplementation under Commercially Intensive Rearing Conditions: Impacts on Nile Tilapia Growth Performance and Nutrient Digestibility. Animals 2023, 13, 136. [Google Scholar] [CrossRef]
- Maas, R.M.; Deng, Y.; Dersjant-Li, Y.; Petit, J.; Verdegem, M.C.J.; Schrama, J.W.; Kokou, F. Exogenous Enzymes and Probiotics Alter Digestion Kinetics, Volatile Fatty Acid Content and Microbial Interactions in the Gut of Nile Tilapia. Sci. Rep. 2021, 11, 8221. [Google Scholar] [CrossRef]
- Lemos, D.; Tacon, A.G.J. Use of Phytases in Fish and Shrimp Feeds: A Review. Rev. Aquac. 2017, 9, 266–282. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Ishikawa, M.; Yokoyama, S. Effects of Partial Substitution of Fish Meal by Soybean Meal with or without Heat-Killed Lactobacillus Plantarum (LP20) on Growth Performance, Digestibility, and Immune Response of Amberjack, Seriola Dumerili Juveniles. BioMed Res. Int. 2015, 2015, 514196. [Google Scholar] [CrossRef] [PubMed]
- Conte, A.J.; Teixeira, A.S.; de Figueirêdo, A.V.; Vitti, D.M.S.S.; Filho, J.C.d.S. Efeito da fitase na biodisponibilidade do fósforo do farelo de arroz em frangos de corte. Pesqui. Agropecu. Bras. 2002, 37, 547–552. [Google Scholar] [CrossRef]
- Shahzad, M.M.; Hussain, S.M.; Hussain, M.; Tariq, M.; Ahmed, N.; Furqan, M.; Khalid, F.; Rafique, T. Improvement in Overall Performance of Catla Catla Fingerlings Fed Phytase Included Low Cost Plant by Products-Based Diet. Saudi J. Biol. Sci. 2020, 27, 2089–2096. [Google Scholar] [CrossRef]
- Ries, E.F.; Ferreira, C.C.; Goulart, F.R.; Lovatto, N.M.; Loureiro, B.B.; Bender, A.B.B.; Macedo, G.A.; Silva, L.P.D. Improving Nutrient Availability of Defatted Rice Bran Using Different Phytase Sources Applied to Grass Carp (Ctenopharyngodon idella) Diet. An. Acad. Bras. Cienc. 2020, 92, e20190201. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, P.A.J.; Schrama, J.W.; Kaushik, S.J. Quantifying Dietary Phosphorus Requirement of Fish—A Meta-Analytic Approach. Aquac. Nutr. 2013, 19, 233–249. [Google Scholar] [CrossRef]
- Mallin, M. Impacts of Industrial Animal Production on Rivers and Estuaries. Am. Sci. 2000, 88, 26. [Google Scholar] [CrossRef]
- Obersteiner, M.; Penuelas, J.; Ciais, P.; van der Velde, M.; Janssens, I.A. The Phosphorus Trilemma. Nat. Geosci. 2013, 6, 897–898. [Google Scholar] [CrossRef]
- Munir, M.B.; Hashim, R.; Chai, Y.H.; Marsh, T.L.; Nor, S.A.M. Dietary Prebiotics and Probiotics Influence Growth Performance, Nutrient Digestibility and the Expression of Immune Regulatory Genes in Snakehead (Channa striata) Fingerlings. Aquaculture 2016, 460, 59–68. [Google Scholar] [CrossRef]
- Jami, M.J.; Kenari, A.A.; Paknejad, H.; Mohseni, M. Effects of Dietary B-Glucan, Mannan Oligosaccharide, Lactobacillus Plantarum and Their Combinations on Growth Performance, Immunity and Immune Related Gene Expression of Caspian Trout, Salmo Trutta Caspius (Kessler, 1877). Fish Shellfish Immunol. 2019, 91, 202–208. [Google Scholar] [CrossRef]
- Gültepe, N.; Salnur, S.; Hoşsu, B.; Hisar, O. Dietary Supplementation with Mannanoligosaccharides (MOS) from Bio-Mos Enhances Growth Parameters and Digestive Capacity of Gilthead Sea Bream (Sparus aurata). Aquac. Nutr. 2011, 17, 482–487. [Google Scholar] [CrossRef]
- Hisano, H.; Soares, M.P.; Luiggi, F.G.; Arena, A.C. Dietary Beta-Glucans and Mannanoligosaccharides Improve Growth Performance and Intestinal Morphology of Juvenile Pacu Piaractus Mesopotamicus (Holmberg, 1887). Aquac. Int. 2018, 26, 213–223. [Google Scholar] [CrossRef]
