Effects of Three Microalgal Diets Varying in LC-PUFA Composition on Growth, Fad, and Elovl Expressions, and Fatty Acid Profiles in Juvenile Razor Clam Sinonovacula constricta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seawater Preparation
2.2. Cultivation of Microalgae
2.3. Cultivation of Juvenile S. constricta
2.4. Sampling and Processing
2.5. Analysis of Fad and Elovl Expressions by Quantitative Real-Time PCR (qRT-PCR)
2.6. Analysis of FA Profiles by Gas Chromatography-Mass Spectrometry (GC-MS)
2.7. Statistical Analyses
3. Results
3.1. Growth of Juvenile S. constricta
3.2. Fad and Elovl Expressions in Visceral Mass of Juvenile S. constricta
3.3. Changes in FA Composition in S. constricta and Correlation with Dietary FA
3.4. FA Composition in Muscular Tissues of Juvenile S. constricta
3.5. FA Composition in Visceral Mass of Juvenile S. constricta
4. Discussion
4.1. Dietary LC-PUFA Composition Significantly Affects S. constricta Growth
4.2. Fad and Elovl Expressions of S. constricta Are Regulated by Dietary LC-PUFA
4.3. S. constricta Can Modulate FA Composition in Addition to Direct Accumulation
4.4. Selective Retention and Incorporation of FA Exist in S. constricta
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Tan, K.; Ma, H.Y.; Li, S.K.; Zheng, H.P. Bivalves as future source of sustainable natural omega-3 polyunsaturated fatty acids. Food Chem. 2020, 311, 125907. [Google Scholar] [CrossRef]
- Joseph, J.D. Lipid composition of marine and estuarine invertebrates. Part II: Mollusca. Prog. Lipid Res. 1982, 21, 109–153. [Google Scholar] [CrossRef]
- Monroig, Ó.; Shu-Chien, A.C.; Kabeya, N.; Tocher, D.R.; Castro, L.F.C. Desaturases and elongases involved in long-chain polyunsaturated fatty acid biosynthesis in aquatic animals: From genes to functions. Prog. Lipid Res. 2022, 86, 101157. [Google Scholar] [CrossRef]
- Li, M.Z.; Mai, K.S.; He, G.; Ai, Q.H.; Zhang, W.B.; Xu, W.; Wang, J.; Liufu, Z.G.; Zhang, Y.J.; Zhou, H.H. Characterization of two Δ5 fatty acyl desaturases in abalone (Haliotis discus hannai Ino). Aquaculture 2013, 416–417, 48–56. [Google Scholar] [CrossRef]
- Monroig, Ó.; Hontoria, F.; Varó, I.; Tocher, D.R.; Navarro, J.C. Investigating the essential fatty acids in the common cuttlefish Sepia officinalis (Mollusca, Cephalopoda): Molecular cloning and functional characterisation of fatty acyl desaturase and elongase. Aquaculture 2016, 450, 38–47. [Google Scholar] [CrossRef]
