Assessment of Age and Growth in Fishes
Funding
Conflicts of Interest
References
- Panfili, J.; Pontual, H.d.; Troadec, H.; Wright, P.J. Manual of Fish Sclerochronology; Ifremer-IRD Coedition: Brest, France, 2002. [Google Scholar]
- Bagenal, T.B. The Ageing of Fish: Proceedings of an International Symposium, University of Reading, UK, 19–20 July 1973; Unwin Brothers Ltd.: London, UK, 1974. [Google Scholar]
- Winkler, A.C.; Duncan, M.I.; Farthing, M.W.; Potts, W.M. Sectioned or whole otoliths? A global review of hard structure preparation techniques used in ageing sparid fishes. Rev. Fish Biol. Fish. 2019, 29, 605–611. [Google Scholar] [CrossRef]
- Folkvord, A.; Blom, G.; Johannessen, A.; Moksness, E. Growth-dependent age estimation in herring (Clupea harengus L.) larvae. Fish. Res. 2000, 46, 91–103. [Google Scholar] [CrossRef]
- Fisher, M.; Hunter, E. Digital imaging techniques in otolith data capture, analysis and interpretation. Mar. Ecol. Prog. Ser. 2018, 598, 213–231. [Google Scholar] [CrossRef]
- Mapp, J.J.; Fisher, M.H.; Atwood, R.C.; Bell, G.D.; Greco, M.K.; Songer, S.; Hunter, E. Three-dimensional rendering of otolith growth using phase contrast synchrotron tomography. J. Fish Biol. 2016, 88, 2075–2080. [Google Scholar] [CrossRef]
- Vasconcelos-Filho, J.E.; Thomsen, F.S.L.; Stosic, B.; Antonino, A.C.D.; Duarte, D.A.; Heck, R.J.; Lessa, R.P.T.; Santana, F.M.; Ferreira, B.P.; Duarte-Neto, P.J. Peeling the Otolith of Fish: Optimal Parameterization for Micro-CT Scanning. Front. Mar. Sci. 2019, 6, 728. [Google Scholar] [CrossRef]
- Moen, E.; Handegard, N.O.; Allken, V.; Albert, O.T.; Harbitz, A.; Malde, K. Automatic interpretation of otoliths using deep learning. PLoS ONE 2018, 13, e0204713. [Google Scholar] [CrossRef]
- Ordoñez, A.; Eikvil, L.; Salberg, A.-B.; Harbitz, A.; Elvarsson, B.Þ. Automatic Fish Age Determination across Different Otolith Image Labs Using Domain Adaptation. Fishes 2022, 7, 71. [Google Scholar] [CrossRef]
- Benson, I.M.; Helser, T.E.; Marchetti, G.; Barnett, B.K. The future of fish age estimation: Deep machine learning coupled with Fourier transform near-infrared spectroscopy of otoliths. Can. J. Fish. Aquat. Sci. 2023, 80, 1482–1494. [Google Scholar] [CrossRef]
- Politikos, D.V.; Petasis, G.; Chatzispyrou, A.; Mytilineou, C.; Anastasopoulou, A. Automating fish age estimation combining otolith images and deep learning: The role of multitask learning. Fish. Res. 2021, 242, 106033. [Google Scholar] [CrossRef]
- Politikos, D.V.; Sykiniotis, N.; Petasis, G.; Dedousis, P.; Ordoñez, A.; Vabø, R.; Anastasopoulou, A.; Moen, E.; Mytilineou, C.; Salberg, A.-B.; et al. DeepOtolith v1.0: An Open-Source AI Platform for Automating Fish Age Reading from Otolith or Scale Images. Fishes 2022, 7, 121. [Google Scholar] [CrossRef]
- Piferrer, F.; Anastasiadi, D. Age estimation in fishes using epigenetic clocks: Applications to fisheries management and conservation biology. Front. Mar. Sci. 2023, 10, 1062151. [Google Scholar] [CrossRef]
- Anastasiadi, D.; Piferrer, F. Bioinformatic analysis for age prediction using epigenetic clocks: Application to fisheries management and conservation biology. Front. Mar. Sci. 2023, 10, 1096909. [Google Scholar] [CrossRef]
- Anastasiadi, D.; Piferrer, F. A clockwork fish: Age prediction using DNA methylation-based biomarkers in the European seabass. Mol. Ecol. Resour. 2020, 20, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Mayne, B.; Espinoza, T.; Crook, D.A.; Anderson, C.; Korbie, D.; Marshall, J.C.; Kennard, M.J.; Harding, D.J.; Butler, G.L.; Roberts, B.; et al. Accurate, non-destructive, and high-throughput age estimation for Golden perch (Macquaria ambigua spp.) using DNA methylation. Sci. Rep. 2023, 13, 9547. [Google Scholar] [CrossRef] [PubMed]
- Mayne, B.; Korbie, D.; Kenchington, L.; Ezzy, B.; Berry, O.; Jarman, S. A DNA methylation age predictor for zebrafish. Aging 2020, 12, 24817–24835. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Guan, W.; Truesdell, S.; Chen, Y.; Tian, S. An individual-based probabilistic model for simulating fisheries population dynamics. Aquac. Fish. 2016, 1, 34–40. [Google Scholar] [CrossRef]
- Ney, J.J. Bioenergetics Modeling Today: Growing Pains on the Cutting Edge. Trans. Am. Fish. Soc. 1993, 122, 736–748. [Google Scholar] [CrossRef]
- Deslauriers, D.; Chipps, S.R.; Breck, J.E.; Rice, J.A.; Madenjian, C.P. Fish Bioenergetics 4.0: An R-Based Modeling Application. Fisheries 2017, 42, 586–596. [Google Scholar] [CrossRef]
- Doll, J.C.; Jacquemin, S.J. Introduction to Bayesian Modeling and Inference for Fisheries Scientists. Fisheries 2018, 43, 152–161. [Google Scholar] [CrossRef]
- Doll, J.C.; Jacquemin, S.J. Bayesian Model Selection in Fisheries Management and Ecology. J. Fish Wildl. Manag. 2019, 10, 691–707. [Google Scholar] [CrossRef]
- Smart, J.J.; Grammer, G.L. Modernising fish and shark growth curves with Bayesian length-at-age models. PLoS ONE 2021, 16, e0246734. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, A.R. Assessment of Age and Growth in Fishes. Fishes 2023, 8, 479. https://doi.org/10.3390/fishes8100479
Vieira AR. Assessment of Age and Growth in Fishes. Fishes. 2023; 8(10):479. https://doi.org/10.3390/fishes8100479
Chicago/Turabian StyleVieira, Ana Rita. 2023. "Assessment of Age and Growth in Fishes" Fishes 8, no. 10: 479. https://doi.org/10.3390/fishes8100479
APA StyleVieira, A. R. (2023). Assessment of Age and Growth in Fishes. Fishes, 8(10), 479. https://doi.org/10.3390/fishes8100479