- Carbone, D.; Faggio, C. Importance of Prebiotics in Aquaculture as Immunostimulants. Effects on Immune System of Sparus Aurata and Dicentrarchus Labrax. Fish Shellfish Immunol. 2016, 54, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Kishawy, A.T.Y.; Sewid, A.H.; Nada, H.S.; Kamel, M.A.; El-Mandrawy, S.A.M.; Abdelhakim, T.M.N.; El-Murr, A.E.I.; Nahhas, N.E.; Hozzein, W.N.; Ibrahim, D. Mannanoligosaccharides as a Carbon Source in Biofloc Boost Dietary Plant Protein and Water Quality, Growth, Immunity and Aeromonas Hydrophila Resistance in Nile Tilapia (Oreochromis niloticus). Animals 2020, 10, 1724. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.-Y.; Feng, L.; Jiang, W.-D.; Wu, P.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Zhou, X.-Q. Mannan Oligosaccharides Improved Growth Performance and Antioxidant Capacity in the Intestine of On-Growing Grass Carp (Ctenopharyngodon idella). Aquac. Rep. 2020, 17, 100313. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Abo-Al-Ela, H.G.; Hasan, M.T. Modulation of Transcriptomic Profile in Aquatic Animals: Probiotics, Prebiotics and Synbiotics Scenarios. Fish Shellfish Immunol. 2020, 97, 268–282. [Google Scholar] [CrossRef] [PubMed]
- Torrecillas, S.; Montero, D.; Izquierdo, M. Improved Health and Growth of Fish Fed Mannan Oligosaccharides: Potential Mode of Action. Fish Shellfish Immunol. 2014, 36, 525–544. [Google Scholar] [CrossRef] [PubMed]
- Azaza, M.S.; Saidi, S.A.; Dhraief, M.N.; El-Feki, A. Growth Performance, Nutrient Digestibility, Hematological Parameters, and Hepatic Oxidative Stress Response in Juvenile Nile Tilapia, Oreochromis Niloticus, Fed Carbohydrates of Different Complexities. Animals 2020, 10, 1913. [Google Scholar] [CrossRef] [PubMed]
- Azaza, M.S.; Mensi, F.; Ksouri, J.; Dhraief, M.N.; Brini, B.; Abdelmouleh, A.; Kraïem, M.M. Growth of Nile Tilapia (Oreochromis niloticus L.) Fed with Diets Containing Graded Levels of Green Algae Ulva Meal (Ulva rigida) Reared in Geothermal Waters of Southern Tunisia. J. Appl. Ichthyol. 2008, 24, 202–207. [Google Scholar] [CrossRef]
- Saïdi, S.A.; Azaza, M.S.; Abdelmouleh, A.; Pelt, J.V.; Kraïem, M.M.; El-Feki, A. The Use of Tuna Industry Waste in the Practical Diets of Juvenile Nile Tilapia (Oreochromis niloticus, L.): Effect on Growth Performance, Nutrient Digestibility and Oxidative Status: Evaluation of Waste Tuna Meal in Tilapia Diets. Aquac. Res. 2010, 41, 1875–1886. [Google Scholar] [CrossRef]
- Azaza, M.S.; Wassim, K.; Mensi, F.; Abdelmouleh, A.; Brini, B.; Kraϊem, M.M. Evaluation of Faba Beans (Vicia faba L. Var. Minuta) as a Replacement for Soybean Meal in Practical Diets of Juvenile Nile Tilapia Oreochromis Niloticus. Aquaculture 2009, 287, 174–179. [Google Scholar] [CrossRef]
- Farhat, A.; Chouayekh, H.; Ben Farhat, M.; Bouchaala, K.; Bejar, S. Gene Cloning and Characterization of a Thermostable Phytase from Bacillus Subtilis US417 and Assessment of Its Potential as a Feed Additive in Comparison with a Commercial Enzyme. Mol. Biotechnol. 2008, 40, 127–135. [Google Scholar] [CrossRef]
- Jauncey, K.; Ross, B. A Guide to Tilapia Feeds and Feeding; Institute of Aquaculture, University of Stirling: Stirling, UK, 1982; ISBN 978-0-901636-47-8. [Google Scholar]
- NRC—Nutrient Requirements of Fish—1993—Requerimento de Peixes|Docsity. Available online: https://www.docsity.com/pt/nrc-nutrient-requirements-of-fish-1993/4863129/ (accessed on 19 October 2023).