- Liu, H.L.; Guo, Z.C.; Zheng, H.P.; Wang, S.Q.; Wang, Y.J.; Liu, W.H.; Zhang, G.F. Functional characterization of a Δ5-like fatty acyl desaturase and its expression during early embryogenesis in the noble scallop Chlamys nobilis Reeve. Mol. Biol. Rep. 2014, 41, 7437–7445. [Google Scholar] [CrossRef]
- Liu, H.L.; Zhang, H.K.; Zheng, H.P.; Wang, S.Q.; Guo, Z.C.; Zhang, G.F. PUFA biosynthesis pathway in marine scallop. J Agr. Food Chem. 2014, 62, 12384–12391. [Google Scholar] [CrossRef]
- Liu, H.L.; Zheng, H.P.; Wang, S.Q.; Wang, Y.J.; Li, S.K.; Liu, W.H.; Zhang, G.F. Cloning and functional characterization of a polyunsaturated fatty acid elongase in a marine bivalve noble scallop. Aquaculture 2013, 416–417, 146–151. [Google Scholar] [CrossRef]
- Monroig, Ó.; De Llanos, R.; Varó, I.; Hontoria, F.; Tocher, D.R.; Puig, S.; Navarro, J.C. Biosynthesis of polyunsaturated fatty acids in Octopus vulgaris: Molecular cloning and functional characterisation of a stearoyl-CoA desaturase and an elongation of very long-chain fatty acid 4 protein. Mar. Drugs 2017, 15, 82. [Google Scholar] [CrossRef]
- Monroig, Ó.; Guinot, D.; Hontoria, F.; Tocher, D.R.; Navarro, J.C. Biosynthesis of essential fatty acids in Octopus vulgaris (Cuvier, 1797): Molecular cloning, functional characterisation and tissue distribution of a fatty acyl elongase. Aquaculture 2012, 360–361, 45–53. [Google Scholar] [CrossRef]
- Monroig, Ó.; Navarro, J.C.; Dick, J.R.; Alemany, F.; Tocher, D.R. Identification of a Δ5-like fatty acyl desaturase from the cephalopod Octopus vulgaris (Cuvier 1797) involved in the biosynthesis of essential fatty acids. Mar. Biotech. 2012, 14, 411–422. [Google Scholar] [CrossRef]
- Zhang, H.K.; Liu, H.L.; Cheng, D.; Liu, H.L.; Zheng, H.P. Molecular cloning and functional characterisation of a polyunsaturated fatty acid elongase in a marine bivalve Crassostrea angulate. J. Food Nutr. Res. 2018, 6, 89–95. [Google Scholar] [CrossRef]
- Albentosa, M.; Labarta, U.; Pérez-Camacho, A.; Fernández-Reiriz, M.J.; Beiras, R. Fatty acid composition of Venerupis pullastra spat fed on different microalgae diets. Comp. Biochem. Phys. A 1994, 108, 639–648. [Google Scholar] [CrossRef]
