Intestinal Bile Acids Induce Behavioral and Olfactory Electrophysiological Responses in Large Yellow Croaker (Larimichthys crocea)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Husbandry
2.2. Behavioral Experiments
2.2.1. Y-Maze Choice Apparatus
2.2.2. Solution Preparations
2.2.3. Behavior Assay
2.3. Ba-Targeted Metabolomics
2.3.1. Sample Collection and Pretreatment
2.3.2. Solution Preparation and BA Quantification
2.4. Electrophysiological Response of the Olfactory Epithelium
2.4.1. Experimental Fish Preparation
2.4.2. EOG Measurements
2.4.3. Cross-Adaptation
2.4.4. Pharmacological Treatments
2.5. Data Analysis and Statistics
3. Results
3.1. Behavioral Response to Conspecific Body Fluids
3.2. Ba-Targeted Metabolomics
3.3. Behavioral Response to BAs
3.4. Electrophysiological Response to BAs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sorensen, P.W.; Wisenden, B.D. Fish Pheromones and Related Cues; John Wiley & Sons: New York, NY, USA, 2014. [Google Scholar]
- Thomas, B.; Martin, T. Chemical communication in crustaceans. In A Review of Research in Fish Pheromones; Chung-Davidson, Y.-W., Huertas, M., Li, W., Eds.; Springer Science & Business Media: New York, NY, USA, 2010; pp. 467–482. [Google Scholar]
- Burnard, D.; Gozlan, R.E.; Griffiths, S.W. The role of pheromones in freshwater fishes. J. Fish Biol. 2008, 73, 1–16. [Google Scholar] [CrossRef]
- Tirindelli, R.; Dibattista, M.; Pifferi, S.; Menini, A. From pheromones to behavior. Physiol. Rev. 2009, 89, 921–956. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Buchinger, T.J.; Li, W. Discovery and characterization of natural products that act as pheromones in fish. Nat. Prod. Rep. 2018, 35, 501–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huertas, M.; Hubbard, P.C.; Canário, A.V.M.; Cerdà, J. Olfactory sensitivity to conspecific bile fluid and skin mucus in the European eel Anguilla anguilla (L.). J. Fish Biol. 2007, 70, 1907–1920. [Google Scholar] [CrossRef]
- Fatsini, E.; Carazo, I.; Chauvigne, F.; Manchado, M.; Cerda, J.; Hubbard, P.C.; Duncan, N.J. Olfactory sensitivity of the marine flatfish Solea senegalensis to conspecific body fluids. J. Exp. Biol. 2017, 220, 2057–2065. [Google Scholar] [CrossRef] [Green Version]
- Yambe, H.; Kitamura, S.; Kamio, M.; Yamada, M.; Matsunaga, S.; Fusetani, N.; Yamazaki, F. L-Kynurenine, an amino acid identified as a sex pheromone in the urine of ovulated female masu salmon. Proc. Natl. Acad. Sci. USA 2006, 103, 15370–15374. [Google Scholar] [CrossRef] [Green Version]
- Scott, A.M.; Zhang, Z.; Jia, L.; Li, K.; Zhang, Q.; Dexheimer, T.; Ellsworth, E.; Ren, J.; Chung-Davidson, Y.W.; Zu, Y.; et al. Spermine in semen of male sea lamprey acts as a sex pheromone. PLoS Biol. 2019, 17, e3000332. [Google Scholar] [CrossRef] [Green Version]
- Lacalle-Bergeron, L.; Goterris-Cerisuelo, R.; Portoles, T.; Beltran, J.; Sancho, J.V.; Navarro-Moreno, C.; Martinez-Garcia, F. Novel sampling strategy for alive animal volatolome extraction combined with GC-MS based untargeted metabolomics: Identifying mouse pup pheromones. Talanta 2021, 235, 122786. [Google Scholar] [CrossRef]