- Furuya, W.M.; Gonçalves, G.S.; Furuya, V.R.B.; Hayashi, C. Phytase as Feeding for Nile Tilapia (Oreochromis niloticus). Performance and Digestibility. R. Bras. Zootec. 2001, 30, 924–929. [Google Scholar] [CrossRef]
- Cao, L.; Wang, W.; Yang, C.; Yang, Y.; Diana, J.; Yakupitiyage, A.; Luo, Z.; Li, D. Application of Microbial Phytase in Fish Feed. Enzym. Microb. Technol. 2007, 4, 497–507. [Google Scholar] [CrossRef]
- Portz, L.; Liebert, F. Growth, Nutrient Utilization and Parameters of Mineral Metabolism in Nile Tilapia Oreochromis Niloticus (Linnaeus, 1758) Fed Plant-Based Diets with Graded Levels of Microbial Phytase. J. Anim. Physiol. Anim. Nutr. 2004, 88, 311–320. [Google Scholar] [CrossRef]
- Azaza, M.S. Influences of Food Particle Size on Growth, Size Heterogeneity, Food Intake and Gastric Evacuation in Juvenile Nile Tilapia, Oreochromis niloticus, L., 1758. Aquaculture 2010, 309, 193–202. [Google Scholar] [CrossRef]
- Fernández, F.; Miquel, A.G.; Cumplido, L.R.; Guinea, J.; Ros, E. Comparisons of Faecal Collection Methods for Digestibility Determinations in Gilthead Sea Bream. J. Fish Biol. 1996, 49, 735–738. [Google Scholar] [CrossRef]
- Furukawa, A.; Tsukahara, H. On the acid digestion of chromic oxide as an index substance in the study of digestibility of fish feed. Bull. Jpn. Soc. Sci. Fish. 1966, 32, 502–506. [Google Scholar] [CrossRef]
- Association of Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists, 14th ed.; Association of Analytical Chemists: Rockville, MD, USA, 2000. [Google Scholar]
- New, M.B. Feed and Feeding of Fish and Shrimp: A Manual on the Preparation and Presentation of Compound Feeds for Shrimp and Fish in Aquaculture; FAO: Rome, Italy, 1987. [Google Scholar]
- Morais, S.; Bell, J.G.; Robertson, D.A.; Roy, W.J.; Morris, P.C. Protein/Lipid Ratios in Extruded Diets for Atlantic Cod (Gadus morhua L.): Effects on Growth, Feed Utilisation, Muscle Composition and Liver Histology. Aquaculture 2001, 203, 101–119. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Ott, R.L.; Longnecker, M. An Introduction to Statistical Methods and Data Analysis, 5th ed.; Duxbury Thomson Learning: Pacific Grove, CA, USA, 2001. [Google Scholar]
- Usmani, N.; Jafri, A.K. Influence of Dietary Phytic Acid on the Growth, Conversion Efficiency, and Carcass Composition of Mrigal Cirrhinus Mrigala (Hamilton) Fry. J. World Aquac. Soc. 2002, 33, 199–204. [Google Scholar] [CrossRef]
- Khaled, A. Influence of Supplemental Microbial Phytase on Growth Performance Parameters and Expression of Immune-Related Genes of Nile Tilapia (Oreochromis niloticus). Middle East J. Agric. Res. 2019, 8, 600–610. [Google Scholar]
- Singh, S.K.; Bhandari, M.P.; Timalsina, P. Effect of Dietary Inclusion of Citric Acid with Phytase as Supplement on Growth Responses of Rainbow Trout. Turk. J. Agric.—Food Sci. Technol. 2020, 8, 2355–2360. [Google Scholar] [CrossRef]