- Delaporte, M.; Soudant, P.; Moal, J.; Kraffe, E.; Marty, Y.; Samain, J.F. Incorporation and modification of dietary fatty acids in gill polar lipids by two bivalve species Crassostrea gigas and Ruditapes philippinarum. Comp. Biochem. Phys. A 2005, 140, 460–470. [Google Scholar] [CrossRef]
- Rivero-Rodríguez, S.; Beaumont, A.R.; Lora-Vilchis, M.C. The effect of microalgal diets on growth, biochemical composition, and fatty acid profile of Crassostrea corteziensis (Hertlein) juveniles. Aquaculture 2007, 263, 199–210. [Google Scholar] [CrossRef]
- Pettersen, A.K.; Turchini, G.M.; Jahangard, S.; Ingram, B.A.; Sherman, C.D. Effects of different dietary microalgae on survival, growth, settlement and fatty acid composition of blue mussel (Mytilus galloprovincialis) larvae. Aquaculture 2010, 309, 115–124. [Google Scholar] [CrossRef]
- Xu, J.L.; Zhou, H.B.; Yan, X.J.; Zhou, C.X.; Zhu, P.; Ma, B. Effect of Unialgal diets on the composition of fatty acids and sterols in juvenile Ark shell Tegillarca granosa Linnaeus. J. Agr. Food Chem. 2012, 60, 3973–3980. [Google Scholar] [CrossRef] [PubMed]
- Ronquillo, J.D.; Fraser, J.; McConkey, A.J. Effect of mixed microalgal diets on growth and polyunsaturated fatty acid profile of European oyster (Ostrea edulis) juveniles. Aquaculture 2012, 360, 64–68. [Google Scholar] [CrossRef]
- Ran, Z.S.; Li, Z.Z.; Yan, X.J.; Liao, K.; Kong, F.; Zhang, L.; Cao, J.Y.; Zhou, C.X.; Zhu, P.; He, S.; et al. Chromosome- level genome assembly of the razor clam Sinonovacula constricta (Lamarck, 1818). Mol. Ecol. Resour. 2019, 19, 1647–1658. [Google Scholar] [CrossRef]
- FAO. Fishery and Aquaculture Statistics 2016; FAO Yearbook; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; p. 30. [Google Scholar]
- Ran, Z.S.; Li, S.; Zhang, R.T.; Xu, J.L.; Liao, K.; Yu, X.J.; Zhong, Y.Y.; Ye, M.W.; Yu, S.S.; Ran, Y.; et al. Proximate, amino acid and lipid compositions in Sinonovacula constricta (Lamarck) reared at different salinities. J. Sci. Food Agr. 2017, 97, 4476–4483. [Google Scholar] [CrossRef]
- Ran, Z.S.; Chen, H.; Ran, Y.; Yu, S.S.; Li, S.; Xu, J.L.; Liao, K.; Yu, X.J.; Zhong, Y.Y.; Yan, X.J. Fatty acid and sterol changes in razor clam Sinonovacula constricta (Lamarck 1818) reared at different salinities. Aquaculture 2017, 473, 493–500. [Google Scholar] [CrossRef]
- Voss, A.; Reinhart, M.; Sankarappa, S.; Sprecher, H. The metabolism of 7, 10, 13, 16, 19-docosapentaenoic acid to 4, 7, 10, 13, 16, 19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J. Biol. Chem. 1991, 266, 19995–20000. [Google Scholar] [CrossRef]
