Isolation, Identification, and Pathogenicity of Aeromonas veronii, the Causal Agent of Hemorrhagic Septicemia in Channel Catfish (Ictalurus punctatus) in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish
2.2. Histopathology
2.3. Etiological Examination
2.4. Bacterial Identification
2.4.1. Identification of the Morphological, Physiological, and Biochemical Characteristics of the Pathogenic Bacteria
2.4.2. Identification of Bacterial Species by MALDI-TOF-MS
2.4.3. Sequence and Phylogenetic Analysis
2.5. Pathogenicity
2.6. Antibiotic Sensitivity Test
3. Results
3.1. Natural Features and Clinical Symptoms
3.2. Histopathological Observation and Analysis
3.3. Pathogen Isolation and Identification
3.4. Pathogenicity
3.5. Drug Sensitivity Test
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Hao, K.; Li, S.; Meng, L.; Chen, H.; Wei, F.; Yu, F.; Xu, J.; Zhao, Z. Channel catfish virus ORF25 and ORF63 genes are essential for viral replication in vitro. J. Fish Dis. 2022, 45, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Abass, N.Y.; Ye, Z.; Alsaqufi, A.; Dunham, R.A. Comparison of growth performance among channel-blue hybrid catfish, ccGH transgenic channel catfish, and channel catfish in a tank culture system. Sci. Rep. 2022, 12, 740. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yu, Y.; Dong, L.; Gan, J.; Mao, T.; Liu, T.; Li, X.; He, L. Effects of moderate exercise on hepatic amino acid and fatty acid composition, liver transcriptome, and intestinal microbiota in channel catfish (Ictalurus punctatus). Comp. Biochem. Physiol. Part D Genom. Proteom. 2021, 40, 100921. [Google Scholar] [CrossRef] [PubMed]
- Crider, J.; Quiniou, S.M.A.; Felch, K.L.; Showmaker, K.; Bengtén, E.; Wilson, M. A Comprehensive Annotation of the Channel Catfish (Ictalurus punctatus) T Cell Receptor Alpha/Delta, Beta, and Gamma Loci. Front. Immunol. 2021, 12, 786402. [Google Scholar] [CrossRef]
- Dubytska, L.P.; Thune, R.L. Early Intracellular Trafficking and Subsequent Activity of Programmed Cell Death in Channel Catfish Macrophages Infected with Edwardsiella ictaluri. Microorganisms 2020, 8, 1649. [Google Scholar] [CrossRef]
- Tsutsui, S.; Yoshimura, A.; Kawakami, Y.; Nakamura, O. Molecular evolution of kalliklectin in teleost and identification of the novel type with eight apple domains in channel catfish, Ictalurus punctatus. Mol. Biol. Rep. 2021, 48, 4305–4318. [Google Scholar] [CrossRef]
- Graham, C.A.; Shamkhalichenar, H.; Browning, V.E.; Byrd, V.J.; Liu, Y.; Gutierrez-Wing, M.T.; Novelo, N.; Choi, J.W.; Tierschc, T.R. A practical evaluation of machine learning for classification of ultrasound images of ovarian development in channel catfish (Ictalurus punctatus). Aquaculture 2022, 552, 738039. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, M.; Fu, L.; Zhong, L.; Liu, G.; Zheng, Y.; Chen, X.; Bian, W. Liver transcriptome analysis and cortisol immune-response modulation in lipopolysaccharide-stimulated in channel catfish (Ictalurus punctatus). Fish Shellfish. Immunol. 2020, 101, 19–50. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, X.; Zhang, H.; Chen, Y.; Song, Y.; Ai, X. Dual RNA-Seq of Trunk Kidneys Extracted From Channel Catfish Infected With Yersinia ruckeri Reveals Novel Insights Into Host-Pathogen Interactions. Front. Immunol. 2021, 12, 775708. [Google Scholar] [CrossRef]