- Liebert, F.; Portz, L. Nutrient Utilization of Nile Tilapia Oreochromis Niloticus Fed Plant Based Low Phosphorus Diets Supplemented with Graded Levels of Different Sources of Microbial Phytase. Aquaculture 2005, 248, 111–119. [Google Scholar] [CrossRef]
- Abo Norag, M.A.; El-Shenawy, A.M.; Fadl, S.E.; Abdo, W.S.; Gad, D.M.; Rashed, M.A.; Prince, A.M. Effect of Phytase Enzyme on Growth Performance, Serum Biochemical Alteration, Immune Response and Gene Expression in Nile Tilapia. Fish Shellfish Immunol. 2018, 80, 97–108. [Google Scholar] [CrossRef]
- Adeshina, I.; Akpoilih, B.U.; Udom, B.F.; Adeniyi, O.V.; Abdel-Tawwab, M. Interactive Effects of Dietary Phosphorus and Microbial Phytase on Growth Performance, Intestinal Morphometry, and Welfare of Nile Tilapia (Oreochromis niloticus) Fed on Low-Fishmeal Diets. Aquaculture 2023, 563, 738995. [Google Scholar] [CrossRef]
- Maas, R.M.; Verdegem, M.C.J.; Dersjant-Li, Y.; Schrama, J.W. The Effect of Phytase, Xylanase and Their Combination on Growth Performance and Nutrient Utilization in Nile Tilapia. Aquaculture 2018, 487, 7–14. [Google Scholar] [CrossRef]
- Liu, L.W.; Su, J.; Luo, Y. Effect of Partial Replacement of Dietary Monocalcium Phosphate with Neutral Phytase on Growth Performance and Phosphorus Digestibility in Gibel Carp, Carassius Auratus Gibelio (Bloch). Aquac. Res. 2012, 43, 1404–1413. [Google Scholar] [CrossRef]
- Sardar, P.; Randhawa, H.S.; Abid, M.; Prabhakar, S.K. Effect of Dietary Microbial Phytase Supplementation on Growth Performance, Nutrient Utilization, Body Compositions and Haemato-Biochemical Profiles of Cyprinus carpio (L.) Fingerlings Fed Soyprotein-Based Diet. Aquac. Nutr. 2007, 13, 444–456. [Google Scholar] [CrossRef]
- Lall, S.P. The Minerals, 3rd ed.; Halver, J.E., Hardy, R.W., Eds.; Academic Press: New York, NY, USA, 2002. [Google Scholar]
- Åsgård, T.; Shearer, K.D. Dietary Phosphorus Requirement of Juvenile Atlantic Salmon, Salmo salar L. Aquac. Nutr. 1997, 3, 17–23. [Google Scholar] [CrossRef]
- Hardy, R.W.; Shearer, K.D. Effect of Dietary Calcium Phosphate and Zinc Supplementation on Whole Body Zinc Concentration of Rainbow Trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci. 1985, 42, 181–184. [Google Scholar] [CrossRef]
- Correll, D. Phosphorus: A Rate Limiting Nutrient in Surface Waters. Poult. Sci. 1999, 78, 674–682. [Google Scholar] [CrossRef]
- Yukgehnaish, K.; Kumar, P.; Sivachandran, P.; Marimuthu, K.; Arshad, A.; Paray, B.A.; Arockiaraj, J. Gut Microbiota Metagenomics in Aquaculture: Factors Influencing Gut Microbiome and Its Physiological Role in Fish. Rev. Aquac. 2020, 12, 1903–1927. [Google Scholar] [CrossRef]
- Cavalcante, R.B.; Telli, G.S.; Tachibana, L.; Dias, D.d.C.; Oshiro, E.; Natori, M.M.; da Silva, W.F.; Ranzani-Paiva, M.J. Probiotics, Prebiotics and Synbiotics for Nile Tilapia: Growth Performance and Protection against Aeromonas Hydrophila Infection. Aquac. Rep. 2020, 17, 100343. [Google Scholar] [CrossRef]