- Ran, Z.S.; Xu, J.L.; Liao, K.; Li, S.; Chen, S.B.; Yan, X.J. Biosynthesis of polyunsaturated fatty acids in the razor clam Sinonovacula constricta: Characterization of Δ5 and Δ6 fatty acid desaturases. J. Agr. Food Chem. 2018, 66, 4592–4601. [Google Scholar] [CrossRef] [PubMed]
- Ran, Z.S.; Xu, J.L.; Liao, K.; Monroig, O.; Navarro, J.C.; Oboh, A.; Jin, M.; Zhou, Q.C.; Zhou, C.X.; Tocher, D.R.; et al. Biosynthesis of long-chain polyunsaturated fatty acids in the razor clam Sinonovacula constricta: Characterization of four fatty acyl elongases and a novel desaturase capacity. BBA Mol. Cell Biol. Lipids 2019, 1864, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Ran, Z.S.; Kong, F.; Xu, J.L.; Liao, K.; Xu, X.R.; Shi, P.; Chen, K.; Zhou, C.X.; Yan, X.J. Fad and Elovl expressions, fatty acid compositions, and feed effects of three representative microalgae in Sinonovacula constricta (Lamarck 1818) at early developmental stages. Aquaculture 2020, 521, 735101. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real time quantitative PCR and the 2-ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Acarlı, S.; AynurLök. Comparison of Isochrysis galbana and Chlorella sp. microalgae on growth and survival rate of European flat oyster (Ostrea edulis, Linnaeus 1758) larvae. Indian J. Geo-Mar. Sci. 2011, 40, 55–58. [Google Scholar]
- Tan, K.; Zhang, H.K.; Li, S.K.; Ma, H.Y.; Zheng, H.P. Lipid nutritional quality of marine and freshwater bivalves and their aquaculture potential. Crit. Rev. Food Sci. 2022, 62, 6990–7014. [Google Scholar] [CrossRef]
- Wu, K.B.; Ran, Z.S.; Wu, S.R.; Xie, H.X.; Li, Y.R.; Liao, K.; Xu, J.L.; Yan, X.J. Biosynthesis of LC-PUFA in Ruditapes philippinarum: Cloning and tissue distribution of Fad and Elovl, and effects of microalgae diets varied in LC-PUFA composition on their expressions and fatty acids profile of this bivalve. Front. Mar. Sci. 2023, 10, 1141231. [Google Scholar] [CrossRef]
FA | Chlorella sp. | C. calcitrans | I. galbana |
---|---|---|---|
14:0 | - a | 26.97 ± 1.49 b | 24.43 ± 0.91 c |
15:0 | - a | 0.81 ± 0.20 b | 0.72 ± 0.02 b |
16:0 | 19.07 ± 1.62 a | 27.45 ± 2.33 b | 20.50 ± 0.64 a |
18:0 | 2.19 ± 0.20 a | 3.32 ± 0.23 b | 0.57 ± 0.05 c |
20:0 | 5.23 ± 0.19 a | 0.13 ± 0.03 b | - b |
16:1n-7 | 3.03 ± 0.33 a | 59.66 ± 12.1 b | 7.51 ± 0.42 a |