- Simora, R.M.C.; Xing, D.; Bangs, M.R.; Wang, W.; Ma, X.; Su, B.; Khan, M.G.Q.; Qin, Z.; Lu, C.; Alston, V.; et al. CRISPR/Cas9-mediated knock-in of alligator cathelicidin gene in a non-coding region of channel catfish genome. Sci. Rep. 2020, 10, 22271. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Wang, R.; Lu, J.; Nandi, S.; Mohanty, S.; Terhune, J.; Liu, Z.; Peatman, E. RNA-seq analysis of mucosal immune responses reveals signatures of intestinal barrier disruption and pathogen entry following Edw. Ictaluri infection in channel catfish, Ictalurus punctatus. Fish Shellfish. Immunol. 2012, 32, 816–827. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Luo, L.; Zuo, F.; Geng, Y.; Ou, Y.; Chen, D.; Yang, S.; Luo, W.; Wang, Y.; Wang, J.; et al. Immunosuppression and apoptosis activation mediated by p53-Bcl2/Bax signaling pathway—The potential mechanism of goldfish (Carassius auratus Linnaeus) gill disease caused by Myxobolus ampullicapsulatus. Front. Immunol. 2022, 13, 998975. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhu, X.; Zhang, H.; Chen, Y.; Liu, Y.; Song, Y.; Ai, X. Vibrio cholerae was found in cultured bullfrog. Epidemiol. Infect. 2022, 150, e30. [Google Scholar] [CrossRef] [PubMed]
- Hao, Q.; Xia, R.; Zhang, Q.; Xie, Y.; Ran, C.; Yang, Y.; Zhou, W.; Chu, F.; Zhang, X.; Wang, Y.; et al. Partially replacing dietary fish meal by Saccharomyces cerevisiae culture improve growth performance, immunity, disease resistance, composition and function of intestinal microbiota in channel catfish (Ictalurus punctatus). Fish Shellfish Immunol. 2022, 125, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Detrich, H.W., 3rd; Prasad, V.; Ludueña, R.F. Cold-stable microtubules from Antarctic fishes contain unique alpha tubulins. J. Biol. Chem. 1987, 262, 8360–8366. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhu, X.; Huang, Y.; Zhang, H.; Liu, Y.; Xu, N.; Fu, G.; Ai, X. RNA-Seq and 16S rRNA Analysis Revealed the Effect of Deltamethrin on Channel Catfish in the Early Stage of Acute Exposure. Front. Immunol. 2022, 13, 916100. [Google Scholar] [CrossRef]
- Sheng, T.; Song, G.; Yue, T.; Zhang, J.; Wang, W.; Yang, Z.; Lu, Q. Whole-genome sequencing and antimicrobial resistance analysis of multidrug-resistant Aeromonas veronii strain JC529 from a common carp. J. Glob. Antimicrob. Resist. 2021, 27, 118–122. [Google Scholar] [CrossRef]
- Huang, L.; Wu, Y.; Deng, Y.; Wang, K.; Geng, Y.; Zhao, Q. Pathohistological observation of Ictalurus punctatus infected with Aeromonas veronii. Chin. Vet. Sci. 2010, 40, 738–742. [Google Scholar]
- Ehsan, R.; Rahman, A.; Paul, S.I.; Ador, M.A.A.; Haque, M.S.; Akter, T.; Rahman, M.M. Aeromonas veronii isolated from climbing perch (Anabas testudineus) suffering from epizootic ulcerative syndrome (EUS)—ScienceDirect. Aquac. Fish. 2021, 8, 288–295. [Google Scholar] [CrossRef]
- Wang, D.; Shao-Wu, L.I.; Liu, H.B.; Yin, J.S.; Lu, T. Comparison Study on 16S rDNA of Nine Aeromonas hydrophila Isolated from Northeast Provinces. Chin. J. Fish. 2010, 23, 11. [Google Scholar]
- Wu, J.; Kim, K.S.; Lee, J.H.; Lee, Y.C. Cloning, expression in Escherichia coli, and enzymatic properties of laccase from Aeromonas hydrophila WL-11. J. Environ. Sci. 2010, 22, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Yonetani, S.; Ohnishi, H.; Ohkusu, K.; Matsumoto, T.; Watanabe, T. Direct identification of microorganisms from positive blood cultures by MALDI-TOF MS using an in-house saponin method. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2016, 52, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Bittar, F.; Ouchenane, Z.; Smati, F.; Raoult, D.; Rolain, J.M. MALDI-TOF-MS for rapid detection of staphylococcal Panton-Valentine leukocidin. Int. J. Antimicrob. Agents 2009, 34, 467–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.; Cheng, J.; Li, J.; Wang, Y. Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. Anal. Chem. 2010, 82, 6208–6214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Sancho, M.; Cerdá, I.; Fernández-Bravo, A.; Domínguez, L.; Figueras, M.J.; Fernández-Garayzábal, J.F.; Vela, A.I. Limited performance of MALDI-TOF for identification of fish Aeromonas isolates at species level. J. Fish Dis. 2018, 41, 1485–1493. [Google Scholar] [CrossRef]