- Mohammadian, T.; Nasirpour, M.; Tabandeh, M.R.; Mesbah, M. Synbiotic Effects of β-Glucan, Mannan Oligosaccharide and Lactobacillus Casei on Growth Performance, Intestine Enzymes Activities, Immune-Hematological Parameters and Immune-Related Gene Expression in Common Carp, Cyprinus Carpio: An Experimental Infection with Aeromonas Hydrophila. Aquaculture 2019, 511, 634197. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, S.; Cai, Y.; Wu, Y.; Tian, L.; Wang, S.; Jiang, L.; Guo, W.; Sun, Y.; Zhou, Y. Effects of Dietary Mannan Oligosaccharide Supplementation on Growth Performance, Antioxidant Capacity, Non-Specific Immunity and Immune-Related Gene Expression of Juvenile Hybrid Grouper (Epinephelus Lanceolatus♂ × Epinephelus Fuscoguttatus♀). Aquaculture 2020, 523, 735195. [Google Scholar] [CrossRef]
- Torrecillas, S.; Makol, A.; Caballero, M.J.; Montero, D.; Ginés, R.; Sweetman, J.; Izquierdo, M. Improved Feed Utilization, Intestinal Mucus Production and Immune Parameters in Sea Bass (Dicentrarchus labrax) Fed Mannan Oligosaccharides (MOS). Aquac. Nutr. 2011, 17, 223–233. [Google Scholar] [CrossRef]
- Magouz, F.I.; Bassuini, M.I.; Khalafalla, M.M.; Abbas, R.; Sewilam, H.; Aboelenin, S.M.; Soliman, M.M.; Amer, A.A.; Soliman, A.A.; Van Doan, H.; et al. Mannan Oligosaccharide Enhanced the Growth Rate, Digestive Enzyme Activity, Carcass Composition, and Blood Chemistry of Thinlip Grey Mullet (Liza ramada). Animals 2021, 11, 3559. [Google Scholar] [CrossRef]
- Dimitroglou, A.; Merrifield, D.L.; Spring, P.; Sweetman, J.; Moate, R.; Davies, S.J. Effects of Mannan Oligosaccharide (MOS) Supplementation on Growth Performance, Feed Utilisation, Intestinal Histology and Gut Microbiota of Gilthead Sea Bream (Sparus aurata). Aquaculture 2010, 300, 182–188. [Google Scholar] [CrossRef]
- Genc, M.A.; Aktas, M.; Genc, E.; Yilmaz, E. Effects of Dietary Mannan Oligosaccharide on Growth, Body Composition and Hepatopancreas Histology of Penaeus Semisulcatus (de Haan 1844). Aquac. Nutr. 2007, 13, 156–161. [Google Scholar] [CrossRef]
- Yilmaz, E.; Genç, M.; Genç, E. Effects of Dietary Mannan Oligosaccharides on Growth, Body Composition, and Intestine and Liver Histology of Rainbow Trout, Oncorhynchus Mykiss. Isr. J. Aquac.-Bamidgeh 2007, 59, 10–16. [Google Scholar]
Experimental Diets | ||||||||
---|---|---|---|---|---|---|---|---|
Control | PHY1 | PHY2 | PHY3 | PHY4 | MOS2 | MOS4 | MOS8 | |
Phytase (U/kg) | 0 | 600 | 1200 | 1800 | 2400 | 0 | 0 | 0 |
MOS (g/kg) | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 8 |
Ingredients (%) | ||||||||
Fish meal | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
Soybean meal | 55 | 55 | 55 | 55 | 55 | 55 | 55 | 55 |
Maize meal | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 |