18:1n-9 | 2.61 ± 0.42 a | 3.47 ± 0.16 b | 19.51 ± 0.22 c |
18:1n-7 | 1.43 ± 0.26 a | 1.57 ± 0.09 a | 2.80 ± 0.19 b |
18:1n-6 | - a | 0.18 ± 0.02 b | 0.67 ± 0.14 c |
22:1n-9 | - a | - a | 0.37 ± 0.09 b |
16:2n-6 | 4.92 ± 0.09 a | 1.15 ± 0.09 b | 0.12 ± 0.12 c |
18:2n-6 | 13.28 ± 0.24 a | 2.66 ± 0.05 b | 4.52 ± 0.16 c |
18:3n-6 | - a | 1.13 ± 0.17 b | 0.29 ± 0.05 c |
20:4n-6 | - a | 2.49 ± 0.47 b | - a |
22:2n-6 | - a | - a | 0.02 ± 0.02 a |
22:5n-6 | - a | - a | 1.35 ± 0.10 b |
16:3n-3 | - a | 8.14 ± 1.75 b | - a |
18:3n-3 | 29.30 ± 0.13 a | 0.10 ± 0.02 b | 10.84 ± 0.28 c |
18:4n-3 | - a | 0.54 ± 0.06 a | 50.35 ± 6.01 b |
20:5n-3 | - a | 12.42 ± 2.84 b | 1.01 ± 0.07 c |
22:4n-3 | - a | - a | 0.13 ± 0.01 b |
22:6n-3 | - a | 0.57 ± 0.11 b | 24.32 ± 0.15 c |
16:2n-4 | - a | 2.11 ± 0.27 b | 0.90 ± 0.10 c |
16:3n-4 | 11.12 ± 1.50 a | - b | - b |
18:2n-7 | - a | 0.21 ± 0.08 b | - a |
20:3n-7 | - a | 0.20 ± 0.02 a | 10.45 ± 0.55 b |
SFA | 26.48 ± 2.00 a | 58.67 ± 3.82 b | 46.22 ± 1.62 c |
MUFA | 7.07 ±0.16 a | 64.88 ± 11.93 b | 30.86 ± 0.23 c |
PUFA | 58.62 ± 1.97 a | 31.71 ± 5.93 b | 104.30 ± 5.88 c |
TFA | 92.18 ± 4.13 a | 155.26 ± 21.68 b | 181.38 ± 7.73 b |
Gene (GenBank No.) | Primer | Sequence (5′ → 3′) |
---|---|---|
Δ5 Fad_a (MH220404) | F (forward) | ACATCCCAGGCCCAAGGC |
R (reverse) | CCCTTGACAAACCCGGTCAA | |
Δ5 Fad_b (MH220405) | F | TTATTCCACATCCCAGGTACAGACT |
R | CCCTTTGTGAAGCCCATGGT | |
Δ6 Fad (MH220406) | F | CTAACGAGGTGGACTTTGATGG |
R | AGAGTGTTCCAAGGACCTGACC | |
Elovl2/5 (MK134691) | F | GCTCAACATTTGGTGGTGGGT |
R | GGAATGACTGCCAGACCGTAG | |
Elovl4_a (MK134692) | F | TTGGGATCATTCACGCAGCC |
R | GATGGTGAATGCGTAAAACACAAGA | |
Elovl4_b (MK134693) | F | TGCCGGTATGGTCTACGGTGT |
R | GATTGTGACACCGTATACAAGCGAG | |
Elovl_c (MK134694) | F | TGCTATCTACTCGGACTGTGGC |
R | GTTTTCTTGACGTGTGCAGAGC | |
β-actin (HQ693079.1) | F | CCATCTACGAAGGTTACGCCC |
R | TCGTAGTGAAGGAGTAGCCTCTTTC |
FA | Initial | 8 d | 16 d | 24 d | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Chlorella sp. | C. calcitrans | I. galbana | Chlorella sp. | C. calcitrans | I. galbana | Chlorella sp. | C. calcitrans | I. galbana | ||
14:0 | 0.47 ± 0.02 | 0.22 ± 0.08 a | 1.55 ± 0.12 b | 0.68 ± 0.02 c | 0.26 ± 0.07 a | 1.78 ± 0.05 b | 0.97 ± 0.07 c | 0.45 ± 0.26 a | 2.01 ± 0.20 b | 1.59 ± 0.18 b |
16:0 | 4.28 ± 0.51 | 6.25 ± 1.00 ab | 7.60 ± 0.83 a | 5.60 ± 0.60 b | 7.40 ± 0.87 a | 7.68 ± 0.74 a | 5.15 ± 0.59 b | 5.57 ± 0.20 a | 7.90 ± 0.82 b | 6.91 ± 0.43 ab |