- Shin, H.B.; Yoon, J.; Lee, Y.; Kim, M.S.; Lee, K. Comparison of MALDI-TOF MS, housekeeping gene sequencing, and 16S rRNA gene sequencing for identification of Aeromonas clinical isolates. Yonsei Med. J. 2015, 56, 550–555. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, D.; Suzuki, Y.; Abe, N.; Ui, K.; Suzuki, K.; Yamashita, T.; Sakaguchi, A.; Suzuki, S.; Masuo, K.; Nakano, A.; et al. Comparison of MALDI-TOF mass spectrometry and rpoB gene sequencing for the identification of clinical isolates of Aeromonas spp. Heliyon 2022, 8, e11585. [Google Scholar] [CrossRef]
Test Items | ZZ051 | A.veronii | Test Items | ZZ051 | A.veronii |
---|---|---|---|---|---|
indole | - | - | ONPG | - | - |
gelatin | + | + | starch | + | + |
ornithine decarboxylase | + | + | arginine decarboxylase | + | - |
lysine decarboxylase | + | + | D-ribose | + | + |
glucose | + | + | phaseomannite | - | - |
urea | - | - | maltobiose | + | + |
oxidase experiment | + | + | saccharose | + | + |
nitrate reaction | + | + | arabinose | - | - |
O-F | + | + | cellobiose | + | + |
esculoside | - | - | salicin | - | - |
lactose | - | - | citrate | + | + |
galactose | - | - | semisolid | + | + |
Antibiotics | Concentration (ug/piece) | IZD (mm) | Result |
---|---|---|---|
Enicillin | 10 | 6 | Resistant |
Cefotaxime | 30 | 31 | Susceptible |
Erythromycin | 15 | 11 | Resistant |
Azithromycin | 15 | 16 | Susceptible |
Chloramphenicol | 30 | 8 | Resistant |
Florfenicol | 30 | 7 | Resistant |
Tetracycline | 30 | 9 | Resistant |
Minocycline | 30 | 33 | Susceptible |
Doxycycline | 30 | 16 | Susceptible |
Norfloxacin | 10 | 6 | Resistant |
Ofloxacin | 5 | 16 | Susceptible |
Enrofloxacin | 10 | 18 | Susceptible |
Nalidixic Acid | 30 | 9 | Resistant |
Pipemidic Acid | 30 | 6 | Resistant |
Gentamicin | 10 | 6 | Resistant |
Neomycin | 30 | 11 | Resistant |
Streptomycin | 10 | 7 | Resistant |
Kanamycin | 30 | 8 | Resistant |
Tobramycin | 10 | 7 | Resistant |
Amikacin | 30 | 9 | Resistant |
Cotrimoxazole | 25 | 7 | Resistant |
Metronidazole | 5 | 6 | Resistant |
Polymyxin B | 300 | 11 | Intermediately |
Furazolidone | 300 | 15 | Intermediately |
Clindamycin | 2 | 7 | Resistant |
Vancomycin | 30 | 14 | Intermediately |
Rifampicin | 5 | 13 | Intermediately |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, G.; Xu, J.; Ai, X.; Yang, Y. Isolation, Identification, and Pathogenicity of Aeromonas veronii, the Causal Agent of Hemorrhagic Septicemia in Channel Catfish (Ictalurus punctatus) in China. Fishes 2022, 7, 394. https://doi.org/10.3390/fishes7060394
Qin G, Xu J, Ai X, Yang Y. Isolation, Identification, and Pathogenicity of Aeromonas veronii, the Causal Agent of Hemorrhagic Septicemia in Channel Catfish (Ictalurus punctatus) in China. Fishes. 2022; 7(6):394. https://doi.org/10.3390/fishes7060394
Chicago/Turabian StyleQin, Gaixiao, Jin Xu, Xiaohui Ai, and Yibin Yang. 2022. "Isolation, Identification, and Pathogenicity of Aeromonas veronii, the Causal Agent of Hemorrhagic Septicemia in Channel Catfish (Ictalurus punctatus) in China" Fishes 7, no. 6: 394. https://doi.org/10.3390/fishes7060394
APA StyleQin, G., Xu, J., Ai, X., & Yang, Y. (2022). Isolation, Identification, and Pathogenicity of Aeromonas veronii, the Causal Agent of Hemorrhagic Septicemia in Channel Catfish (Ictalurus punctatus) in China. Fishes, 7(6), 394. https://doi.org/10.3390/fishes7060394