Soybean oil | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
CMV a | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Chromic oxide b | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Proximate analysis (% Dry matter) | ||||||||
Moisture | 9.56 | 8.22 | 8.15 | 8.20 | 8.08 | 8.13 | 8.21 | 8.18 |
Crude protein | 34.88 | 35.04 | 33.94 | 33.95 | 33.24 | 33.97 | 33.81 | 33.85 |
Crude lipids | 9.44 | 9.78 | 9.33 | 9.60 | 8.40 | 9.25 | 9.33 | 9.45 |
Ash | 11.36 | 11.96 | 12.08 | 11.41 | 11.82 | 12.01 | 11.94 | 11.83 |
NFE c | 34.75 | 35.00 | 36.49 | 36.83 | 37.47 | 37.13 | 36.95 | 36.73 |
Gross energy (KJ/g) | 17.58 | 17.79 | 17.62 | 17.79 | 17.28 | 17.38 | 17.48 | 17.81 |
Variable | Experimental Diets (U/kg) | ||||
---|---|---|---|---|---|
PHY-0 | PHY-1 | PHY-2 | PHY-3 | PHY-4 | |
0 | 600 | 1200 | 1800 | 2400 | |
IBM (g) | 2.8 ± 0.08 | 2.47 ± 0.09 | 2.43 ± 0.1 | 2.42 ± 0.07 | 2.44 ± 0.06 |
FBM (g) | 22.79 ± 1.39 a | 21.54 ± 2.32 a | 26.14 ± 2.73 b | 25.92 ± 1.52 b | 24.87 ± 2.02 b |
SR (%) | 96.66 ± 2.31 | 97.78 ± 2.67 | 96.66 ± 2.31 | 95.55 ± 1.33 | 91.33 ± 5.42 |
DWG (g) | 0.45 ± 0.09 a | 0.42 ± 0.06 a | 0.53 ± 0.08 b | 0.52 ± 0.05 b | 0.50 ± 0.1 b |
SGR (%/day) | 5.02 ± 0.06 a | 4.81 ± 0.08 a | 5.28 ± 0.07 b | 5.26 ± 0.06 b | 5.15 ± 0.05 b |
FCR (g/day) | 1.95 ± 0.05 a | 1.97 ± 0.08 a | 1.67 ± 0.1 b | 1.60 ± 0.09 b | 1.73 ± 0.1 b |
FI (g/day) | 26.5 ± 2.33 | 25.0 ± 2.58 | 26.4 ± 3.71 | 25.1 ± 2.12 | 25.9 ± 3.10 |
PER | 1.21 ± 0.11 a | 1.20 ± 0.07 a | 1.54 ± 0.08 b | 1.61 ± 0.04 b | 1.56 ± 0.04 b |
ADC (%) | Experimental Diets | ||||
---|---|---|---|---|---|
PHY-0 | PHY-600 | PHY-1200 | PHY-1800 | PHY-2400 | |
Dry matter | 74.66 ± 1.27 | 72.5 ± 1.43 | 71.2 ± 1.15 | 75.45 ± 1.04 | 70.7 ± 1.89 |
Protein | 83.10 ± 1.22 a | 84.17 ± 1.11 a | 88.33 ± 1.65 b | 87.63 ± 1.15 b | 88.93 ± 1.12 b |
Fat | 88.63 ± 1.70 | 86.25 ± 1.85 | 88.02 ± 1.09 | 84.32 ± 1.79 | 83.74 ± 1.26 |
Carbohydrates | 70.61 ± 2.55 a | 72.64 ± 1.3 a | 70.66 ± 1.72 a | 77.21 ± 1.0 b | 76.17 ± 1.15 b |
Energy | 79.72 ± 0.07 a | 77.54 ± 1.13 a | 82.59 ± 1.17 bc | 84.22 ± 0.94 c | 80.38 ± 1.27 ab |
Composition (%) | Final Body Composition (Experimental Diets) | ||||
---|---|---|---|---|---|
PHY-0 | PHY-600 | PHY-1200 | PHY-1800 | PHY-2400 | |
Moisture | 78.54 ± 0.01 | 82.33 ± 0.06 | 79.50 ± 0.01 | 80.48 ± 0.95 | 78.24 ± 0.02 |
Protein | 12.55 ± 0.15 a | 12.39 ± 0.14 a | 12.46 ± 0.19 a | 12.63 ± 1.23 a | 14.90 ± 0.73 b |
Fat | 6.89 ± 0.32 | 6.29 ± 0.19 | 6.34 ± 0.21 | 5.71 ± 0.56 | 5.43 ± 0.29 |
Ash | 2.77 ± 0.56 | 2.71 ± 0.60 | 2.36 ± 0.48 | 2.14 ± 0.86 | 2.54 ± 0.97 |
P (g/kg) | 1.36 ± 0.07 a | 1.46 ± 0.05 a | 1.94 ± 0.06 b | 1.82 ± 0.03 b | 1.46 ± 0.09 a |
Ca (g/kg) | 2.5 ± 0.1 a | 2.8 ± 0.02 b | 2.55 ± 0.09 a | 2.8 ± 0.08 b | 2.95 ± 0.07 b |
Variable | Experimental Diets | |||
---|---|---|---|---|
MOS0 | MOS2 | MOS4 | MOS8 | |
IBM (g) | 2.28 ± 0.01 | 2.25 ± 0.02 | 2.25 ± 0.02 | 2.25 ± 0.02 |