18:0 | 2.78 ± 0.26 | 3.39 ± 0.22 ab | 4.19 ± 1.10 a | 2.53 ± 0.05 b | 4.29 ± 0.42 a | 3.81 ± 0.30 a | 2.48 ± 0.44 b | 3.86 ± 0.02 a | 3.63 ± 0.24 a | 2.47 ± 0.11 b |
16:1n-7 | 0.77 ± 0.25 | 0.30 ± 0.11 a | 2.29 ± 0.36 b | 0.68 ± 0.02 a | 0.69 ± 0.20 a | 4.16 ± 0.52 b | 0.81 ± 0.08 a | 0.55 ± 0.13 a | 3.82 ± 0.43 b | 1.09 ± 0.07 a |
18:1n-9 | 0.58 ± 0.09 | 1.18 ± 0.14 a | 0.85 ± 0.14 b | 1.39 ± 0.01 a | 1.13 ± 0.05 a | 0.67 ± 0.01 b | 2.00 ± 0.19 c | 1.54 ± 0.23 a | 0.75 ± 0.07 b | 2.13 ± 0.28 a |
18:1n-7 | 0.58 ± 0.04 | 0.52 ± 0.03 a | 1.93 ± 0.30 b | 0.82 ± 0.00 a | 0.37 ± 0.04 a | 3.59 ± 0.04 b | 1.09 ± 0.21 c | 0.70 ± 0.09 a | 2.40 ± 0.29 b | 0.99 ± 0.20a |
20:1 n-9 | 1.25 ± 0.22 | 1.08 ± 0.17 a | 1.62 ± 0.20 b | 0.67 ± 0.02 c | 1.14 ± 0.21 ab | 1.44 ± 0.31 a | 0.71 ± 0.04 b | 0.90 ± 0.21 ab | 1.15 ± 0.03 a | 0.54 ± 0.10 b |
20:1n-7 | 0.58 ± 0.12 | 0.35 ± 0.02 a | 1.33 ± 0.15 b | 0.38 ± 0.08 a | 0.31 ± 0.06 a | 1.59 ± 0.18 b | 0.23 ± 0.02 a | 0.14 ± 0.05 a | 1.20 ± 0.20 b | 0.21 ± 0.04 a |
18:2n-6 | 0.14 ± 0.06 | 1.57 ± 0.09 a | 0.19 ± 0.02 b | 0.44 ± 0.01 c | 0.38 ± 0.13 a | 0.61 ± 0.13 a | 0.98 ± 0.18 b | 2.39 ± 0.17 a | 0.52 ± 0.01 b | 1.29 ± 0.31 c |
20:2n-6 | 0.44 ± 0.09 | 1.64 ± 0.09 a | 0.59 ± 0.15 b | 1.12 ± 0.06 c | 1.44 ± 0.13 a | 0.70 ± 0.09 b | 1.72 ± 0.16 a | 1.40 ± 0.05 a | 0.70 ± 0.04 b | 1.86 ± 0.24 c |
20:4n-6 | 1.32 ± 0.05 | 1.81 ± 0.11 a | 1.69 ± 0.02 a | 0.86 ± 0.11 b | 1.36 ± 0.06 a | 1.58 ± 0.09 b | 0.87 ± 0.01 c | 0.84 ± 0.12 a | 1.71 ± 0.07 b | 0.77 ± 0.20 a |
22:4n-6 | 0.32 ± 0.01 | 0.42 ± 0.06 a | 0.36 ± 0.03 a | 0.13 ± 0.01 b | 0.23 ± 0.05 a | 0.46 ± 0.18 a | 0.22 ± 0.02 a | 0.19 ± 0.02 a | 0.55 ± 0.02 b | 0.23 ± 0.02 a |
22:5n-6 | 0.48 ± 0.03 | 0.76 ± 0.05 a | 0.22 ± 0.03 b | 0.90 ± 0.05 c | 0.60 ± 0.07 a | 0.18 ± 0.02 b | 1.58 ± 0.20 c | 0.52 ± 0.05 a | 0.18 ± 0.02 a | 1.32 ± 0.25 b |
18:2n-3 | 0.07 ± 0.02 | 0.12 ± 0.01 a | 0.26 ± 0.06 b | 0.14 ± 0.06 a | 0.22 ± 0.01 a | 0.62 ± 0.16 b | 0.22 ± 0.06 a | 0.25 ± 0.04 a | 0.46 ± 0.03 b | 0.39 ± 0.03 b |
18:3n-3 | 0.40 ± 0.07 | 1.05 ± 0.02 a | 0.49 ± 0.13 b | 1.70 ± 0.02 c | 0.78 ± 0.04 a | 0.79 ± 0.04 a | 2.29 ± 0.22 b | 1.45 ± 0.12 a | 0.52 ± 0.03 b | 1.86 ± 0.17 c |
18:4n-3 | 0.08 ± 0.01 | 0.16 ± 0.00 a | 0.14 ± 0.01 a | 0.22 ± 0.01 b | 0.16 ± 0.05 a | 0.15 ± 0.02 a | 0.54 ± 0.19 b | 0.12 ± 0.05 a | 0.24 ± 0.06 a | 0.16 ± 0.02 a |