- Izrayelit, Y.; Srinivasan, J.; Campbell, S.L.; Jo, Y.; von Reuss, S.H.; Genoff, M.C.; Sternberg, P.W.; Schroeder, F.C. Targeted metabolomics reveals a male pheromone and sex-specific ascaroside biosynthesis in Caenorhabditis elegans. ACS Chem. Biol. 2012, 7, 1321–1325. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Scott, A.P.; Siefkes, M.J.; Yan, H.; Liu, Q.; Yun, S.-S.; Gage, D.A. Bile acid secreted by male sea lamprey that acts as a sex pheromone. Science 2002, 296, 138–141. [Google Scholar] [CrossRef]
- Sorensen, P.W.; Fine, J.M.; Dvornikovs, V.; Jeffrey, C.S.; Shao, F.; Wang, J.; Vrieze, L.A.; Anderson, K.R.; Hoye, T.R. Mixture of new sulfated steroids functions as a migratory pheromone in the sea lamprey. Nat. Chem. Biol. 2005, 1, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Kiriyama, Y.; Nochi, H. The biosynthesis, signaling, and neurological functions of bile acids. Biomolecules 2019, 9, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Sagada, G.; Wang, C.; Liu, R.; Li, Q.; Zhang, C.; Yan, Y. Exogenous bile acids regulate energy metabolism and improve the health condition of farmed fish. Aquaculture 2023, 562, 738852. [Google Scholar] [CrossRef]
- Hofmann, A.F.; Hagey, L.R.; Krasowski, M.D. Bile salts of vertebrates: Structural variation and possible evolutionary significance. J. Lipid Res. 2010, 51, 226–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polkinghorne, C.N.; Olson, J.M.; Gallaher, D.G.; Sorensen, P.W. Larval sea lamprey release two unique bile acids to the water at a rate sufficient to produce detectable riverine pheromone plumes. Fish Physiol. Biochem. 2001, 24, 15–30. [Google Scholar] [CrossRef]
- Huertas, M.; Hagey, L.; Hofmann, A.F.; Cerda, J.; Canario, A.V.; Hubbard, P.C. Olfactory sensitivity to bile fluid and bile salts in the European eel (Anguilla anguilla), goldfish (Carassius auratus) and Mozambique tilapia (Oreochromis mossambicus) suggests a ‘broad range’ sensitivity not confined to those produced by conspecifics alone. J. Exp. Biol. 2010, 213, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Giaquinto, P.C.; Barreto, R.E.; Volpato, G.L.; Fernandes-de-Castilho, M.; Gonçalves-de-Freitas, E. Bile acids as potential pheromones in pintado catfish Pseudoplatystoma corruscans (Spix & Agassiz, 1829): Eletrophysiological and behavioral studies. Neotrop. Ichthyol. 2015, 13, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Giaquinto, P.C.; Hara, T.J. Discrimination of bile acids by the rainbow trout olfactory system: Evidence as potential pheromone. Biol. Res. 2008, 41, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Brown, S.B.; Hara, T.J. Biochemical and physiological evidence that bile acids produced and released by lake char (Salvelinus namaycush) function as chemical signals. J. Comp. Physiol. B 2001, 171, 161–171. [Google Scholar] [CrossRef]
- Cong, X.; Zheng, Q.; Ren, W.; Cheron, J.B.; Fiorucci, S.; Wen, T.; Zhang, C.; Yu, H.; Golebiowski, J.; Yu, Y. Zebrafish olfactory receptors ORAs differentially detect bile acids and bile salts. J. Biol. Chem. 2019, 294, 6762–6771. [Google Scholar] [CrossRef]
- Buchinger, T.J.; Li, W.; Johnson, N.S. Bile salts as semiochemicals in fish. Chem. Senses 2014, 39, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Firestein, S. How the olfactory system makes sense of scents. Nature 2001, 413, 211–218. [Google Scholar] [CrossRef]
- Manzini, I.; Korsching, S. The peripheral olfactory system of vertebrates: Molecular, structural and functional basics of the sense of smell. e-Neuroforum 2011, 17, 68–77. [Google Scholar] [CrossRef]