FBM (g) | 20.65 ± 1.19 | 19.78 ± 0.86 | 19.62 ± 0.37 | 20.24 ± 1.28 |
SR (%) | 97.5 ± 1.46 | 97.5 ± 2.50 | 94.16 ± 0.83 | 95.83 ± 2.21 |
DWG (g/j/ind) | 0.40 ± 0.03 | 0.38 ± 0.02 | 0.38 ± 0.01 | 0.39 ± 0.03 |
SGR (%/day) | 4.89 ± 0.12 | 4.83 ± 0.08 | 4.81 ± 0.06 | 4.85 ± 0.14 |
FCR (g/day) | 1.60 ± 0.03 a | 1.57 ± 0.03 a | 1.49 ± 0.03 ab | 1.44 ± 0.04 b |
FI (g/day) | 28.39 ± 1.64 a | 26.53 ± 0.32 a | 24.09 ± 0.11 b | 24.96 ± 0.77 b |
PER | 1.21 ± 0.11 a | 1.20 ± 0.07 a | 1.54 ± 0.08 b | 1.61 ± 0.04 b |
ADC (%) | Experimental Diets | |||
---|---|---|---|---|
MOS0 | MOS2 | MOS4 | MOS8 | |
Dry matter | 71.95 ± 1.14 a | 73.79 ± 1.38 a | 78.17 ± 0.87 b | 81.68 ± 1.56 b |
Protein | 83.80 ± 3.26 | 85.01 ± 1.96 | 89.27 ± 1.75 | 88.86 ± 2.08 |
Fat | 91.12 ± 4.08 | 92.35 ± 2.18 | 90.55 ± 3.11 | 93.86 ± 2.45 |
Composition (%) | Final Body Composition (Experimental Diets) | |||
---|---|---|---|---|
MOS0 | MOS2 | MOS4 | MOS8 | |
Moisture | 73.5 ± 0.4 | 73.4 ± 0.4 | 73.4 ± 0.2 | 73.7 ± 0.5 |
Protein | 15.6 ± 0.3 | 17.6 ± 3.1 | 12.5 ± 1.0 | 10.9 ± 1.4 |
Fat | 5.8 ± 1.3 | 5.6 ± 0.8 | 6.8 ± 1.2 | 6.1 ± 1.2 |
Ash | 3.0 ± 0.2 | 3.5 ± 0.4 | 3.7 ± 0.6 | 4.2 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ghamdi, O.A.; Saïdi, S.A.; Farhat-Khemakhem, A.; Ghorbel, S.; Chouayekh, H.; Cerruti, P.; Azaza, M.S. Exogenous β-Propeller Phytase and Prebiotic Mannan Oligosaccharide (MOS) Supplementation of Formulated Diets Applied to Juvenile Nile Tilapia, Oreochromis niloticus: Impact on Growth Performance and Nutrient Digestibility. Fishes 2023, 8, 574. https://doi.org/10.3390/fishes8120574
Al-Ghamdi OA, Saïdi SA, Farhat-Khemakhem A, Ghorbel S, Chouayekh H, Cerruti P, Azaza MS. Exogenous β-Propeller Phytase and Prebiotic Mannan Oligosaccharide (MOS) Supplementation of Formulated Diets Applied to Juvenile Nile Tilapia, Oreochromis niloticus: Impact on Growth Performance and Nutrient Digestibility. Fishes. 2023; 8(12):574. https://doi.org/10.3390/fishes8120574
Chicago/Turabian StyleAl-Ghamdi, Othman Ahmed, Saber Abdelkader Saïdi, Ameny Farhat-Khemakhem, Sofiane Ghorbel, Hichem Chouayekh, Pierfrancesco Cerruti, and Mohamed Salah Azaza. 2023. "Exogenous β-Propeller Phytase and Prebiotic Mannan Oligosaccharide (MOS) Supplementation of Formulated Diets Applied to Juvenile Nile Tilapia, Oreochromis niloticus: Impact on Growth Performance and Nutrient Digestibility" Fishes 8, no. 12: 574. https://doi.org/10.3390/fishes8120574
APA StyleAl-Ghamdi, O. A., Saïdi, S. A., Farhat-Khemakhem, A., Ghorbel, S., Chouayekh, H., Cerruti, P., & Azaza, M. S. (2023). Exogenous β-Propeller Phytase and Prebiotic Mannan Oligosaccharide (MOS) Supplementation of Formulated Diets Applied to Juvenile Nile Tilapia, Oreochromis niloticus: Impact on Growth Performance and Nutrient Digestibility. Fishes, 8(12), 574. https://doi.org/10.3390/fishes8120574