20:4n-3 | 0.37 ± 0.00 | 0.36 ± 0.02 a | 0.75 ± 0.10 b | 0.12 ± 0.00 c | 0.19 ± 0.04 a | 1.01 ± 0.23 b | 0.11 ± 0.01 a | 0.23 ± 0.05 a | 0.96 ± 0.12 b | 0.15 ± 0.06 a |
20:5n-3 | 1.30 ± 0.03 | 1.40 ± 0.22 a | 4.15 ± 0.32 b | 0.76 ± 0.01 c | 1.08 ± 0.11 a | 6.04 ± 0.36 b | 0.84 ± 0.13 a | 1.10 ± 0.08 a | 6.22 ± 0.18 b | 0.74 ± 0.22 a |
22:5n-3 | 0.50 ± 0.09 | 0.68 ± 0.05 a | 0.81 ± 0.06 b | 0.25 ± 0.04 c | 0.69 ± 0.12 a | 0.80 ± 0.09 a | 0.21 ± 0.00 b | 0.57 ± 0.15 a | 0.69 ± 0.13 a | 0.35 ± 0.06 a |
22:6n-3 | 1.38 ± 0.10 | 4.45 ± 0.73 a | 2.70 ± 0.12 b | 3.61 ± 0.11 ab | 4.78 ± 0.01 a | 4.50 ± 0.58 a | 5.64 ± 1.03 a | 1.86 ± 0.21 a | 4.88 ± 1.00 b | 3.43 ± 0.70 ab |
22:2(5,13) | 0.25 ± 0.03 | 0.39 ± 0.14 a | 0.29 ± 0.13 a | 0.83 ± 0.04 b | 0.31 ± 0.09 a | 0.56 ± 0.08 a | 1.37 ± 0.25 b | 0.41 ± 0.18 a | 0.64 ± 0.06 ab | 1.00 ± 0.19 b |
SFA | 7.53 ± 0.75 | 9.86 ± 1.29 a | 13.34 ± 1.82 b | 8.82 ± 0.67 a | 11.95 ± 1.37 a | 13.27 ± 0.99 a | 8.61 ± 0.21 b | 9.88 ± 0.48 a | 13.54 ± 1.26 b | 10.97 ± 0.47 a |
MUFA | 3.76 ± 0.28 | 3.43 ± 0.47 a | 8.01 ± 0.42 b | 3.93 ± 0.11 a | 3.62 ± 0.04 a | 11.46 ± 0.44 b | 4.85 ± 0.38 c | 3.83 ± 0.46 a | 9.32 ± 0.99 b | 4.96 ± 0.46 a |
PUFA | 7.04 ± 0.02 | 14.80 ± 0.66 a | 12.63 ± 0.42 b | 11.09 ± 0.20 c | 12.23 ± 0.19 a | 17.99 ± 0.61 b | 16.59 ± 1.91 b | 11.33 ± 0.26 a | 18.28 ± 1.02 b | 13.55 ± 2.00 a |
TFA | 18.34 ± 1.02 | 28.09 ± 2.42 a | 33.99 ± 2.66 b | 23.84 ± 0.98 a | 27.81 ± 1.60 a | 42.72 ± 2.05 b | 30.05 ± 2.50 a | 25.04 ± 0.24 a | 41.13 ± 3.27 b | 29.48 ± 2.75 a |
FA | Initial | Final | ||
---|---|---|---|---|
Chlorella sp. | C. calcitrans | I. galbana | ||
14:0 | 1.69 ± 0.20 | 3.00 ± 0.55 a | 35.52 ± 1.25 b | 30.58 ± 3.87 b |
16:0 | 6.31 ± 0.25 | 19.89 ± 0.75 a | 37.32 ± 1.44 b | 42.21 ± 3.27 b |
18:0 | 4.45 ± 0.17 | 9.75 ± 0.45 a | 9.74 ± 1.06 a | 8.41 ± 0.86 a |
16:1n-7 | 1.45 ± 0.09 | 1.52 ± 0.60 a | 52.25 ± 4.25 b | 20.16 ± 1.07 c |
18:1n-9 | 0.46 ± 0.11 | 4.30 ± 0.43 a | 2.85 ± 0.37 b | 31.19 ± 0.67 c |
18:1n-7 | 1.13 ± 0.10 | 1.81 ± 0.07 a | 27.19 ± 0.14 b | 12.76 ± 1.29 c |
20:1n-9 | 1.22 ± 0.01 | 2.59 ± 0.22 a | 3.79 ± 0.43 b | 1.93 ± 0.25 a |
20:1n-7 | 0.80 ± 0.00 | 1.06 ± 0.19 a | 7.45 ± 0.20 b | 1.05 ±0.25 a |
18:2n-6 | - | 5.62 ± 0.19 a | 4.20 ± 0.28 b | 26.03 ± 0.68 c |
18:3n-6 | - | - a | 2.86 ± 0.01 b | 3.60 ± 0.21 c |
20:2n-6 | 0.82 ± 0.02 | 4.52 ± 1.08 a | 3.50 ± 0.25 a | 16.17 ± 1.73 b |