- Wong, W.M.; Cao, J.; Zhang, X.; Doyle, W.I.; Mercado, L.L.; Gautron, L.; Meeks, J.P. Physiology-forward identification of bile acid-sensitive vomeronasal receptors. Sci. Adv. 2020, 6, eaaz6868. [Google Scholar] [CrossRef]
- Hansen, A.; Zielinski, B.S. Diversity in the olfactory epithelium of bony fishes: Development, lamellar arrangement, sensory neuron cell types and transduction components. J. Neurocytol. 2005, 34, 183–208. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.; Rolen, S.H.; Anderson, K.; Morita, Y.; Caprio, J.; Finger, T.E. Correlation between olfactory receptor cell type and function in the channel catfish. J. Neurosci. 2003, 23, 9328–9339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velez, Z.; Hubbard, P.C.; Barata, E.N.; Canario, A.V. Olfactory transduction pathways in the Senegalese sole Solea senegalensis. J. Fish Biol. 2013, 83, 501–514. [Google Scholar] [CrossRef]
- Scott, J.W.; Scott-Johnson, P.E. The electroolfactogram: A review of its history and uses. Microsc. Res. Tech. 2002, 58, 152–160. [Google Scholar] [CrossRef]
- International Union for Conservation of Nature. Larimichthys crocea. The IUCN Red List of Threatened Species 2020; International Union for Conservation of Nature: Gland, Switzerland, 2020. [Google Scholar]
- Hubbard, P.C.; Barata, E.N.; Canario, A.V. Olfactory sensitivity of the gilthead seabream (Sparus auratus L.) to conspecific body fluids. J. Chem. Ecol. 2003, 29, 2481–2498. [Google Scholar] [CrossRef]
- Matsumura, K.; Matsunaga, S.; Fusetani, N. Phosphatidylcholine profile-mediated group recognition in catfish. J. Exp. Biol. 2007, 210, 1992–1999. [Google Scholar] [CrossRef]
- Velez, Z.; Hubbard, P.C.; Barata, E.N.; Canario, A.V. Differential detection of conspecific-derived odorants by the two olfactory epithelia of the Senegalese sole (Solea senegalensis). Gen. Comp. Endocrinol. 2007, 153, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Apps, P.J.; Weldon, P.J.; Kramer, M. Chemical signals in terrestrial vertebrates: Search for design features. Nat. Prod. Rep. 2015, 32, 1131–1153. [Google Scholar] [CrossRef] [PubMed]
- Romano, N.; Kumar, V.; Yang, G.; Kajbaf, K.; Rubio, M.B.; Overturf, K.; Brezas, A.; Hardy, R. Bile acid metabolism in fish: Disturbances caused by fishmeal alternatives and some mitigating effects from dietary bile inclusions. Rev. Aquac. 2020, 12, 1792–1817. [Google Scholar] [CrossRef]
- Li, K.; Buchinger, T.J.; Bussy, U.; Fissette, S.D.; Johnson, N.S.; Li, W. Quantification of 15 bile acids in lake charr feces by ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 1001, 27–34. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Zhou, H.; Li, M.; Wang, M.; Wu, S. An analysis of bile acid composition in different tissues of grass carp (Ctenopharyngodon idellus). Acta Hydrobiol. Sin. 2017, 41, 479–482. [Google Scholar] [CrossRef]
- Goto, T.; Ui, T.; Une, M.; Kuramoto, T.; Kihira, K.; Hoshita, T. Bile salt composition and distribution of the D-cysteinolic acid conjugated bile salts in fish. Fish. Sci. 1996, 62, 606–609. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Zhang, Q.; Kim, S.K.; Liao, Z.; Wei, Y.; Sun, B.; Jia, L.; Chi, S.; Liang, M. Dietary taurine stimulates the hepatic biosynthesis of both bile acids and cholesterol in the marine teleost, tiger puffer (Takifugu rubripes). Br. J. Nutr. 2020, 123, 1345–1356. [Google Scholar] [CrossRef] [Green Version]
- Hagey, L.R.; Moller, P.R.; Hofmann, A.F.; Krasowski, M.D. Diversity of bile salts in fish and amphibians: Evolution of a complex biochemical pathway. Physiol. Biochem. Zool. 2010, 83, 308–321. [Google Scholar] [CrossRef] [Green Version]
- Ferrell, J.M.; Chiang, J.Y.L. Bile acid receptors and signaling crosstalk in the liver, gut and brain. Liver Res. 2021, 5, 105–118. [Google Scholar] [CrossRef]
- Robinson, T.C.; Sorensen, P.W.; Bayer, J.M.; Seelye, J.G. Olfactory sensitivity of pacific lampreys to lamprey bile acids. Trans. Am. Fish. Soc. 2009, 138, 144–152. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, X.; Xu, S.; Zhu, P.; He, X.; Liu, J. Family structure and phylogenetic analysis of odorant receptor genes in the large yellow croaker (Larimichthys crocea). BMC Evol. Biol. 2011, 11, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Hara, T.J. Lake char (Salvelinus namaycush) olfactory neurons are highly sensitive and specific to bile acids. J. Comp. Physiol. A 2009, 195, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Velez, Z.; Hubbard, P.C.; Guerreiro, P.M. A Comparison of Olfactory Sensitivity in Seawater- and Freshwater-Adapted Bass, Dicentrarchus labrax. Biol. Life Sci. Forum 2022, 13, 125. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Y.; Le, Q.; Yu, N.; Cao, X.; Kuang, S.; Zhang, M.; Gu, W.; Sun, Y.; Yang, Y.; et al. Transcriptome sequencing of olfactory-related genes in olfactory transduction of large yellow croaker (Larimichthy crocea) in response to bile salts. PeerJ 2019, 7, e6627. [Google Scholar] [CrossRef] [Green Version]
- Ding, T.; Xu, N.; Liu, Y.; Du, J.; Xiang, X.; Xu, D.; Liu, Q.; Yin, Z.; Li, J.; Mai, K.; et al. Effect of dietary bile acid (BA) on the growth performance, body composition, antioxidant responses and expression of lipid metabolism-related genes of juvenile large yellow croaker (Larimichthys crocea) fed high-lipid diets. Aquaculture 2020, 518, 734768. [Google Scholar] [CrossRef]
- Du, J.; Xu, H.; Li, S.; Cai, Z.; Mai, K.; Ai, Q. Effects of dietary chenodeoxycholic acid on growth performance, body composition and related gene expression in large yellow croaker (Larimichthys crocea) fed diets with high replacement of fish oil with soybean oil. Aquaculture 2017, 479, 584–590. [Google Scholar] [CrossRef]
No. | Bile Acid | Abbreviation | Source Category | Structural Category | Fed-IC | Fasted-IC | Fed-BF | Fasted-BF |
---|---|---|---|---|---|---|---|---|
1 | Taurocholic acid | TCA | Primary BA | Taurine-conjugated BA | 439.0 | 81.8 | 349.6 | 327.4 |
2 | Taurochenodeoxycholic acid sodium salt | TCDCA | Primary BA | Taurine-conjugated BA | 190.9 | 79.2 | N.D. | N.D. |
3 | Cholic acid | CA | Secondary BA | Free BA | 144.1 | 14.5 | 41.8 | 30.4 |
4 | Chenodeoxycholic acid | CDCA | Primary BA | Free BA | 60.5 | 8.5 | 1.9 | 1.4 |
5 | Taurodeoxycholic acid sodium salt | TDCA | Secondary BA | Taurine-conjugated BA | 8.0 | 1.5 | N.D. | N.D. |
6 | Allolithocholic acid | alloLCA | Secondary BA | Free BA | 4.3 | 0.3 | 2.3 | 2.4 |
7 | lithocholic acid 3-sulfate sodium salt | LCA-S | Secondary BA | Free BA | 2.1 | Trace | N.D. | N.D. |
8 | Taurohyocholic acid sodium salt | THCA | Primary BA | Taurine-conjugated BA | 1.8 | 0.3 | 80.5 | 66.3 |
9 | Tauro-alpha-Muricholic acid sodium salt | T-α-MCA | Primary BA | Taurine-conjugated BA | 1.4 | 0.3 | 20.9 | 12.4 |