20:4n-6 | 1.42 ± 0.30 | 3.23 ± 0.39 a | 6.02 ± 0.56 b | 2.33 ± 0.01 a |
22:4n-6 | 0.42 ± 0.12 | 0.34 ± 0.16 a | - a | 1.08 ± 0.24 b |
22:5n-6 | 0.54 ± 0.04 | 1.82 ± 0.06 a | - b | 11.33 ± 0.74 c |
16:3n-3 | - | - a | 8.01 ± 0.10 b | - a |
18:2n-3 | - | 0.58 ± 0.20 a | 3.73 ± 0.24 b | - c |
18:3n-3 | 0.67 ± 0.10 | 6.48 ± 1.28 a | 4.42 ± 0.23 b | 47.09 ± 0.03 c |
18:4n-3 | - | 0.22 ± 0.13 a | - a | 42.43 ± 0.48 b |
20:4n-3 | - | - a | - a | 6.69 ± 0.43 b |
20:5n-3 | 2.68 ± 0.10 | 4.20 ± 0.23 a | 45.50 ± 1.62 b | 7.78 ± 0.00 c |
22:5n-3 | 0.70 ± 0.13 | 1.74 ± 0.14 a | 2.80 ± 0.25 b | 1.26 ± 0.07 c |
22:6n-3 | 1.80 ± 0.34 | 15.86 ± 0.51 a | 14.58 ± 0.20 a | 73.49 ± 2.40 b |
20:3n-7 | - | - a | - a | 3.63 ± 0.51 b |
22:2(5,13) | 0.29 ± 0.02 | 0.86 ± 0.12 a | 2.32 ± 0.21 b | 2.43 ± 0.56 b |
SFA | 12.45 ± 0.28 | 32.65 ± 0.65 a | 82.58 ± 3.75 b | 81.19 ± 8.00 b |
MUFA | 5.06 ± 0.11 | 11.28 ± 1.52 a | 93.53 ± 5.39 b | 67.09 ± 3.54 c |
PUFA | 9.35 ± 0.39 | 45.47 ± 3.53 a | 97.95 ± 3.93 b | 245.33 ± 1.07 c |
TFA | 26.87 ± 0.22 | 89.39 ± 4.39 a | 274.07 ± 13.07 b | 393.61 ± 12.61 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, F.; Ran, Z.; Xie, H.; Tian, X.; Liao, K.; Xu, J. Effects of Three Microalgal Diets Varying in LC-PUFA Composition on Growth, Fad, and Elovl Expressions, and Fatty Acid Profiles in Juvenile Razor Clam Sinonovacula constricta. Fishes 2023, 8, 484. https://doi.org/10.3390/fishes8100484
Kong F, Ran Z, Xie H, Tian X, Liao K, Xu J. Effects of Three Microalgal Diets Varying in LC-PUFA Composition on Growth, Fad, and Elovl Expressions, and Fatty Acid Profiles in Juvenile Razor Clam Sinonovacula constricta. Fishes. 2023; 8(10):484. https://doi.org/10.3390/fishes8100484
Chicago/Turabian StyleKong, Fei, Zhaoshou Ran, Haixuan Xie, Xuxu Tian, Kai Liao, and Jilin Xu. 2023. "Effects of Three Microalgal Diets Varying in LC-PUFA Composition on Growth, Fad, and Elovl Expressions, and Fatty Acid Profiles in Juvenile Razor Clam Sinonovacula constricta" Fishes 8, no. 10: 484. https://doi.org/10.3390/fishes8100484
APA StyleKong, F., Ran, Z., Xie, H., Tian, X., Liao, K., & Xu, J. (2023). Effects of Three Microalgal Diets Varying in LC-PUFA Composition on Growth, Fad, and Elovl Expressions, and Fatty Acid Profiles in Juvenile Razor Clam Sinonovacula constricta. Fishes, 8(10), 484. https://doi.org/10.3390/fishes8100484