10 | Chenodeoxycholic acid-3-β-D-glucuronide | CDCA-3Gln | Primary BA | Free BA | 0.8 | 0.3 | 14.7 | 20.3 |
11 | 7-Ketolithocholic acid | 7-ketoLCA | Secondary BA | Free BA | 0.7 | 0.1 | 0.1 | N.D. |
12 | Glycochenodeoxycholic acid sodium salt | GCDCA | Primary BA | Glycine-conjugated BA | 0.4 | 0.1 | 6.0 | 5.7 |
13 | Taurolithocholic acid sodium salt | TLCA | Secondary BA | Taurine-conjugated BA | 0.3 | 0.1 | 3.6 | 4.1 |
14 | Hyodeoxycholic acid | HDCA | Secondary BA | Free BA | 0.3 | Trace | N.D. | N.D. |
15 | Glycocholic acid hydrate | GCA | Primary BA | Glycine-conjugated BA | 0.3 | Trace | 4.7 | 4.2 |
16 | 3-Dehydrocholic acid | 3-DHCA | Secondary BA | Free BA | 0.3 | Trace | N.D. | N.D. |
17 | Deoxycholic acid | DCA | Secondary BA | Free BA | 0.2 | Trace | Trace | Trace |
18 | Glycoursodeoxycholic acid | GUDCA | Secondary BA | Glycine-conjugated BA | 0.2 | N.D. | 1.1 | 0.5 |
19 | Nor Cholic acid | NorCA | - | Free BA | 0.1 | Trace | 0.4 | 0.4 |
20 | Glycolithocholic acid | GLCA | Secondary BA | Glycine-conjugated BA | Trace | N.D. | 0.2 | 0.3 |
21 | Ursodeoxycholic acid | UDCA | Secondary BA | Free BA | Trace | N.D. | N.D. | N.D. |
22 | lithocholic acid | LCA | Secondary BA | Free BA | Trace | Trace | N.D. | 0.1 |
23 | Glycodeoxycholic acid | GDCA | Secondary BA | Glycine-conjugated BA | Trace | Trace | 0.3 | 0.5 |
24 | Tauroursodeoxycholic acid Dihydrate | TUDCA | Secondary BA | Taurine-conjugated BA | Trace | Trace | N.D. | N.D. |
25 | Glycohyocholic acid sodium salt | GHCA | Primary BA | Glycine-conjugated BA | Trace | N.D. | 0.1 | 0.1 |
26 | Taurohyodeoxycholic acid sodium salt | THDCA | Secondary BA | Taurine-conjugated BA | N.D. | 0.1 | N.D. | N.D. |
27 | Hyocholic acid | HCA | Primary BA | Free BA | N.D. | N.D. | N.D. | N.D. |
28 | Alpha-Muricholic acid | α-MCA | Primary BA | Free BA | N.D. | N.D. | Trace | N.D. |
29 | 23-Nordeoxycholic acid | 23norDCA | - | Free BA | N.D. | N.D. | N.D. | N.D. |
30 | Isolithocholic acid | isoLCA | Secondary BA | Free BA | N.D. | N.D. | N.D. | N.D. |
31 | 12-Ketolithocholic acid | 12-ketoLCA | Secondary BA | Free BA | N.D. | N.D. | N.D. | N.D. |
32 | 3β-Ursodeoxycholic acid | βUDCA | - | Free BA | N.D. | N.D. | N.D. | N.D. |
33 | Beta-Muricholic acid | β-MCA | Primary BA | Free BA | N.D. | N.D. | N.D. | N.D. |
Total | 855.8 | 187.4 | 528.2 | 476.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, A.; Zhang, X.; Yan, X. Intestinal Bile Acids Induce Behavioral and Olfactory Electrophysiological Responses in Large Yellow Croaker (Larimichthys crocea). Fishes 2023, 8, 26. https://doi.org/10.3390/fishes8010026
Zhu A, Zhang X, Yan X. Intestinal Bile Acids Induce Behavioral and Olfactory Electrophysiological Responses in Large Yellow Croaker (Larimichthys crocea). Fishes. 2023; 8(1):26. https://doi.org/10.3390/fishes8010026
Chicago/Turabian StyleZhu, Aijun, Xiaolin Zhang, and Xiaojun Yan. 2023. "Intestinal Bile Acids Induce Behavioral and Olfactory Electrophysiological Responses in Large Yellow Croaker (Larimichthys crocea)" Fishes 8, no. 1: 26. https://doi.org/10.3390/fishes8010026
APA StyleZhu, A., Zhang, X., & Yan, X. (2023). Intestinal Bile Acids Induce Behavioral and Olfactory Electrophysiological Responses in Large Yellow Croaker (Larimichthys crocea). Fishes, 8(1), 26. https://doi.org/10.3390/fishes8010026